

S1C: Machine Lattice

Applied eld structures are often arraigned in a regular (periodic) lattice for beam transport/acceleration:

\rightarrow Sometimes functions like bending/focusing are combined into a single element
Example - Linear FODO lattice (symmetric quadrupole doublet)

We neglect self- elds

- Possible to include at various levels of approx. Will be touched on later in the course.

Electric Field:	$\underline{\text { Total }}$	$\underline{\text { Applied }}$	$\underline{\text { Self }}$
Magnetic Field:	$\mathbf{B}, t)$	$=\mathbf{E}^{a}(\mathbf{x}, t)$	+
$\mathbf{E}^{s}(\mathbf{x}, t)$			
$\mathbf{B}(\mathbf{x}, t)$	$=$	$\mathbf{B}^{a}(\mathbf{x}, t)$	+
$\mathbf{B}^{s}(\mathbf{x}, t)$			

$$
\begin{aligned}
\mathbf{E}(\mathbf{x}, t) & \simeq \mathbf{E}^{a}(\mathbf{x}, t) \\
\mathbf{B}(\mathbf{x}, t) & \simeq \mathbf{B}^{a}(\mathbf{x}, t)
\end{aligned}
$$

- Applied elds must obey the Maxwell Equations
- Expansions and idealized forms of the elds are often used
- Example: Linear applied focusing elds

S1D: Self elds

Self- elds are generated by the distribution of beam particles:
Charges
Currents

Particle at Rest
(pure electrostatic)

$\mathbf{B}^{s}=0$

Particle in Motion

- Superimpose for all particles in the beam distribution
- Accelerating particles also radiate

SM Lund, MSU \& USPAS, 2020
Accelerator Physics

In accelerators, typically there is ideally a single species of particle:
$q_{i} \rightarrow q$

$m_{i} \rightarrow m$$\quad$	Large Simpli cation!
Multi-species results in more complex collective e ects	

Motion of particles within axial slices of the "bunch" are highly directed:

Force:

$$
\mathbf{F}_{i}^{a}=q \mathbf{E}_{i}^{a}+q \mathbf{v}_{i} \times \mathbf{B}_{i}^{a} \quad \quad \mathbf{E}^{a}\left(\mathbf{x}_{i}, t\right) \equiv \mathbf{E}_{i}^{a} \quad \text { etc. }
$$

SM Lund, MSU \& USPAS, 2020

The particle equations of motion in $\mathbf{x}_{i}-\mathbf{v}_{i}$ phase-space variables become:
\rightarrow Separate parts of $q \mathbf{E}_{i}^{a}+q \mathbf{v}_{i} \times \mathbf{B}_{i}^{a} \quad$ into transverse and longitudinal comp Transverse

$$
\begin{aligned}
& \frac{d}{d t} \mathbf{x}_{\perp i}=\mathbf{v}_{\perp i} \\
& \frac{d}{d t}\left(m \gamma_{i} \mathbf{v}_{\perp i}\right) \simeq \quad q \mathbf{E}_{\perp i}^{a}+q \beta_{b} c \hat{\mathbf{z}} \times \mathbf{B}_{\perp i}^{a}+q B_{z i}^{a} \mathbf{v}_{\perp i} \times \hat{\mathbf{z}}
\end{aligned}
$$

Longitudinal

$$
\begin{aligned}
& \frac{d}{d t} z_{i}=v_{z i} \\
& \frac{d}{d t}\left(m \gamma_{i} v_{z i}\right) \simeq q E_{z i}^{a}-q\left(v_{x i} B_{y i}^{a}-v_{y i} B_{x i}^{a}\right)
\end{aligned}
$$

In the remainder of this (and most other) lectures, we analyze Transverse Dynamics. Longitudinal Dynamics will covered in later lectures
\rightarrow Except near injector, acceleration is typically slow

- Fractional change in γ_{b}, β_{b} small over characteristic transverse dynamical scales such as lattice period and betatron oscillation periods
\rightarrow Regard γ_{b}, β_{b} as speci ed functions given by the "acceleration schedule" SM Lund, MSU \& USPAS, 2020 Accelerator Physics

In the paraxial approximation, x^{\prime} and y^{\prime} can be interpreted as the (smal magnitude) angles that the particles make with the longitudinal-axis:

$$
\begin{array}{l|}
\hline x-\text { angle }=\frac{v_{x i}}{v_{z i}} \simeq \frac{v_{x i}}{\beta_{b} c}=x_{i}^{\prime} \\
y-\text { angle }=\frac{v_{y i}}{v_{z i}} \simeq \frac{v_{y i}}{\beta_{b} c}=y_{i}^{\prime}
\end{array} \quad \begin{array}{r}
\text { Typical accel lattice values: } \\
\left|x^{\prime}\right|<50 \mathrm{mrad}
\end{array}
$$

The angles will be small in the paraxial approximation:

$$
v_{x i}^{2}, v_{y i}^{2} \ll \beta_{b}^{2} c^{2} \quad \Longrightarrow \quad x_{i}^{\prime 2}, y_{i}^{\prime 2} \ll 1
$$

Since the spread of axial momentum/velocities is small in the paraxial approximation, a thin axial slice of the beam maps to a thin axial slice and s can also be thought of as the axial coordinate of the slice in the accelerator lattice

$$
\begin{aligned}
& \beta_{b} \equiv \sum_{i=1}^{N^{\prime}} \frac{v_{z i}}{c} \\
& \text { slice } \\
& s \simeq s_{i}+\int_{t_{i}}^{t} d \tilde{t} \beta_{b}(\tilde{t})
\end{aligned}
$$

SM Lund, MSU \& USPAS, 2020

Transform transverse particle equations of motion to s rather than t derivatives

$$
\begin{array}{c:c}
\frac{d}{d t}\left(m \gamma_{i} \mathbf{v}_{\perp i}\right) & \simeq q \mathbf{E}_{\perp i}^{a}+q \beta_{b} c \hat{\mathbf{z}} \times \mathbf{B}_{\perp i}^{a}+B_{z i}^{a} \mathbf{v}_{\perp i} \times \hat{\mathbf{z}} \\
\text { Term 1 } & \text { Term 2 }
\end{array}
$$

$$
\begin{aligned}
& \text { Transform Terms } 1 \text { and } 2 \text { in the particle equation of motion: } \quad \begin{aligned}
& \text { Term 1: } \frac{d}{d t}\left(m \gamma_{i} \frac{d \mathbf{x}_{\perp i}}{d t}\right)=m v_{z i} \frac{d}{d s}\left(\gamma_{i} v_{z i} \frac{d}{d s} \mathbf{x}_{\perp i}\right) \quad v_{z i} \frac{d}{d s} \\
&=m \gamma_{i} v_{z i}^{2} \frac{d^{2}}{d s^{2}} \mathbf{x}_{\perp i}+m v_{z i}\left(\frac{d}{d s} \mathbf{x}_{\perp i}\right) \frac{d}{d s}\left(\gamma_{i} v_{z i}\right) \\
& \text { Annroximate. }
\end{aligned} \\
& \qquad \begin{array}{l}
\text { Term 1A }
\end{array}
\end{aligned}
$$

Approximate:

$$
\begin{aligned}
& \text { Term 1A: } \quad \begin{aligned}
m \gamma_{i} v_{z i}^{2} \frac{d^{2}}{d s^{2}} \mathbf{x}_{\perp i} & \simeq m \gamma_{b} \beta_{b}^{2} c^{2} \frac{d^{2}}{d s^{2}} \mathbf{x}_{\perp i}=m \gamma_{b} \beta_{b}^{2} c^{2} \mathbf{x}_{\perp i}^{\prime \prime} \\
\text { Term 1B: } \quad m v_{z i}\left(\frac{d}{d s} \mathbf{x}_{\perp i}\right) \frac{d}{d s}\left(\gamma_{i} v_{z i}\right) & \simeq m \beta_{b} c\left(\frac{d}{d s} \mathbf{x}_{\perp i}\right) \frac{d}{d s}\left(\gamma_{b} \beta_{b} c\right) \\
& \simeq m \beta_{b} c^{2}\left(\gamma_{b} \beta_{b}\right)^{\prime} \mathbf{x}_{\perp i}^{\prime}
\end{aligned}
\end{aligned}
$$

SM Lund, MSU \& USPAS, 2020

Write out transverse particle equations of motion in explicit component form:

$$
\begin{aligned}
x^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} x^{\prime}= & \frac{q}{m \gamma_{b} \beta_{b}^{2} c^{2}} E_{x}^{a}-\frac{q}{m \gamma_{b} \beta_{b} c} B_{y}^{a}+\frac{q}{m \gamma_{b} \beta_{b} c} B_{z}^{a} y^{\prime} \\
y^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} y^{\prime}= & \frac{q}{m \gamma_{b} \beta_{b}^{2} c^{2}} E_{y}^{a}+\frac{q}{m \gamma_{b} \beta_{b} c} B_{x}^{a}-\frac{q}{m \gamma_{b} \beta_{b} c} B_{z}^{a} x^{\prime} \\
& \begin{array}{l}
\text { For linear elds without skew coupling } \\
\\
\\
\end{array} \quad \text { incorporate in lattice functions } \kappa_{x}, \kappa_{y}
\end{aligned}
$$

Equations previously derived under assumptions:
\rightarrow No bends (xed $x-y$-z coordinate system with no local bends)
\rightarrow Paraxial equations ($x^{\prime 2}, y^{\prime 2} \ll 1$)
\rightarrow No dispersive e ects (β_{b} same all particles), acceleration allowed ($\beta_{b} \neq$ const)

- Self- eld interactions neglected

Using the approximations 1A and 1B gives for Term 1:

$$
m \frac{d}{d t}\left(\gamma_{i} \frac{d \mathbf{x}_{\perp i}}{d t}\right) \simeq m \gamma_{b} \beta_{b}^{2} c^{2}\left[\mathbf{x}_{\perp i}^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} \mathbf{x}_{\perp i}^{\prime}\right]
$$

Similarly we approximate in Term 2:

$$
q B_{z i}^{a} \mathbf{v}_{\perp i} \times \hat{\mathbf{z}} \simeq q B_{z i}^{a} \beta_{b} c \mathbf{x}_{\perp i}^{\prime} \times \hat{\mathbf{z}}
$$

Using the simpli ed expressions for Terms 1 and 2 obtain the reduced transverse equation of motion:

$$
\begin{aligned}
\mathbf{x}_{\perp i}^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} \mathbf{x}_{\perp i}^{\prime} & =\frac{q}{m \gamma_{b} \beta_{b}^{2} c^{2}} \mathbf{E}_{\perp i}^{a}+\frac{q}{m \gamma_{b} \beta_{b} c} \hat{\mathbf{z}} \times \mathbf{B}_{\perp i}^{a} \\
& +\frac{q B_{z i}^{a}}{m \gamma_{b} \beta_{b} c} \mathbf{x}_{\perp i}^{\prime} \times \hat{\mathbf{z}}
\end{aligned}
$$

Summary of Transverse Particle Equations of Motion

In linear applied focusing channels, without momentum spread or

radiation, and space-charge effects, the particle equations of motion in both the x - and y-planes expressed as:

$$
\begin{aligned}
x^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} x^{\prime}+\kappa_{x}(s) x & =0 \\
y^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} y^{\prime}+\kappa_{y}(s) y & =0
\end{aligned}
$$

$\kappa_{x}(s)=x$-focusing function of lattice
$\kappa_{y}(s)=y$-focusing function of lattice

Common focusing functions:

Continuous:

$$
\kappa_{x}(s)=\kappa_{y}(s)=k_{\beta 0}^{2}=\mathrm{const}
$$

Quadrupole (Electric or Magnetic):

$$
\kappa_{x}(s)=-\kappa_{y}(s)=\kappa(s)
$$

Solenoidal (equations must be interpreted in rotating Larmor Frame):

$$
\kappa_{x}(s)=\kappa_{y}(s)=\kappa(s)
$$

SM Lund, MSU \& USPAS, 2020

Although the equations have the same form, the couplings to the fields are different which leads to different regimes of applicability for the various focusing technologies with their associated technology limits:

Focusing:

Continuous:
$\kappa_{x}(s)=\kappa_{y}(s)=k_{\beta 0}^{2}=\mathrm{const}$
Good qualitative guide
BUT not physically realizable

$$
\begin{aligned}
& \text { Quadrupole: } \\
& \kappa_{x}(s)=-\kappa_{y}(s)=\left\{\begin{array}{ll}
\frac{G(s)}{\beta_{B} c[B \rho]}, & \text { Electric } \\
\frac{G(s)}{c[B \rho]}, & \text { Magnetic }
\end{array} \quad[B \rho]=\frac{m \gamma_{b} \beta_{b} c}{q}\right.
\end{aligned}
$$

G is the field gradient which for linear applied fields is:

$$
G(s)= \begin{cases}-\frac{\partial E_{x}^{a}}{\partial x}=\frac{\partial E_{y}^{a}}{\partial y}=\frac{2 V_{q}}{r_{p}^{2}}, & \text { Electric } \\ \frac{\partial B_{x}^{a}}{\partial y}=\frac{\partial B_{y}^{a}}{\partial x}=\frac{B_{p}}{r_{p}}, & \text { Magnetic }\end{cases}
$$

Solenoid:

$$
\kappa_{x}(s)=\kappa_{y}(s)=k_{L}^{2}(s)=\left[\frac{B_{z 0}(s)}{2[B \rho]}\right]^{2}=\left[\frac{\omega_{c}(s)}{2 \gamma_{b} \beta_{b} c}\right]^{2} \quad \omega_{c}(s)=\frac{q B_{z 0}(s)}{m}
$$

SM Lund, MSU \& USPAS, 2020

Common, simple examples of periodic lattices:

SM Lund, MSU \& USPAS, 2020
Accelerator Physics
19
In many cases beam transport lattices are designed where the applied focusing functions are periodic:

$$
\begin{aligned}
& \kappa_{x}\left(s+L_{p}\right)=\kappa_{x}(s) \\
& \kappa_{y}\left(s+L_{p}\right)=\kappa_{y}(s) \quad L_{p}=\text { Lattice Period }
\end{aligned}
$$

Accelerator Physics

However, the focusing functions need not be periodic:
\rightarrow Often take periodic or continuous in this class for simplicity of interpretation
Focusing functions can vary strongly in many common situations:
\rightarrow Matching and transition sections
\rightarrow Strong acceleration
\rightarrow Signi cantly di erent elements can occur within periods of lattices in rings

- "Panofsky" type (wide aperture along one plane) quadrupoles for beam insertion and extraction in a ring

Example of Non-Periodic Focusing Functions: Beam Matching Section Maintains alternating-gradient structure but not quasi-periodic

SM Lund, MSU \& USPAS, 2020

S10: Acceleration and Normalized Emittance
 S10A: Introduction

If the beam is accelerated longitudinally in a linear focusing channel, the x-particle equation of motion is:

$$
x^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} x^{\prime}+\kappa_{x} x=0
$$

Analogous equation holds
in y
Neglects:
\rightarrow Nonlinear applied focusing elds
*Momentum spread e ects
Comments:
$\rightarrow \gamma_{b}, \beta_{b}$ are regarded as prescribed functions of s set by the acceleration schedule of the machine/lattice
\rightarrow Variations in γ_{b}, β_{b} due to acceleration must be included in and/or compensated by adjusting the strength of the optics via optical parameters contained in κ_{x}, κ_{y} to maintain lattice quasi-periodicity

- Example: for quadrupole focusing adjust eld gradients (see: S2) SM Lund, MSU \& USPAS, 2020 Accelerator Physics

Acceleration Factor: Characteristics of

Relativistic Factor

$$
\gamma_{b} \beta_{b} \simeq\left\{\begin{array}{ll}
\gamma_{b}, & \text { Ultra Relativistic Limit } \\
\beta_{b}, & \text { Nonrelativistic Limit }
\end{array} \quad \gamma_{b} \equiv \frac{1}{\sqrt{1-\beta_{b}^{2}}}\right.
$$

Beam/Particle Kinetic Energy:

$$
\mathcal{E}_{b}(s)=\left(\gamma_{b}-1\right) m c^{2}=\text { Beam Kinetic Energy }
$$

\rightarrow Function of s speci ed by Acceleration schedule for transverse dynamics
\rightarrow See S11 for calculation of \mathcal{E}_{b} and $\gamma_{b} \beta_{b}$ from longitudinal dynamics and later lectures on Longitudinal Dynamics
Approximate energy gain from average gradient:

$$
\begin{array}{ll}
\mathcal{E}_{b} \simeq \mathcal{E}_{i}+G\left(s-s_{i}\right) & \mathcal{E}_{i}=\text { const }=\text { Initial Energy } \\
G=\text { const }=\text { Average Gradient }
\end{array}
$$

*Real energy gain will be rapid when going through discreet acceleration gaps

$$
\mathcal{E}_{b} \simeq \begin{cases}\gamma_{b} m c^{2}, & \text { Ultra Relativistic Limit, } \gamma_{b} \gg 1 \\ \frac{1}{2} m \beta_{b}^{2} c^{2}, & \text { Nonrelativistic Limit, }\left|\beta_{b}\right| \ll 1\end{cases}
$$

SM Lund, MSU \& USPAS, 2020
Accelerator Physics
22

Comments Continued:

\rightarrow In typical accelerating systems, changes in $\gamma_{b} \beta_{b}$ are slow and the fractional changes in the orbit induced by acceleration are small

- Exception near an injector since the beam is often not yet energetic
\rightarrow The acceleration term:

$$
\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)}>0
$$

will act to damp particle oscillations (see following slides for motivation)

Even with acceleration, we will nd that there is a Courant-Snyder invariant (normalized emittance) that is valid in an analogous context as in the case without acceleration provided phase-space coordinates are chosen to compensate for the damping of particle oscillations

Identify relativistic factor with average gradient energy gain:

$$
\text { Ultra Relativistic Limit: } \gamma_{b} \gg 1, \quad \beta_{b} \simeq 1
$$

$$
\begin{aligned}
\gamma_{b} & \simeq \frac{\mathcal{E}_{b}}{m c^{2}}=\frac{\mathcal{E}_{i}}{m c^{2}}+\frac{G}{m c^{2}}\left(s-s_{i}\right) \\
& \Longrightarrow \frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} \simeq \frac{\gamma_{b}^{\prime}}{\gamma_{b}} \simeq \frac{1}{\frac{\mathcal{E}_{i}}{G}+\left(s-s_{i}\right)} \sim \frac{1}{s-s_{i}}
\end{aligned}
$$

Nonrelativistic Limit: $\quad\left|\beta_{b}\right| \ll 1, \quad \gamma_{b} \simeq 1$

$$
\beta_{b} \simeq \sqrt{2 \frac{\mathcal{E}_{b}}{m c^{2}}}=\sqrt{2 \frac{\mathcal{E}_{i}}{m c^{2}}+2 \frac{G}{m c^{2}}\left(s-s_{i}\right)}
$$

$$
\Longrightarrow \quad \frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} \simeq \frac{\beta_{b}^{\prime}}{\beta_{b}}=\frac{1 / 2}{\frac{\mathcal{E}_{i}}{G}+\left(s-s_{i}\right)} \sim \frac{1}{2\left(s-s_{i}\right)}
$$

- Expect Relativistic and Nonrelativistic motion to have similar solutions
- Parameters for each case will be quite di erent SM Lund, MSU \& USPAS, 2020 Accelerator Physics
/// Aside: Acceleration and Continuous Focusing Orbits with $\kappa_{x}=k_{\beta 0}^{2}=$ const Assume relativistic motion and negligible space-charge:

$$
\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} \simeq \frac{\gamma_{b}^{\prime}}{\gamma_{b}}=\frac{1}{\left(\frac{\mathcal{E}_{i}}{G}-s_{i}\right)+s}
$$

Then the equation of motion $x^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} x^{\prime}+\kappa_{x} x=0$ reduces to:

$$
x^{\prime \prime}+\frac{1}{\left(\frac{\mathcal{E}_{i}}{G}-s_{i}\right)+s} x^{\prime}+k_{\beta 0}^{2} x=0
$$

This equation is the equation of a Bessel Function of order zero:

$$
\begin{aligned}
& \begin{array}{rlrl}
\frac{d^{2} x}{d \xi^{2}}+\frac{1}{\xi} \frac{d x}{d \xi}+x=0 & \xi & =k_{\beta 0} s+k_{\beta 0}\left(\frac{\mathcal{E}_{i}}{G}-s_{i}\right) \\
\xi^{\prime} & =k_{\beta 0}
\end{array} \\
& x=C_{1} J_{0}(\xi)+C_{2} Y_{0}(\xi) \quad C_{1}=\mathrm{const} \quad C_{2}=\mathrm{const} \\
& \quad J_{n}=\underset{(1 \text { st kind })}{\text { Order }} n \\
& x^{\prime}=-C_{1} k_{\beta 0} J_{1}(\xi)-C_{2} k_{\beta 0} Y_{1}(\xi) \quad Y_{n}=\text { Order } n \text { Bessel Func } \\
& d J_{0}(x) / d x=-J_{1}(x) \text { and same for } Y_{0} \quad \text { (2nd kind) } \\
& \text { SM Lund, MSU \& USPAS, } 2020 \text { Accelerator Physics }
\end{aligned}
$$

Accelerator Physics

Using this solution, plot the orbit for (contrived parameters for illustration only):

$$
\begin{array}{cll}
k_{\beta 0}=\frac{\sigma_{0}}{L_{p}} & \sigma_{0}=90^{\circ} / \text { Period } & L_{p}=0.5 \mathrm{~m} \\
x(0)=10 \mathrm{~mm} & \mathcal{E}_{i}=1000 \mathrm{MeV} \\
x^{\prime}(0)=0 & G=100 \mathrm{meV} / \mathrm{m}
\end{array}
$$

s / L_{p} [Lattice Periods]
\rightarrow Solution shows damping: phase volume scaling $\sim 1 /\left(\gamma_{b} \beta_{b}\right) \simeq 1 / \gamma_{b}$ SM Lund, MSU \& USPAS, 2020

Solving for the constants in terms of the particle initial conditions:

$$
\begin{array}{r}
{\left[\begin{array}{l}
x_{i} \\
x_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
J_{0}\left(\xi_{i}\right) & Y_{0}\left(\xi_{i}\right) \\
-k_{\beta 0} J_{1}\left(\xi_{i}\right) & -k_{\beta 0} Y_{1}\left(\xi_{i}\right)
\end{array}\right] \cdot\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]} \\
\\
x_{i} \equiv x\left(s=s_{i}\right) \\
x_{i}^{\prime} \equiv x^{\prime}\left(s=s_{i}\right)
\end{array} \quad \xi_{i} \equiv k_{\beta 0} \frac{\mathcal{E}_{i}}{G}=\xi\left(s=s_{i}\right),
$$

Invert matrix to solve for constants in terms of initial conditions:

$$
\begin{gathered}
\Longrightarrow\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{ll}
-k_{\beta 0} Y_{1}\left(\xi_{i}\right) & -Y_{0}\left(\xi_{i}\right) \\
k_{\beta 0} J_{1}\left(\xi_{i}\right) & J_{0}\left(\xi_{i}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
x_{i} \\
x_{i}^{\prime}
\end{array}\right] \\
\Delta
\end{gathered}
$$

Comments:

- Bessel functions behave like damped harmonic oscillators
- See texts on Mathematical Physics or Applied Mathematics
- Nonrelativistic limit solution is not described by a Bessel Function solution
- The coe cient in the damping term $\propto x^{\prime}$ has a factor of 2 di erence, preventing exact Bessel function form
- Properties of solution will be similar though (similar special function) SM Lund, MSU \& USPAS, 2020

S10B: Transformation to Normal Form

"Guess" transformation to apply motivated by conjugate variable arguments
Here we reuse tilde variables to

$$
\tilde{x} \equiv \sqrt{\gamma_{b} \beta_{b}} x
$$

denote a transformed quantity we choose to look like something
Then: familiar from simpler contexts

$$
\begin{aligned}
x & =\frac{1}{\sqrt{\gamma_{b} \beta_{b}}} \tilde{x} \\
x^{\prime} & =\frac{1}{\sqrt{\gamma_{b} \beta_{b}}} \tilde{x}^{\prime}-\frac{1}{2} \frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)^{3 / 2}} \tilde{x} \\
x^{\prime \prime} & =\frac{1}{\sqrt{\gamma_{b} \beta_{b}}} \tilde{x}^{\prime \prime}-\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)^{3 / 2}} \tilde{x}^{\prime}+\left[\frac{3}{4} \frac{\left(\gamma_{b} \beta_{b}\right)^{\prime 2}}{\left(\gamma_{b} \beta_{b}\right)^{5 / 2}}-\frac{1}{2} \frac{\left(\gamma_{b} \beta_{b}\right)^{\prime \prime}}{\left(\gamma_{b} \beta_{b}\right)^{3 / 2}}\right] \tilde{x}
\end{aligned}
$$

The inverse phase-space transforms will also be useful later:

$$
\begin{aligned}
& \tilde{x}=\sqrt{\gamma_{b} \beta_{b}} x \\
& \tilde{x}^{\prime}=\sqrt{\gamma_{b} \beta_{b}} x^{\prime}+\frac{1}{2} \frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\sqrt{\left.\gamma_{b} \beta_{b}\right)}} x
\end{aligned}
$$

SM Lund, MSU \& USPAS, 2020 Accelerator Physics

Applying these results, the particle x - equation of motion with acceleration becomes:

$$
\tilde{x}^{\prime \prime}+\left[\kappa_{x}+\frac{1}{4} \frac{\left(\gamma_{b} \beta_{b}\right)^{\prime 2}}{\left(\gamma_{b} \beta_{b}\right)^{2}}-\frac{1}{2} \frac{\left(\gamma_{b} \beta_{b}\right)^{\prime \prime}}{\left(\gamma_{b} \beta_{b}\right)}\right] \tilde{x}=0
$$

The transformed equation with acceleration has the same form as the equation in the absence of acceleration. If space-charge is negligible ($\partial \phi / \partial \mathbf{x}_{\perp} \simeq 0$) we have:

$$
\begin{array}{ccc}
\frac{\text { Accelerating System }}{\tilde{x}^{\prime \prime}+\tilde{\kappa}_{x} \tilde{x}=0} \quad \Longrightarrow \quad & \quad \begin{array}{c}
\text { Non-Accelerating System } \\
\prime \prime \\
\kappa_{x} x=0
\end{array}
\end{array}
$$

Therefore, all previous analysis on phase-amplitude methods and Courant-Snyder invariants associated with Hill's equation in $x-x^{\prime}$ phase-space can be immediately applied to $\tilde{x}-\tilde{x}^{\prime}$ phase-space for an accelerating beam

$$
\begin{gathered}
\left(\frac{\tilde{x}}{\tilde{w}_{x}}\right)^{2}+\left(\tilde{w}_{x} \tilde{x}^{\prime}-\tilde{w}_{x}^{\prime} \tilde{x}\right)^{2}=\tilde{\epsilon}=\mathrm{const} \\
\tilde{w}_{x}^{\prime \prime}+\tilde{\kappa}_{x} \tilde{w}_{x}-\frac{1}{\tilde{w}_{x}^{3}}=0 \\
\tilde{w}_{x}\left(s+L_{p}\right)=\tilde{w}_{x}(s)
\end{gathered}
$$

$\pi \tilde{\epsilon}=$ Area traced by orbit $=$ const in $\tilde{x}-\tilde{x}^{\prime}$ phase-space
\rightarrow Focusing eld strengths need to be adjusted to maintain periodicity of $\tilde{\kappa}_{x}$ in the presence of acceleration

- Not possible to do exactly, but can be approximate for weak acceleration

Inverse transforms derived in S10B:

$$
\begin{aligned}
\tilde{x} & =\sqrt{\gamma_{b} \beta_{b}} x \\
\tilde{x}^{\prime} & =\sqrt{\gamma_{b} \beta_{b}} x^{\prime}+\frac{1}{2} \frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\sqrt{\gamma_{b} \beta_{b}}} x
\end{aligned}
$$

Thus:

$$
d \tilde{x} \otimes d \tilde{x}^{\prime}=\gamma_{b} \beta_{b} d x \otimes d x^{\prime}
$$

where J is the Jacobian:

$$
\begin{aligned}
J & \equiv \operatorname{det}\left[\begin{array}{ll}
\frac{\partial \tilde{x}}{\partial x} & \frac{\partial \tilde{x}}{\partial x^{\prime}} \\
\frac{\partial \tilde{x}^{\prime}}{\partial x} & \frac{\partial \tilde{x}^{\prime}}{\partial x^{\prime}}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{ll}
\sqrt{\gamma_{b} \beta_{b}} & 0 \\
\frac{1}{2} \frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\sqrt{\gamma_{b} \beta_{b}}} & \sqrt{\gamma_{b} \beta_{b}}
\end{array}\right]=\gamma_{b} \beta_{b}
\end{aligned}
$$

S10C: Phase Space Relation Between Transformed and UnTransformed Systems

It is instructive to relate the transformed phase-space area in tilde variables to the usual $x-x^{\prime}$ phase area:

$$
d \tilde{x} \otimes d \tilde{x}^{\prime}=|J| d x \otimes d x^{\prime}
$$

Based on this area transform, if we de ne the (instantaneous) phase space area of the orbit trance in $x-x$ ' to be $\pi \epsilon_{x}$ "regular emittance", then this emittance is related to the "normalized emittance" $\tilde{\epsilon}_{x}$ in $\tilde{x}-\tilde{x}^{\prime}$ phase-space by:

$$
\begin{aligned}
\tilde{\epsilon}_{x} & =\gamma_{b} \beta_{b} \epsilon_{x} \\
& \equiv \text { Normalized Emittance } \equiv \epsilon_{n x}
\end{aligned}
$$

*Factor $\gamma_{b} \beta_{b}$ compensates for acceleration induced damping in particle orbits *Normalized emittance is very important in design of lattices to transport accelerating beams

- Designs usually made assuming conservation of normalized emittance

S11: Calculation of Acceleration Induced Changes in gamma and beta

S11A: Introduction

The transverse particle equation of motion with acceleration was derived in a Cartesian system by approximating (see: S1):

$$
\frac{d}{d t}\left(m \gamma \frac{d \mathbf{x}_{\perp}}{d t}\right) \simeq q \mathbf{E}_{\perp}^{a}+q \beta_{b} c \hat{\mathbf{z}} \times \mathbf{B}_{\perp}^{a}+q B_{z}^{a} \mathbf{v}_{\perp} \times \hat{\mathbf{z}}-q \frac{1}{\gamma_{b}^{2}} \frac{\partial \phi}{\mathbf{x}_{\perp}}
$$

using

$$
m \frac{d}{d t}\left(\gamma \frac{d \mathbf{x}_{\perp}}{d t}\right) \simeq m \gamma_{b} \beta_{b}^{2} c^{2}\left[\mathbf{x}_{\perp}^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} \mathbf{x}_{\perp}^{\prime}\right]
$$

to obtain:

$$
\begin{aligned}
\mathbf{x}_{\perp}^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} \mathbf{x}_{\perp}^{\prime} & =\frac{q}{m \gamma_{b} \beta_{b}^{2} c^{2}} \mathbf{E}_{\perp}^{a}+\frac{q}{m \gamma_{b} \beta_{b} c} \hat{\mathbf{z}} \times \mathbf{B}_{\perp}^{a}+\frac{q B_{z}^{a}}{m \gamma_{b} \beta_{b} c} \mathbf{x}_{\perp}^{\prime} \times \hat{\mathbf{z}} \\
& -\frac{q}{\gamma_{b}^{3} \beta_{b}^{2} c^{2}} \frac{\partial}{\partial \mathbf{x}_{\perp}} \phi
\end{aligned}
$$

SM Lund, MSU \& USPAS, 2020

To integrate this equation, we need the variation of β_{b} and $\gamma_{b}=1 / \sqrt{1-\beta_{b}^{2}}$ as a function of s. For completeness here, we brie y outline how this can be done by analyzing longitudinal equations of motion. More details can be found in lectures to follow on Longitudinal Dynamics.

S11B: Solution of Longitudinal Equation of Motion

Changes in $\gamma_{b} \beta_{b}$ are calculated from the longitudinal particle equation of motion:
\rightarrow See equation at end of S1D
$\frac{d}{d t}\left(m \gamma \frac{d z}{d t}\right) \simeq q E_{z}^{a} \quad-q\left(v_{x} B_{y}^{a}-v_{y} B_{x}^{a}\right) \quad-q \frac{\partial \phi}{\partial z}$
$\begin{array}{llll}\text { Term } 1 & \text { Term } 2 & \text { Term } 3 & \text { Neglect Rel to Term } 2\end{array}$
Using steps similar to those in S1, we approximate terms:
Term 1: $\quad \frac{d}{d t}\left(\gamma \frac{d z}{d t}\right) \simeq c^{2} \beta_{b}\left(\gamma_{b} \beta_{b}\right)^{\prime} \quad \frac{d z}{d t}=v_{z} \simeq \beta_{b} c \quad \gamma \simeq \gamma_{b}$
Term 2: $\quad \frac{q}{m} E_{z}^{a} \simeq-\left.\frac{q}{m} \frac{\partial \phi^{a}}{\partial s}\right|_{x=y=0}$
$\frac{d}{d t} \simeq \beta_{b} c \frac{d}{d s}$
ϕ^{a} is a quasi-static approximation accelerating potential (see next pages)
Term 3: $\quad-q\left(v_{x} B_{y}^{a}-v_{y} B_{x}^{a}\right)=-q\left(\frac{d x}{d t} B_{y}^{a}-\frac{d y}{d t} B_{x}^{a}\right) \simeq 0$
\rightarrow Transverse magnetic elds typically only weakly change particle energy and terms can typically be neglected relative to others
SM Lund, MSU \& USPAS, 2020
Accelerator Physics

The longitudinal particle equation of motion for γ_{b}, β_{b} then reduces to:

$$
\beta_{b}\left(\gamma_{b} \beta_{b}\right)^{\prime} \simeq-\left.\frac{q}{m c^{2}} \frac{\partial \phi^{a}}{\partial s}\right|_{x=y=0}
$$

Some algebra shows:

$$
\gamma_{b}^{\prime}=\left(\frac{1}{\sqrt{1-\beta_{b}^{2}}}\right)^{\prime}=\frac{\beta_{b} \beta_{b}^{\prime}}{\left(1-\beta_{b}^{2}\right)^{3 / 2}}=\gamma_{b}^{3} \beta_{b} \beta_{b}^{\prime}
$$

First apply chain rule, then use the result above twice to simplify results:
$\Longrightarrow \quad \beta_{b}\left(\gamma_{b} \beta_{b}\right)^{\prime}=\beta_{b}^{2} \gamma_{b}^{\prime}+\gamma_{b} \beta_{b} \beta_{b}^{\prime}$

$$
\begin{aligned}
& =\beta_{b}^{3} \gamma_{b}^{3} \beta_{b}^{\prime}+\gamma_{b} \beta_{b} \beta_{b}^{\prime}=\left(1+\gamma_{b}^{2} \beta_{b}^{2}\right) \gamma_{b} \beta_{b} \beta_{b}^{\prime}=\gamma_{b}^{3} \beta_{b} \beta_{b}^{\prime} \\
& =\gamma_{b}^{\prime}
\end{aligned}
$$

Giving:

$$
\gamma_{b}^{\prime}=-\left.\frac{q}{m c^{2}} \frac{\partial \phi^{a}}{\partial s}\right|_{x=y=0}
$$

Which can then be integrated to obtain:

$$
\gamma_{b}=-\frac{q}{m c^{2}} \phi^{a}(r=0, z=s)+\mathrm{const}
$$

SM Lund, MSU \& USPAS, 2020
Accelerator Physics
37

We denote the on-axis accelerating potential as:

$$
V(s) \equiv \phi^{a}(x=y=0, z=s)
$$

*Can represent RF or induction accelerating gap elds See: Longitudinal Dynamics lectures for more details

Using this and setting $\gamma_{b}\left(s=s_{i}\right)=\gamma_{b i}$ gives for the gain in axial
kinetic energy \mathcal{E}_{b} and corresponding changes in γ_{b}, β_{b} factors:

$$
\begin{aligned}
& \mathcal{E}_{b}=\left(\gamma_{b}-1\right) m c^{2}=q\left[V\left(s_{i}\right)-V(s)\right]+\mathcal{E}_{b i} \\
& \quad \gamma_{b}=1+\mathcal{E}_{b i} /\left(m c^{2}\right) \quad \mathcal{E}_{b i}=\left(\gamma_{b i}-1\right) m c^{2} \\
& \quad \beta_{b}=\sqrt{1-1 / \gamma_{b}^{2}}
\end{aligned}
$$

These equations can be solved for the consistent variation of $\gamma_{b}(s), \beta_{b}(s)$
to integrate the transverse equations of motion:

$$
\begin{aligned}
\mathbf{x}_{\perp}^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} \mathbf{x}_{\perp}^{\prime} & =\frac{q}{m \gamma_{b} \beta_{b}^{2} c^{2}} \mathbf{E}_{\perp}^{a}+\frac{q}{m \gamma_{b} \beta_{b} c} \hat{\mathbf{z}} \times \mathbf{B}_{\perp}^{a}+\frac{q B_{z}^{a}}{m \gamma_{b} \beta_{b} c} \mathbf{x}_{\perp}^{\prime} \times \hat{\mathbf{z}} \\
& -\frac{q}{\gamma_{b}^{3} \beta_{b}^{2} c^{2}} \frac{\partial}{\partial \mathbf{x}_{\perp}} \phi
\end{aligned}
$$

SM Lund, MSU \& USPAS, 2020

Ultra-relativistic limit results

In the ultra-relativistic limit:
$\gamma_{b} \gg 1$
$\beta_{b} \simeq 1$
$\mathcal{E}_{b}=\left(\gamma_{b}-1\right) m c^{2} \simeq \gamma_{b} m c^{2}$
and the previous (relativistic valid) energy gain formulas reduce to:

$$
\begin{aligned}
& \mathcal{E}_{b} \simeq \gamma_{b} m c^{2}=q\left[V\left(s_{i}\right)-V(s)\right]+\mathcal{E}_{b i} \\
& \beta_{b} \simeq 1
\end{aligned}
$$

Using this result, in the ultra-relativistic limit we can take in the transverse particle equation of motion:

$$
\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} \simeq \frac{\gamma_{b}^{\prime}}{\gamma_{b}}=\frac{\mathcal{E}_{b}^{\prime}}{\mathcal{E}_{b}}=-\frac{q V^{\prime}(s)}{q\left[V\left(s_{i}\right)-V(s)\right]+\mathcal{E}_{b i}}
$$

\rightarrow Same form as NR limit expression with only a factor of $1 / 2$ di erence; see also S10A

S11C: Longitudinal Solution via Energy Gain

An alternative analysis of the particle energy gain carried out in S11B can be illuminating. In this case we start from the exact Lorentz force equation with time as the independent variable for a particle moving in the full electromagnetic eld:

$$
\begin{aligned}
\frac{d \mathbf{p}}{d t} & =q \mathbf{E}+q \vec{\beta} c \times \mathbf{B} \\
\mathbf{p} & \equiv \gamma m \vec{\beta} c \quad \gamma \equiv 1 / \sqrt{1-\vec{\beta} \cdot \vec{\beta}}
\end{aligned}
$$

Dotting $m c \vec{\beta}$ into this equation:
Comments:
\rightarrow Formulation exact in context of classical electrodynamics

* $\gamma, \vec{\beta}$ not expanded
$\rightarrow \mathbf{E}, \mathbf{B}$ electromagnetic

$$
\begin{aligned}
& m c \vec{\beta} \cdot \frac{d}{d t}(c \gamma \vec{\beta})=q c \vec{\beta} \cdot \mathbf{E}+q c \vec{\beta} \cdot[c \vec{\beta} \times \mathbf{B}] \\
& {[1]} \\
& {[\vec{\beta} \cdot \vec{\beta} \dot{\gamma}]+[\gamma \vec{\beta} \cdot \dot{\vec{\beta}}]=\frac{q}{m c} \vec{\beta} \cdot \mathbf{E}} \\
& \gamma \equiv(1-\vec{\beta} \cdot \vec{\beta})^{-1 / 2}
\end{aligned}
$$

Then

Gives:

$$
[1]:[\vec{\beta} \cdot \vec{\beta}]=1-1 / \gamma^{2} \quad[2]: \quad[\vec{\beta} \cdot \dot{\vec{\beta}}]=\dot{\gamma} / \gamma^{3}
$$

SM Lund, MSU \& USPAS, 2020

S11D: Quasistatic Potential Expansion

In the quasistatic approximation, the accelerating potential can be expanded in the axisymmetric limit as:
*See: USPAS, Beam Physics with Intense Space-Charge; and Reiser, Theory and Design of Charged Particle Beams, $(1994,2008)$ Sec. 3.3.
*See also: S2, Appendix D
We take:

$$
\mathbf{E}^{a}=-\frac{\phi^{a}}{\partial \mathbf{x}}
$$

and apply the results of S2, Appendix D to expand ϕ^{a} in terms of the on-axis potential in an axisymmetric (acceleration gap) system:

$$
\phi^{a}(r, z)=\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{(\nu!)^{2}} \frac{\partial^{2 \nu} \phi^{a}(r=0, z)}{\partial z^{2 \nu}}\left(\frac{r}{2}\right)^{2 \nu}
$$

Denote for the on-axis potential

$$
\phi^{a}(r=0, z) \equiv V(z)
$$

$\Longrightarrow \phi^{\Longrightarrow}=V(z)-\frac{1}{4} \frac{\partial^{2}}{\partial z^{2}} V(z)\left(x^{2}+y^{2}\right)+\frac{1}{64} \frac{\partial^{4}}{\partial z^{4}} V(z)\left(x^{2}+y^{2}\right)^{2}+\cdots$

Inserting these factors:

$$
\begin{aligned}
& \\
& \text { or: } \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Equivalently: $\quad \mathcal{E}=(\gamma-1) m c^{2}$

$$
\frac{d}{d t} \mathcal{E}=\frac{d}{d t}\left[(\gamma-1) m c^{2}\right]=q c \vec{\beta} \cdot \mathbf{E}
$$

\rightarrow Only the electric eld changes the kinetic energy of a particle
$*$ No approximations made to this point within the context
of classical electrodynamics: valid for evolving \mathbf{E}, \mathbf{B} consistent with the
Maxwell equations.
Now approximating to our slowly varying and paraxial formulation:

$$
\begin{array}{lll}
\frac{d}{d t}=c \beta_{z} \frac{d}{d s} & \beta_{z} \simeq \beta \simeq \beta_{b} & \\
& \gamma & \simeq \gamma_{b}
\end{array} \quad \mathcal{E} \simeq \mathcal{E}_{b}=\left(\gamma_{b}-1\right) m c^{2}
$$

and approximating the axial electric eld by the applied component then obtains

$$
\frac{d}{d s} \mathcal{E}_{b} \simeq \frac{d t}{d s} \frac{d}{d t}\left[(\gamma-1) m c^{2}\right] \simeq q E_{z}^{a}
$$

which is the longitudinal equation of motion analyzed in S11B
SM Lund, MSU \& USPAS, 2020 equation of motion analyzed in Sccelerator Physic

The longitudinal acceleration also result in a transverse focusing eld

$$
\begin{aligned}
& \mathbf{E}_{\perp}^{a}=\left.\mathbf{E}_{\perp}^{a}\right|_{\text {foc }}-\frac{\partial \phi^{a}}{\partial \mathbf{x}_{\perp}} \\
& \left.\quad \mathbf{E}_{\perp}^{a}\right|_{\text {foc }}=\text { Fields from Any Applied Focusing Optics } \\
& \quad-\frac{\partial \phi^{a}}{\partial \mathbf{x}_{\perp}} \simeq \frac{1}{2} \frac{\partial^{2}}{\partial z^{2}} V(z) \mathbf{x}_{\perp}=\text { Focusing Field from Acceleration }
\end{aligned}
$$

\star Results can be used to cast acceleration terms in more convenient forms. See
USPAS, Beam Physics with Intense Space-Charge for more details
\rightarrow RF defocusing in the quasistatic approximation can be analyzed using this formulation
*Einzel lens focusing exploits accel/de-acell cycle to make AG focusing

Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future editions of US Particle Accelerator School (USPAS) and Michigan State University (MSU) courses. Contact:

Prof. Steven M. Lund
Facility for Rare Isotope Beams
Michigan State University
640 South Shaw Lane
East Lansing, MI 48824
lund @ frib.msu.edu
(517) 908-7291 o ce
(510) 459-4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/msu/phy905_2020/
Redistributions of class material welcome. Please do not remove author credits.
SM Lund, MSU \& USPAS, 2020

