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S0: Acceleration and Normalized Emittance
S0: Introduction & Equation of Motion Derivation
The Lorentz force equation of a charged particle is given by (MKS  Units):

.... particle mass, charge

.... particle momentum

.... particle velocity

.... particle gamma factor

.... particle coordinate

Electric Field:

Magnetic Field:

Total Applied Self
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S1B: Applied Fields used to Focus, Bend, and Accelerate Beam
Transverse optics for focusing:

Dipole Bends:

Electric Quadrupole Magnetic Quadrupole Solenoid

Electric Magneticx-direction bend x-direction bend

quad_elec.png quad_mag.png

dipole_mag.png

dipole_elec.png

solenoid.png
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Longitudinal Acceleration:
RF Cavity Induction Cell

ind_cell.pngrf_cavity.png

We will cover primarily transverse dynamics in initial lectures.  Later lectures will 
cover acceleration and longitudinal physics:

Acceleration influences transverse dynamics – not possible to fully decouple
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S1C: Machine Lattice 

Applied field structures are often arraigned in a regular (periodic) lattice for beam 
transport/acceleration:

Example – Linear FODO lattice (symmetric quadrupole doublet)

tpe_lat.png

tpe_lat_fodo.png

 Sometimes functions like bending/focusing are combined into a single element
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S1D: Self fields 
Self-fields are generated by the distribution of beam particles:

 Charges
 Currents

Particle at Rest Particle in Motion

● Superimpose for all particles in the beam distribution
● Accelerating particles also radiate

particle_field_rest.png

Obtain from 
Lorentz boost 
of rest-frame field: 
see Jackson, 
Classical 
Electrodynamics

particle_field_motion.png(pure electrostatic)
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Electric Field:

Magnetic Field:

Total Applied Self

We neglect self-fields
● Possible to include at various levels of approx.  Will be touched on later in the 

course. 
Neglect

● Applied fields must obey the Maxwell Equations 
● Expansions and idealized forms of the fields are often used 

- Example: Linear applied focusing fields 
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In accelerators, typically there is ideally a single species of particle:

Motion of particles within axial slices of the “bunch” are highly directed:

Paraxial Approximation

beam_dist.png

Large Simplification!
Multi-species results in more complex collective effects

Force:
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The particle equations of motion in                phase-space variables become:
 Separate parts of                                     into transverse and longitudinal comp

Transverse

Longitudinal

In the remainder of this (and most other) lectures, we analyze Transverse 
Dynamics.  Longitudinal Dynamics will covered in later lectures

 Except near injector, acceleration is typically slow
● Fractional change in             small over characteristic transverse dynamical 

scales such as lattice period and betatron oscillation periods
Regard              as specified functions given by the “acceleration schedule”  
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In transverse accelerator dynamics, it is convenient to employ the axial coordinate 
(s) of a particle in the accelerator as the independent variable:

Need fields at lattice location of particle to integrate equations for particle trajectories

Transform:

Denote:

S1E: Equations of Motion in s and the Paraxial Approximation 

Neglect

s_def.png

Procedure becomes more complicated when bends present

Neglecting term consistent 
with assumption of small 
longitudinal momentum spread
(paraxial approximation)
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In the paraxial approximation, x' and y' can be interpreted as the (small 
magnitude) angles that the particles make with the longitudinal-axis:

The angles will be small in the paraxial approximation:

Since the spread of axial momentum/velocities  is small in the paraxial 
approximation, a thin axial slice of the beam maps to a thin axial slice and s can 
also be thought of as the axial coordinate of the slice in the accelerator lattice

beam_dist_s.png

Typical accel lattice values:
    |x'| < 50 mrad
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The coordinate s can alternatively be interpreted as the axial coordinate of a 
reference (design) particle moving in the lattice

Design particle has no momentum spread

It is often desirable to express the particle equations of motion in terms of s rather 
than the time t 

Makes it clear where you are in the lattice of the machine
Sometimes easier to use t in codes when including many effects to high order
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Transform Terms 1 and 2 in the particle equation of motion:

Term 1:

Term 1A Term 1B
Approximate:

Term 1A:

Term 1B:

Transform transverse particle equations of motion to s rather than t derivatives

Term 1 Term 2
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Using the approximations 1A and 1B gives for Term 1:

Similarly we approximate in Term 2:

Using the simplified expressions for Terms 1 and 2 obtain the reduced transverse 
equation of motion:
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Equations previously derived under assumptions:
 No bends (fixed x-y-z coordinate system with no local bends)
 Paraxial equations (      ) 
 No dispersive effects (     same all particles), acceleration allowed (                    ) 
 Self-field interactions neglected 

Write out transverse particle equations of motion in explicit component form:

For linear fields without skew coupling,
incorporate in lattice functions
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Summary of Transverse Particle Equations of Motion
In linear applied focusing channels, without momentum spread or 
radiation, and space-charge effects, the particle equations of motion in 
both the x- and y-planes expressed as:

Common focusing functions:
Continuous:

Quadrupole (Electric or Magnetic):

Solenoidal (equations must be interpreted in rotating Larmor Frame):
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Although the equations have the same form, the couplings to the fields 
are different which leads to different regimes of applicability for the 
various focusing technologies with their associated technology limits:  
Focusing:

Continuous:

Quadrupole:

Good qualitative guide
BUT not physically realizable   

G is the field gradient which for linear applied fields is:  

Solenoid:
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In many cases beam transport lattices are designed where the applied 
focusing functions are periodic:
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Common, simple examples of periodic lattices:
lattices_per.png

SM Lund, MSU & USPAS, 2020 Accelerator Physics 20

However, the focusing functions need not be periodic:
Often take periodic or continuous in this class for simplicity of interpretation

Focusing functions can vary strongly in many common situations:
Matching and transition sections
Strong acceleration
Significantly different elements can occur within periods of lattices in rings

- “Panofsky” type (wide aperture along one plane) quadrupoles for beam
   insertion and extraction in a ring

Example of Non-Periodic Focusing Functions: Beam Matching Section
    Maintains alternating-gradient structure but not quasi-periodic

match.png
Example corresponds to 
High Current Experiment 
Matching Section 
(hard edge equivalent) 
at LBNL (2002)
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S10: Acceleration and Normalized Emittance
S10A: Introduction
If the beam is accelerated longitudinally in a linear focusing channel, 
the x-particle equation of motion is:

Neglects:
Nonlinear applied focusing fields 
Momentum spread effects

Comments:
               are regarded as prescribed functions of s set by the 

   acceleration schedule of the machine/lattice 
Variations in              due to acceleration must be included in 

   and/or compensated by adjusting the strength of the optics via optical 
parameters contained in               to maintain lattice quasi-periodicity 

- Example: for quadrupole focusing adjust field gradients (see: S2)

Analogous 
equation holds
 in y
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Acceleration Factor: Characteristics of 
Relativistic Factor

Beam/Particle Kinetic Energy:

Function of s specified by Acceleration schedule for transverse dynamics
See S11 for calculation of        and            from longitudinal dynamics

   and later lectures on Longitudinal Dynamics
Approximate energy gain from average gradient:

Real energy gain will be rapid when going through discreet acceleration gaps
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Comments Continued:
In typical accelerating systems, changes in            are slow and the fractional 
changes in the orbit induced by acceleration are small

- Exception near an injector since the beam is often not yet energetic
The acceleration term:

Even with acceleration, we will find that there is a Courant-Snyder invariant 
(normalized emittance) that is valid in an analogous context as in the case without 
acceleration provided phase-space coordinates are chosen to compensate for the 
damping of particle oscillations

   will act to damp particle oscillations (see following slides for motivation)
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Identify relativistic factor with average gradient energy gain:

Ultra Relativistic Limit:

Nonrelativistic Limit:

Expect Relativistic and Nonrelativistic motion to have similar solutions
- Parameters for each case will be quite different
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/// Aside:  Acceleration and Continuous Focusing Orbits with 
Assume relativistic motion and negligible space-charge:

Then the equation of motion                                             reduces to:

This equation is the equation of a Bessel Function of order zero:
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Solving for the constants in terms of the particle initial conditions:

Invert matrix to solve for constants in terms of initial conditions:

Comments:
Bessel functions behave like damped harmonic oscillators

- See texts on Mathematical Physics or Applied Mathematics
 Nonrelativistic limit solution is not described by a Bessel Function solution

- The coefficient in the damping term             has a factor of 2 difference, 
   preventing exact Bessel function form
- Properties of solution will be similar though (similar special function) 
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///

Using this solution, plot the orbit for (contrived parameters for illustration only):

Solution shows damping: phase volume scaling

accel.png
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“Guess” transformation to apply motivated by conjugate variable arguments 

Then:

The inverse phase-space transforms will also be useful later:

S10B: Transformation to Normal Form

Here we reuse tilde variables to 
denote a transformed quantity we 
choose to look like something 
familiar from simpler contexts
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Applying these results, the particle x- equation of motion with acceleration 
becomes:
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An additional step can be taken to further stress the correspondence between the 
transformed system with acceleration and the untransformed system in the 
absence of acceleration. 
Denote an effective focusing strength: 

      incorporates acceleration terms beyond             factors already included in the 
definition of        (see: S2):

The transformed equation of motion with acceleration then becomes:
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The transformed equation with acceleration has the same form as the equation in 
the absence of acceleration.  If space-charge is negligible (                         ) we 
have: Accelerating System Non-Accelerating System

Therefore, all previous analysis on phase-amplitude methods and Courant-Snyder 
invariants associated with Hill's equation in x-x' phase-space can be immediately 
applied to              phase-space for an accelerating beam

Focusing field strengths need to be adjusted to maintain periodicity of       in 
the presence of acceleration

 - Not possible to do exactly, but can be approximate for weak acceleration
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S10C: Phase Space Relation Between Transformed and 
           UnTransformed Systems

It is instructive to relate the transformed phase-space area in tilde variables to the 
usual x-x' phase area:   

where J is the Jacobian:

Thus:

Inverse transforms
derived in S10B: 
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Based on this area transform, if we define the (instantaneous) phase space area of 
the orbit trance in x-x' to be            “regular emittance”, then this emittance is 
related to the “normalized emittance”        in              phase-space by:

Factor           compensates for acceleration induced damping in particle orbits 
Normalized emittance is very important in design of lattices to transport 
accelerating beams

- Designs usually made assuming conservation of normalized emittance
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S11: Calculation of Acceleration Induced Changes in  
         gamma and beta
S11A: Introduction 

The transverse particle equation of motion with acceleration was derived in a 
Cartesian system by approximating (see: S1):

using

to obtain:
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To integrate this equation, we need the variation of          and                                  
as a function of s.   For completeness here, we briefly outline how this can be done 
by analyzing longitudinal equations of motion. More details can be found in  
lectures to follow on Longitudinal Dynamics.
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Changes in           are calculated from the longitudinal particle equation of motion:
See equation at end of S1D

Term 1 Term 2 Term 3

Using steps similar to those in S1, we approximate terms:

Term 1:

Term 2:

Term 3:

        is a quasi-static approximation accelerating potential (see next pages)

Transverse magnetic fields typically only weakly change particle energy and 
terms can typically be neglected relative to others

S11B: Solution of Longitudinal Equation of Motion

Neglect Rel to Term 2
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The longitudinal particle equation of motion for              then reduces to:

Some algebra shows:

Giving:

Which can then be integrated to obtain:

First apply chain rule, then use the result above twice to simplify results:
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We denote the on-axis accelerating potential as:

Can represent RF or induction accelerating gap fields 
See: Longitudinal Dynamics lectures for more details

Using this and setting                                gives for the gain in axial 
kinetic energy      and corresponding changes in               factors:

These equations can be solved for the consistent variation of  
to integrate the transverse equations of motion:
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In the nonrelativistic limit:

and the previous (relativistic valid) energy gain formulas reduce to: 

Using this result, in the nonrelativistic limit we can take in the transverse particle 
equation of motion: 

Nonrelativistic limit results
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In the ultra-relativistic limit:

and the previous (relativistic valid) energy gain formulas reduce to: 

Using this result, in the ultra-relativistic limit we can take in the transverse particle 
equation of motion: 

Ultra-relativistic limit results

Same form as NR limit expression with only a factor of ½ difference; see also 
S10A
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S11C: Longitudinal Solution via Energy Gain
An alternative analysis of the particle energy gain carried out in S11B can be 
illuminating.  In this case we start from the exact Lorentz force equation with time 
as the independent variable for a particle moving in the full electromagnetic field:

Dotting           into this equation:
0

Then

Gives:

[1] [2]

[1]: [2]:

Comments:
Formulation exact in context 
of classical electrodynamics
          not expanded
           electromagnetic
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Inserting these factors:

or:

Equivalently:

 Only the electric field changes the kinetic energy of a particle 
 No approximations made to this point within the context 

   of classical electrodynamics: valid for evolving            consistent with the
   Maxwell equations.    

Now approximating to our slowly varying and paraxial formulation:

and approximating the axial electric field by the applied component then obtains

which is the longitudinal equation of motion analyzed in S11B.  
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S11D: Quasistatic Potential Expansion
In the quasistatic approximation, the accelerating potential can be expanded in the 
axisymmetric limit as:

See: USPAS, Beam Physics with Intense Space-Charge; and Reiser, Theory 
and Design of Charged Particle Beams,  (1994, 2008) Sec. 3.3. 
See also: S2, Appendix D

We take:

and apply the results of S2, Appendix D to expand       in terms of the on-axis 
potential in an axisymmetric (acceleration gap) system:

Denote for the on-axis potential
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The longitudinal acceleration also result in a transverse focusing field

Results can be used to cast acceleration terms in more convenient forms.  See 
USPAS, Beam Physics with Intense Space-Charge for more details
RF defocusing in the quasistatic approximation can be analyzed using this 
formulation
Einzel lens focusing exploits accel/de-acell cycle to make AG focusing
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future 
editions of US Particle Accelerator School (USPAS) and Michigan State 
University (MSU) courses.  Contact:

Prof. Steven M. Lund 
Facility for Rare Isotope Beams 
Michigan State University 
640 South Shaw Lane  
East Lansing, MI 48824

lund@frib.msu.edu 
(517) 908 – 7291 office 
(510) 459 -  4045  mobile

Please provide corrections with respect to the present archived version at:
 

 https://people.nscl.msu.edu/~lund/msu/phy905_2020/

Redistributions of class material welcome.  Please do not remove author credits.


