05. The Courant Snyder Invariant and the Betatron Formulation

Prof. Steven M. Lund

Physics and Astronomy Department
Facility for Rare Isotope Beams (FRIB)
Michigan State University (MSU)
MSU PHY 905 and US Particle Accelerator School
"Accelerator Physics"

Steven M. Lund and Yue Hao

East Lansing, Michigan
January, 2020

* Research supported by: (Version 2020204)

FRIB/MSU: U.S. Department of Energy O ce of Science Cooperative Agreement DESC0000661and National Science Foundation Grant No. PHY-1102511 SM Lund, MSU \& USPAS, 2020
/// Illustrative Example: Continuous Focusing/Simple Harmonic Oscillator
Equation of motion:

$$
x^{\prime \prime}+k_{\beta 0}^{2} x=0 \quad k_{\beta 0}^{2}=\mathrm{const}>0
$$

Constant of motion is the well-know Hamiltonian/Energy:

$$
H=\frac{1}{2} x^{\prime 2}+\frac{1}{2} k_{\beta 0}^{2} x^{2}=\mathrm{const}
$$

which shows that the particle moves on an ellipse in $x-x^{\prime}$ phase-space with:
\rightarrow Location of particle on ellipse set by initial conditions
\rightarrow All initial conditions with same energy/H give same ellipse ${ }_{x^{\prime}}$
$\operatorname{Max} / \operatorname{Min}[x] \Leftrightarrow x^{\prime}=0$
$\operatorname{Max} / \operatorname{Min}[x]= \pm \sqrt{2 H / k_{\beta 0}^{2}}$
$\operatorname{Max} / \operatorname{Min}\left[x^{\prime}\right] \Leftrightarrow x=0$
$\operatorname{Max} / \operatorname{Min}\left[x^{\prime}\right]= \pm \sqrt{2 H}$

S7: Hill's Equation: The Courant-Snyder Invariant and Single Particle Emittance
 S7A: Introduction

Constants of the motion can simplify the interpretation of dynamics in physics
\rightarrow Desirable to identify constants of motion for Hill's equation for improved understanding of focusing in accelerators
\rightarrow Constants of the motion are not immediately obvious for Hill's Equation due to s-varying focusing forces related to $\kappa(s)$ can add and remove energy from the particle

- Wronskian symmetry is one useful symmetry
- Are there other symmetries?

Question:

For Hill's equation:

$$
x^{\prime \prime}+\kappa(s) x=0
$$

does a quadratic invariant exist that can aid interpretation of the dynamics?
Answer we will nd:
Yes, the Courant-Snyder invariant

Comments:

\rightarrow Very important in accelerator physics

- Helps interpretation of linear dynamics
\rightarrow Named in honor of Courant and Snyder who popularized it's use in Accelerator physics while co-discovering alternating gradient (AG) focusing in a single seminal (and very elegant) paper:

Courant and Snyder, Theory of the Alternating Gradient Synchrotron,
Annals of Physics 3, 1 (1958).

- Christofolos also understood AG focusing in the same period using a more heuristic analysis
\rightarrow Easily derived using phase-amplitude form of orbit solution
- Can be much harder using other methods

SM Lund, MSU \& USPAS, 2020
Accelerator Physics

S7B: Derivation of Courant-Snyder Invariant

The phase amplitude method described in S6 makes identi cation of the invariant elementary. Use the phase amplitude form of the orbit:

$$
\begin{aligned}
x(s) & =A_{i} w(s) \cos \psi(s) \\
x^{\prime}(s) & =A_{i} w^{\prime}(s) \cos \psi(s)-\frac{A_{i}}{w(s)} \sin \psi(s)
\end{aligned}
$$

$A_{i}, \psi_{i}=\psi\left(s_{i}\right)$ set by initial at $s=s_{i}$
where

$$
w^{\prime \prime}+\kappa(s) w-\frac{1}{w^{3}}=0
$$

Re-arrange the phase-amplitude trajectory equations:

$$
\begin{aligned}
\frac{x}{w} & =A_{i} \cos \psi \\
w x^{\prime}-w^{\prime} x & =A_{i} \sin \psi
\end{aligned}
$$

square and add the equations to obtain the Courant-Snyder invariant:

$$
\begin{aligned}
\left(\frac{x}{w}\right)^{2}+\left(w x^{\prime}-w^{\prime} x\right)^{2} & =A_{i}^{2}\left(\cos ^{2} \psi+\sin ^{2} \psi\right) \\
& =A_{i}^{2}=\mathrm{const}
\end{aligned}
$$

SM Lund, MSU \& USPAS, 2020
Accelerator Physics

$$
\begin{aligned}
& T=\frac{1}{2} x^{\prime 2} \\
&=\text { Kinetic "Energy" } \\
& V=\frac{1}{2} \kappa x^{2}
\end{aligned}=\text { Potential "Energy" }
$$

Apply the chain-Rule with $H=H\left(x, x^{\prime} ; s\right)$:

$$
\frac{d H}{d s}=\frac{\partial H}{\partial s}+\frac{\partial H}{\partial x} \frac{d x}{d s}+\frac{\partial H}{\partial x^{\prime}} \frac{d x^{\prime}}{d s}
$$

Apply the equation of motion in Hamiltonian form:

$$
\begin{gathered}
\frac{d}{d s} x=\frac{\partial H}{\partial x^{\prime}} \quad 0 \quad \frac{d}{d s} x^{\prime}=-\frac{\partial H}{\partial x} \\
\frac{d H}{d s}=\frac{\partial H}{\partial s}-\frac{d x^{\prime}}{d s} \frac{d x}{d s}+\frac{d x}{d s} \frac{d x^{\prime}}{d s}=\frac{\partial H}{\partial s}=\frac{1}{2} \kappa^{\prime} x^{2} \neq 0 \\
\Longrightarrow H \neq \text { const }
\end{gathered}
$$

\rightarrow Energy of a "kicked" oscillator with $\kappa(s) \neq$ const is not conserved

- Lattice can source and sink particle energy
\rightarrow Energy should not be confused with the Courant-Snyder invariant SM Lund, MSU \& USPAS, 2020 Accelerator Physics \qquad 7
H is the energy:

$$
H=\frac{1}{2} x^{\prime 2}+\frac{1}{2} \kappa x^{2}=T+V
$$

\qquad

Comments on the Courant-Snyder Invariant

- Simpli es interpretation of dynamics (will show how shortly)
\rightarrow Extensively used in accelerator physics
*Quadratic structure in $x-x^{\prime}$ de nes a rotated ellipse in $x-x^{\prime}$ phase space.
\rightarrow Because $\quad w^{2}\left(\frac{x}{w}\right)^{\prime}=w x^{\prime}-w^{\prime} x$
the Courant-Snyder invariant can be alternatively expressed as:

$$
\left(\frac{x}{w}\right)^{2}+\left[w^{2}\left(\frac{x}{w}\right)^{\prime}\right]^{2}=\mathrm{const}
$$

\rightarrow Cannot be interpreted as a conserved energy!
The point that the Courant-Snyder invariant is not a conserved energy should be elaborated. The equation of motion:

$$
x^{\prime \prime}+\kappa(s) x=0
$$

Is derivable from the Hamiltonian

$$
\begin{aligned}
& \qquad H=\frac{1}{2} x^{\prime 2}+\frac{1}{2} \kappa x^{2} \Longrightarrow \begin{array}{l}
\frac{}{d s} x=\frac{\overline{\partial x^{\prime}}}{}=x^{\prime} \\
\frac{d}{d s} x^{\prime}=-\frac{\partial H}{\partial x}=-\kappa x
\end{array} \Longrightarrow x^{\prime \prime}+\kappa x=0 \\
& \text { SM Lund, MSU \& USPAS, } 2020
\end{aligned}
$$

Accelerator Physics
/// Aside: Only for the special case of continuous focusing (i.e., a simple Harmonic oscillator) are the Courant-Snyder invariant and energy simply related:

$$
\begin{aligned}
& \text { Continuous Focusing: } \kappa(s)=k_{\beta 0}^{2}=\text { const } \\
& \Longrightarrow H=\frac{1}{2} x^{\prime 2}+\frac{1}{2} k_{\beta 0}^{2} x^{2}=\mathrm{const} \\
& w \text { equation: } \quad w^{\prime \prime}+k_{\beta 0}^{2} w-\frac{1}{w^{3}}=0 \\
& \Longrightarrow w=\sqrt{\frac{1}{k_{\beta 0}}}=\text { const }
\end{aligned}
$$

$$
\text { Courant-Snyder Invariant: }\left(\frac{x}{w}\right)^{2}+\left(w x^{\prime}-w^{\prime} x\right)^{2}=\mathrm{const}
$$

$$
\Longrightarrow\left(\frac{x}{w}\right)^{2}+\left(w x^{\prime}-w^{\prime} x\right)^{2}=k_{\beta 0} x^{2}+\frac{x^{\prime 2}}{k_{\beta 0}}
$$

$$
=\frac{2}{k_{\beta 0}}\left(\frac{1}{2} x^{\prime 2}+\frac{1}{2} k_{\beta 0}^{2} x^{2}\right)
$$

$$
=\frac{2 H}{k_{\beta 0}}=\mathrm{const}
$$

Interpret the Courant-Snyder invariant:

$$
\left(\frac{x}{w}\right)^{2}+\left(w x^{\prime}-w^{\prime} x\right)^{2}=A_{i}^{2}=\mathrm{const}
$$

by expanding and isolating terms quadratic terms in $x-x^{\prime}$ phase-space variables:

$$
\left[\frac{1}{w^{2}}+w^{\prime 2}\right] x^{2}+2\left[-w w^{\prime}\right] x x^{\prime}+\left[w^{2}\right] x^{\prime 2}=A_{i}^{2}=\mathrm{const}
$$

The three coe cients in [...] are functions of w and w^{\prime} only and therefore are functions of the lattice only (not particle initial conditions). The coe cients are commonly called "Twiss Parameters" and are denoted as:

$$
\begin{aligned}
& \gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=A_{i}^{2}=\mathrm{const} \\
& \gamma(s) \equiv \frac{1}{w^{2}(s)}+\left[w^{\prime}(s)\right]^{2}=\frac{1+\alpha^{2}(s)}{\beta(s)} \\
& \beta(s) \equiv w^{2}(s) \\
& \alpha(s) \equiv-w(s) w^{\prime}(s)
\end{aligned}
$$

$$
\gamma \beta=1+\alpha^{2}
$$

* All Twiss "parameters" are speci ed by w(s)
\rightarrow Given w and w^{\prime} at a point (s) any 2 Twiss parameters give the 3rd SM Lund, MSU \& USPAS, 2020

/// Aside on Notation: Twiss Parameters and Emittance Units:

Twiss Parameters:
Use of α, β, γ should not create confusion with kinematic relativistic factors
$\rightarrow \beta_{b}, \gamma_{b}$ are absorbed in the focusing function
\rightarrow Contextual use of notation unfortunate reality not enough symbols!
\rightarrow Notation originally due to Courant and Snyder, not Twiss, and might be more appropriately called "Courant-Snyder functions" or "lattice functions."
Emittance Units:
x has dimensions of length and x^{\prime} is a dimensionless angle. So $x-x^{\prime}$ phase-space area has dimensions $[[\epsilon]]=$ length. A common choice of units is millimeters (mm) and milliradians (mrad), e.g.,

$$
\epsilon=10 \mathrm{~mm}-\mathrm{mrad}
$$

The de nition of the emittance employed is not unique and di erent workers use a wide variety of symbols. Some common notational choices:

$$
\pi \epsilon \rightarrow \epsilon \quad \epsilon \rightarrow \varepsilon \quad \epsilon \rightarrow E
$$

Write the emittance values in units with a π, e.g.,

$$
\epsilon=10.5 \pi-\mathrm{mm}-\mathrm{mrad} \text { (seems falling out of favor but still common) }
$$ Use caution! Understand conventions being used before applying results! /// SM Lund, MSU \& USPAS, 2020

SM Lund, MSU \& USPAS, 2020
10
The area of the invariant ellipse is:
\rightarrow Analytic geometry formulas: $\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=A_{i}^{2} \rightarrow$ Area $=\pi A_{i}^{2} / \sqrt{\gamma \beta-\alpha^{2}}$
\rightarrow For Courant-Snyder ellipse: $\gamma \beta=1+\alpha^{2}$
Phase-Space Area $=\int_{\text {ellipse }} d x d x^{\prime}=\frac{\pi A_{i}^{2}}{\sqrt{\gamma \beta-\alpha^{2}}}=\pi A_{i}^{2} \equiv \pi \epsilon$
Where ϵ is the single-particle emittance:
\rightarrow Emittance is the area of the orbit in $x-x^{\prime}$ phase-space divided by π $\left[1 / w^{2}+w^{\prime 2}\right] x^{2}+2\left[-w w^{\prime}\right] x x^{\prime}+\left[w^{2}\right] x^{\prime 2}=$

$$
\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=\epsilon=\mathrm{const}
$$

See problem sets for critical point calculation
\rightarrow Important to understand extents of bundle or particles with
di erent initial conditions

Emittance is sometimes de ned by the largest Courant-Snyder ellipse that will contain a speci ed fraction of the distribution of beam particles. Common choices are:

- 100%
- 95%
$\rightarrow 90 \%$
*
\rightarrow Depends emphasis
Comment:
Figure shows scaling of concentric ellipses for simplicity but can also de ne for smallest ellipse changing orientation

We will motivate (problems and later lectures) that the statistical measure

$$
\begin{aligned}
\varepsilon_{\mathrm{rms}} & =\left[\left\langle\left\langle x^{2}\right\rangle\left\langle x^{2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}\right]^{1 / 2} \quad\langle\cdots\rangle=\right.\text { Distribution Average } \\
& =\mathrm{rms} \text { Statistical Emittance }
\end{aligned}
$$

provides a weighted average measure of the beam phase-space area.
SM Lund, MSU \& USPAS, 2020

Properties of Courant-Snyder Invariant:

\rightarrow The ellipse will rotate and change shape as the particle advances through the focusing lattice, but the instantaneous area of the ellipse ($\pi \epsilon=$ const) remains constant.
\rightarrow The location of the particle on the ellipse and the size (area) of the ellipse depends on the initial conditions of the particle
*The orientation of the ellipse is independent of the particle initial conditions. All particles move on nested ellipses.
\rightarrow Quadratic in the $x-x^{\prime}$ phase-space coordinates, but is not the transverse particle energy (which is not conserved).

See examples of Courant-Snyder Ellipse evolution in 04 lecture set

- Continuous Focusing
\rightarrow Periodic Solenoid Focusing
- Periodic FODO Quadrupole Focusing

S7C: Lattice Maps

The Courant-Snyder invariant helps us understand the phase-space evolution of the particles. Knowing how the ellipse transforms (twists and rotates without changing area) is equivalent to knowing the dynamics of a bundle of particles. To see this:
General s:

$$
\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=\epsilon
$$

Initial $s=s_{i}$

$$
\gamma_{i} x_{i}^{2}+2 \alpha_{i} x_{i} x_{i}^{\prime}+\beta_{i} x_{i}^{\prime 2}=\epsilon
$$

$$
\begin{aligned}
\beta_{i} \equiv \beta\left(s=s_{i}\right) & x_{i} \equiv x\left(s=s_{i}\right) \\
\alpha_{i} \equiv \alpha\left(s=s_{i}\right) & x_{i}^{\prime} \equiv x^{\prime}\left(s=s_{i}\right) \\
\gamma_{i} \equiv \gamma\left(s=s_{i}\right) &
\end{aligned}
$$

Apply the components of the transport matrix:

$$
\left[\begin{array}{l}
x \\
x^{\prime}
\end{array}\right]=\mathbf{M}\left(s \mid s_{i}\right) \cdot\left[\begin{array}{l}
x_{i} \\
x_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
C\left(s \mid s_{i}\right) & S\left(s \mid s_{i}\right) \\
C^{\prime}\left(s \mid s_{i}\right) & S^{\prime}\left(s \mid s_{i}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
x_{i} \\
x_{i}^{\prime}
\end{array}\right]
$$

Invert 2 x 2 matrix and apply $\operatorname{det} \mathbf{M}=1$ (Wronskian):

$$
\Longrightarrow \quad\left[\begin{array}{c}
x_{i} \\
x_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
S^{\prime} & -S \\
-C^{\prime} & C
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
x^{\prime}
\end{array}\right] \quad C \equiv C\left(s \mid s_{i}\right), \text { etc. }
$$

SM Lund, MSU \& USPAS, 2020
Accelerator Physics
14
Completing this procedure and gathering terms:

$$
\begin{aligned}
& {\left[\gamma_{i} S^{\prime 2}-2 \alpha_{i} S^{\prime} C^{\prime}+\beta_{i} C^{\prime 2}\right] x^{2} } \\
+2\left[-\gamma_{i} S S^{\prime}+\right. & \\
& \left.\alpha_{i}\left(C S^{\prime}+S C^{\prime}\right)-\beta_{i} C C^{\prime}\right] x x^{\prime} \\
& +\left[\gamma_{i} S^{2}-2 \alpha_{i} S C+\beta_{i} C^{2}\right] x^{\prime 2} \\
& =\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}
\end{aligned}
$$

Collect coe cients of $x^{2}, x x^{\prime}$, and $x^{\prime 2}$ and summarize in matrix form:

$$
\left[\begin{array}{l}
\gamma \\
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{lll}
S^{\prime 2} & -2 C^{\prime} S^{\prime} & C^{\prime 2} \\
-S S^{\prime} & C S^{\prime}+S C^{\prime} & -C C^{\prime} \\
S^{2} & -2 C S & C^{2}
\end{array}\right] \cdot\left[\begin{array}{l}
\gamma_{i} \\
\alpha_{i} \\
\beta_{i}
\end{array}\right]\left[\begin{array}{l}
\text { See steps } \\
\text { on next page }
\end{array}\right.
$$

This result can be applied to illustrate how a bundle of particles will evolve from an initial location in the lattice subject to the linear focusing optics in the machine using only the principal orbit functions C, S, C^{\prime}, and S^{\prime}
$*$ Principal orbits will generally need to be calculated numerically

- Intuition can be built up using simple analytical results (hard edge etc)
\rightarrow Can express C, S, C', S' in terms of CS-ellipse functions using S6F results and de nitions for β, α
SM Lund, MSU \& USPAS, 2020 \quad Accelerator Physics

/// Example: Ellipse Evolution in a simple kicked focusing lattice

Drift:

$$
\left[\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & s-s_{i} \\
0 & 1
\end{array}\right]
$$

$$
\alpha=-\gamma_{i}\left(s-s_{i}\right)+\alpha_{i}
$$

$$
\beta=\gamma_{i}\left(s-s_{i}\right)^{2}-2 \alpha_{i}\left(s-s_{i}\right)+\beta_{i}
$$

Thin Lens:

$$
\gamma=\gamma_{i}+2 \alpha_{i} / f+\beta_{i} / f^{2}
$$

focal length f

$$
\xrightarrow[\text { Drift }]{\substack{\text { Docus }}}
$$

For further examples of phase-space ellipse evolutions in standard lattices,
see previous examples given in: S6G
SM Lund, MSU \& USPAS, 2020
Accelerator Physics

Rather than use a 3×3 advance matrix for γ, α, β, we can alternatively derive an expression based on the usual 2×2 transfer matrix \boldsymbol{M} which will help further clarify the underlying structure of the linear dynamics.

Recall in S6F

$$
\left[\begin{array}{c}
x(s) \\
x^{\prime}(s)
\end{array}\right]=\mathbf{M}\left(s \mid s_{i}\right) \cdot\left[\begin{array}{l}
x\left(s_{i}\right) \\
x^{\prime}\left(s_{i}\right)
\end{array}\right]=\left[\begin{array}{ll}
C\left(s \mid s_{i}\right) & S\left(s \mid s_{i}\right) \\
C^{\prime}\left(s \mid s_{i}\right) & S^{\prime}\left(s \mid s_{i}\right)
\end{array}\right] \cdot\left[\begin{array}{l}
x\left(s_{i}\right) \\
x^{\prime}\left(s_{i}\right)
\end{array}\right]
$$

Identi ed

$$
\begin{aligned}
C\left(s \mid s_{i}\right) & =\frac{w(s)}{w_{i}} \cos \Delta \psi(s)-w_{i}^{\prime} w(s) \sin \Delta \psi(s) \\
S\left(s \mid s_{i}\right) & =w_{i} w(s) \sin \Delta \psi(s) \\
C^{\prime}\left(s \mid s_{i}\right) & =\left(\frac{w^{\prime}(s)}{w_{i}}-\frac{w_{i}^{\prime}}{w(s)}\right) \cos \Delta \psi(s)-\left(\frac{1}{w_{i} w(s)}+w_{i}^{\prime} w^{\prime}(s)\right) \sin \Delta \psi(s) \\
S^{\prime}\left(s \mid s_{i}\right) & =\frac{w_{i}}{w(s)} \cos \Delta \psi(s)+w_{i} w^{\prime}(s) \sin \Delta \psi(s)
\end{aligned}
$$

$$
\Delta \psi(s) \equiv \int_{s_{i}}^{s} \frac{d \tilde{s}}{w^{2}(\tilde{s})} \quad \begin{array}{ll}
w_{i} \equiv w\left(s=s_{i}\right) \\
w_{i}^{\prime} \equiv w^{\prime}\left(s=s_{i}\right)
\end{array}
$$

SM Lund, MSU \& USPAS, 2020
Accelerator Physics

For the special case of a periodic lattice with an advance over one period

$$
\begin{aligned}
& \xrightarrow[s_{i}]{\left.\right|^{s}} \stackrel{s+L_{p}}{\mid} \\
& \alpha\left(s_{i}\right)=\alpha(s) \quad \beta\left(s_{i}\right)=\beta(s) \quad \gamma\left(s_{i}\right)=\gamma(s) \quad \Delta \psi=\sigma_{0}
\end{aligned}
$$

this expression for \boldsymbol{M} reduces to

$$
\begin{aligned}
\mathbf{M}\left(s_{i}+L_{p} \mid s_{i}\right) & =\left[\begin{array}{ll}
\cos \sigma_{0}+\alpha \sin \sigma_{0} & \beta \sin \sigma_{0} \\
-\gamma \sin \sigma_{0} & \cos \sigma_{0}-\alpha \sin \sigma_{0}
\end{array}\right] \\
& =\mathbf{I} \cos \sigma_{0}+\mathbf{J}(s) \sin \sigma_{0} \\
\mathbf{I} & \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathbf{J} \equiv\left[\begin{array}{ll}
\alpha(s) & \beta(s) \\
-\gamma(s) & -\alpha(s)
\end{array}\right] \\
\sigma_{0} & \equiv \int_{s_{i}}^{s_{i}+L_{p}} \frac{d \tilde{s}}{\beta(\tilde{s})}
\end{aligned}
$$

It is straightforward to verify that:

$$
\begin{aligned}
& \operatorname{det} \mathbf{J}=-\alpha^{2}+\gamma \beta=1 \\
& \mathbf{J} \cdot \mathbf{J}=-\mathbf{I}
\end{aligned}
$$

SM Lund, MSU \& USPAS, 2020

An advance $s_{i} \rightarrow s+L_{p}$ through any interval in a periodic lattice can be resolved as:

Giving for $\mathbf{M}\left(s+L_{p} \mid s_{i}\right)$ advance (write in two di erent steps LHS and RHS):

$$
\begin{aligned}
\mathbf{M}\left(s+L_{p} \mid s\right) \cdot \mathbf{M}\left(s \mid s_{i}\right) & =\mathbf{M}\left(s+L_{p} \mid s_{i}+L_{p}\right) \cdot \mathbf{M}\left(s_{i}+L_{p} \mid s_{i}\right) \\
& =\mathbf{M}\left(s \mid s_{i}\right) \cdot \mathbf{M}\left(s_{i}+L_{p} \mid s_{i}\right) \Leftarrow \cdot \mathbf{M}^{-1}\left(s \mid s_{i}\right)
\end{aligned}
$$

Or:

$$
\mathbf{M}\left(\mathrm{s}+\mathrm{L}_{p} \mid s\right)=\mathbf{M}\left(s \mid s_{i}\right) \cdot \mathbf{M}\left(s_{i}+L_{p} \mid s_{i}\right) \cdot \mathbf{M}^{-1}\left(s \mid s_{i}\right) \quad \text { Operate with from }
$$

Using:

$$
\mathbf{M}\left(s+L_{p} \mid s\right)=\mathbf{I} \cos \sigma_{0}+\mathbf{J}(s) \sin \sigma_{0} \quad \mathbf{M} \cdot \mathbf{M}^{-1}=\mathbf{I}
$$

$$
\mathbf{M}\left(s_{i}+L_{p} \mid s_{i}\right)=\mathbf{I} \cos \sigma_{0}+\mathbf{J}\left(s_{i}\right) \sin \sigma_{0}
$$

Gives:

$$
\begin{aligned}
\mathbf{I} \cos \sigma_{0}+\mathbf{J}(s) \sin \sigma_{0} & =\mathbf{M}^{-1}\left(s \mid s_{i}\right) \cdot\left[\mathbf{I} \cos \sigma_{0}+\mathbf{J}\left(s_{i}\right) \sin \sigma_{0}\right] \cdot \mathbf{M}\left(s \mid s_{i}\right) \\
& =\mathbf{I} \cos \sigma_{0}+\mathbf{M}^{-1}\left(s \mid s_{i}\right) \cdot \mathbf{J}(s) \cdot \mathbf{M}\left(s \mid s_{i}\right) \sin \sigma_{0}
\end{aligned}
$$

$\mathbf{I} \cos \sigma_{0}$ is on both RHS and LHS and then canceling $\sin \sigma_{0}$
SM Lund, MSU \& USPAS, 2020
Accelerator Physics

S8: Hill's Equation: The Betatron Formulation of the Particle Orbit and Maximum Orbit Excursions S8A: Formulation

The phase-amplitude form of the particle orbit analyzed in S 6 of

$$
x(s)=A_{i} w(s) \cos \psi(s)=\sqrt{\epsilon} w(s) \cos \psi(s) \quad[[w]]=(\text { meters })^{1 / 2}
$$

is not a unique choice. Here, w has dimensions sqrt(meters), which can render it inconvenient in applications. Due to this and the utility of the Twiss parameters used in describing orientation of the phase-space ellipse associated with the Courant-Snyder invariant (see: S7) on which the particle moves, it is convenient to de ne an alternative, Betatron representation of the orbit with:

$$
x(s)=\sqrt{\epsilon} \sqrt{\beta(s)} \cos \psi(s)
$$

Betatron function: $\quad \beta(s) \equiv w^{2}(s)$
Single-Particle Emittance: $\epsilon \equiv A_{i}^{2}=$ const

$$
\begin{aligned}
& \text { Phase: } \quad \psi(s)=\psi_{i}+\int_{s_{i}}^{s} \frac{d \tilde{s}}{\beta(\tilde{s})}=\psi_{i}+\Delta \psi(s)
\end{aligned}
$$

* The betatron function is a Twiss "parameter" with dimension $[[\beta]]=$ meters SM Lund, MSU \& USPAS, 2020 Accelerator Physics

This gives a simple expression connecting the Twiss parameters:

$$
\Longrightarrow \quad \mathbf{J}(s)=\mathbf{M}\left(s \mid s_{i}\right) \cdot \mathbf{J}\left(s_{i}\right) \cdot \mathbf{M}^{-1}\left(s \mid s_{i}\right) \quad \mathbf{J} \equiv\left[\begin{array}{ll}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right]
$$

- Simple formula connects the Courant-Synder functions γ, α, β at an initial point $s=s_{i}$ to any location sin the lattice in terms of the transfer matrix \boldsymbol{M}.
\rightarrow Result does NOT require the lattice to be periodic. Periodic extensions can be used to generalize arguments employed to work for any lattice interval.

Comments:

\rightarrow Use of the symbol β for the betatron function should not result in confusion with relativistic factors such as β_{b} since the context of use will make clear

- Relativistic factors often absorbed in lattice focusing function
and do not directly appear in the dynamical descriptions
\rightarrow The change in phase $\Delta \psi$ is the same for both formulations:
$\Delta \psi(s)=\int_{s_{i}}^{s} \frac{d \tilde{s}}{w^{2}(\tilde{s})}=\int_{s_{i}}^{s} \frac{d \tilde{s}}{\beta(\tilde{s})}$

From the equation for w :

$$
\begin{aligned}
& \text { quation for } w \text { : } \\
& w^{\prime \prime}(s)+\kappa(s) w(s)-\frac{1}{w^{3}(s)}=0 \\
& w\left(s+L_{p}\right)=w(s) \quad w(s)>0
\end{aligned}
$$

the betatron function is described by:

$$
\begin{gathered}
w=\beta^{1 / 2} \\
w^{\prime}=\frac{1}{2} \frac{\beta^{\prime}}{\beta^{1 / 2}} \\
w^{\prime \prime}=\frac{1}{2} \frac{\beta^{\prime \prime}}{\beta^{1 / 2}}-\frac{1}{4} \frac{\beta^{\prime 2}}{\beta^{3 / 2}} \\
\Longrightarrow \quad \begin{array}{l}
\frac{1}{2} \beta(s) \beta^{\prime \prime}(s)-\frac{1}{4} \beta^{\prime 2}(s)+\kappa(s) \beta^{2}(s)=1 \\
\beta\left(s+L_{p}\right)=\beta(s) \quad \beta(s)>0
\end{array}
\end{gathered}
$$

* The betatron function represents, analogously to the w-function, a special function de ned by the periodic lattice. Similar to $w(s)$ it is a unique function of the lattice.
* The equation is still nonlinear but we can apply our previous analysis of $w(s)$ (see S6 Appendix A) to solve analytically in terms of the principle orbits SM Lund, MSU \& USPAS, 2020

Accelerator Physics
25

S8B: Maximum Orbit Excursions

From the orbit equation

$$
x=\sqrt{\epsilon \beta} \cos \psi
$$

the maximum and minimum possible particle excursions occur where:

$$
\begin{array}{lll}
\cos \psi=+1 & \longrightarrow & \operatorname{Max}[x]=\sqrt{\epsilon \beta(s)}=\sqrt{\epsilon} w(s) \\
\cos \psi=-1 & \longrightarrow & \operatorname{Min}[x]=-\sqrt{\epsilon \beta(s)}=-\sqrt{\epsilon} w(s)
\end{array}
$$

Thus, the max radial extent of all particle oscillations $\operatorname{Max}[x] \equiv x_{m}$ in the beam distribution occurs for the particle with the max single particle emittance since the particles move on nested ellipses:

In terms of Twiss parameters:

$$
\begin{aligned}
\operatorname{Max}[\epsilon] & \equiv \epsilon_{m} \\
x_{m}(s) & =\sqrt{\epsilon_{m} \beta(s)}=\sqrt{\epsilon_{m}} w(s)
\end{aligned}
$$

$$
\begin{aligned}
& x_{m}=\sqrt{\epsilon_{m}} w=\sqrt{\epsilon_{m} \beta} \\
& x_{m}^{\prime}=\sqrt{\epsilon_{m}} w^{\prime}=-\sqrt{\frac{\epsilon_{m}}{\beta}} \alpha
\end{aligned}
$$

\rightarrow Assumes su cient numbers of particles to populate all possible phases
$\rightarrow x_{m}$ corresponds to the min possible machine aperture to prevent particle losses

- Practical aperture choice in uenced by: resonance e ects due to nonlinear applied elds, space-charge, scattering, nite particle lifetime, SM Lund, MSU \& USPAS, 2020

Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future editions of US Particle Accelerator School (USPAS) and Michigan State University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University
640 South Shaw Lane
East Lansing, MI 48824
lund@frib.msu.edu
(517) 908-7291 o ce
(510) 459-4045 mobile

Please provide corrections with respect to the present archived version at
https://people.nscl.msu.edu/~lund/msu/phy905_2020/
Redistributions of class material welcome. Please do not remove author credits. SM Lund, MSU \& USPAS, 2020 Accelerator Physics

