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S9: Momentum Spread Effects in Bending and Focusing
S9A: Formulation

Except for brief digressions in, we have concentrated on particle dynamics where
all particles have the design longitudinal momentum at a value of s in the lattice:

ps = MYpPpc = same for every particle

Realistically, there will always be a finite spread of particle momentum within a
beam slice, so we take:

Ps = Po + 0p
pPo = mYpBpc = Design Momentum

op = Off Momentum
Typical values of momentum spread in a beam with a single species of particles

with conventional sources and accelerating structures:
0
1Pl 152 - 19
Po
The spread of particle momentum can modify particle orbits, particularly when

dipole bends are present since the bend radius depends strongly on the particle

momentum



The off momentum results in a change in particle rigidity impacting the coupling
of the particle to applied fields:

=t (8) (2

= [Bplo (£> |Bplo = % — Design Rigidity
Po

* Particles with higher/lower p than design will have higher/lower rigidity [Bp]
with weaker/stronger coupling to the applied fields

Focusing  (thin lens illustration)

1 G/

— >l = ——

f [ Bp)

Bp] _ [Bplo ( p > ( p )
o PP (2 | e
f G/ G/t Po fO Po ||| || . Designu‘u..\ ‘.
B |III IIII : : é‘
fo = | Gpg]o = Design Focus '*\:/-" f |
f > fo when p > pg (weaker focus) : ; _
f < fo when p < pg (stronger focus)
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=2 (8) (2

= [Bplo (£> [Bplo = % = Design Rigidity
Po

Bending  (sector bend illustration)

[Bp] _ [Bplo ( p ) ( p > /0 _.
p— = = — i - / \
"7 B,0  B,0) \») " \mo A SRR
. / \
_ [Bp]o . . . |
po = B, (0) = Design Radius Design' |
\ P> po
14y

p > po when p > py (weaker bend)
p < po when p < pg (stronger bend)



Systematic analysis of off-momentum for magnetic focusing

and bending

To derive relevant single-particle equations of motion for off-momentum, revisit

analysis of design momentum trajectory in a bent coordinate system
* Consider transverse magnetic field only (bending + focusing) for simplicity
- Can put in electric bends and focus paralleling analysis

+ ) B z\°
A :IB//—('OO _ By (1+_>
X %5 | Bp] Po

N B T 2
y . L Y (1 + _>
/ [ Bp] Lo

Here we express equations for:
* Transverse magnetic field components B, B,

1 B, (0
By = G-y Design Bend: _0 = [g,g]o)
B,=B,0)+ G-z B B
Quad Gradient: G= "% = ¥
» Rigidity [Bp] : Ay ly 9zl

P __PoPp p : . .1 Po
Bp| == ==—-—=|Bplo—| Design Rigidity: [Bplo = —
Bpl = =" = [Brlo gn Rigidity:  [Bplo = =

6
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Inserting these expressions in the equations of motion:

7 (p0+$)__[By(O)+G£C]pO Z ’
A [Bplo p<1+ )

Gy po ( x )2
1/ — 1 _|_ e
i [Bplo p P0

Expand to leading order in x and y in rhs terms and rearrange:

ol ) mm () -a- 52 ()
v - [Bplo @)) v ="

Denote: And Apply:
G Quadrupole focus B, (0) Bend Radius

[Bplo  (design momentum) po  |[Bplo (design momentum)

Lo

K =

And the equations of motion become:

1 1
308 il 0 5)
1% p (p/po) P0 p

V' = o/po)

y=20




Use in this expression:

£2p0—|—5p:1_|_5_p51+5 555_17 Fractional
Po Po Po Po Momentum Error
Then:
149 (@) _—p+2p0 _ —(po+p)+2p _po—dp 1-0
p p Po + 0p po+op 1+0
, _Po_P—Po_PotOp—po_ Op _ O
p p po + 0p po+op 1+0
and the equations of motion become :
2 11-0 N K o 1
x x =
pEl+d6 1496 146 po
/! K
_ — 0
O
Notion:
s Typically drop “0” subscripts from: [Bplo, po
- Understood to be design values 1 _ B, (0) By = Po
p  |Bp =
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Can derive analogous equations for:
* Electric focusing and bends
* Magnetic solenoids (straight lattice)
* See also Sec. 1 H which summarizes equations of motion for 3D fields with

off-momentum
- Results obtainable by placing linear field components in equations summarized

We will summarize equations of motion for these cases in one combined form.

SM Lund, MSU & USPAS, 2020 Accelerator PhysiCS 9



Single particle equations of motion for a particle with
momentum spread in linear applied fields

1 1—5+ Kz (S) 2(s) = o 1
p?2(s)1+6  (14+9)» 1+ 9 p(s)

fy(8)
1+6)"

z"(s) +

y"(s) + ( y(s) =0

Magnetic Dipole Bend

p(s) = Local Bend Radius 1 B2 |dipole
for design momentum pq o(s) B [Bp]
(p — oo in straight sections) P P

Po

= op kg, = Focusing Functions Bp] = q
Po (using design momentum)

B {1, Magnetic Quadrupoles

2, Solenoids, Electric Quadrupoles

Neglects:
* Space-charge: ¢ — 0
* Nonlinear applied focusing: E, B“ contain only linear focus terms

* Acceleration: pyg = mcypp = const



In the equations of motion, it is important to understand that BZ of the magnetic
bends are set from the radius P required by the design particle orbit
(see: S1 for details)

* Equation relating P to fields must be modified for electric bends (see S1)

* y-plane bends also require modification of eqns (analogous to x-plane case)
The focusing strengths are defined with respect to the design momentum:

(—ky = ﬁ, G = —0Lk; /0r = OFE} /0y = Electric Quad.
Ky = { Ky = %, : G = 0B; /0y = 0B, /0x = Magnetic Quad.
iy = (2%‘;]) , B, = Solenoidal Magnetic Field

Y, Bp calculated from ¢, m and [Bp]



Comments:

* Electric and magnetic quadrupoles have different variation on 0 due to the
different axial velocity dependance in the coupling to the fields

* Included solenoid case to illustrate focusing dispersion but this would rely on
the Larmor transform and that does not make sense in a bent coordinate system

y 1 1-6 Kz (S) 61
) ST Tt Y T T 00
J'(5) + o ES(s) =0

Terms in the equations of motion associated with momentum spread (0 ) can be
lumped into two classes:

S.9B: Dispersive -- Associated with Dipole Bends

S.9C: Chromatic -- Associated with Applied Focusing ( <)



S9B: Dispersive Effects

Present only in the x-equation of motion and result from bending. Neglecting
chromatic terms:

. 1 1-6 61
********************************** Term!  Term?

Particles are bent at different radii when the momentum deviates from the design
value ( 0 # 0 ) leading to changes in the particle orbit
*Dispersive terms contain the bend radius p

Generally, the bend radii R are large and 0 is small, and we can take to leading
order:

11-9§ 1 6 02
Term 1: + Ry | T |+ K| @ + O — =

p21+6 p p= P
5 1 5+@(52) o=
Term 2: = 0
erm 1+6p  p P ( Redefine to incorporate)



The equations of motion then become:

7 _L
v(s) +rols)als) = 25

Y (s) + ry(s)y(s) =0

* The y-equation is not changed from the usual Hill's Equation

The x-equation is typically solved for periodic ring lattices by exploiting the linear
structure of the equation and linearly resolving:

2(s) = n(s) + 2y (s)
x, = Homogeneous Solution

x, = Particular Solution

where X, is the general solution to the Hill's Equation:
2 (8) + kg (8)xp(s) =0

and Ty, is the periodic solution to:

1

7p =8 D D"(3) + al)D(s) =~

D = Dispersion Function D(s + Lp) = D(s)
SM Lund, MSU & USPAS, 2020
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This convenient resolution of the orbit x(s) can always be made because the
homogeneous solution will be adjusted to match any initial condition

Note that x,, provides a measure of the offset of the particle orbit relative to the
design orbit resulting from a small deviation of momentum (0 )

x(s) = 0 defines the design orbit
[D]] = meters

0 - D = Dispersion induced orbit offset in meters

Comments:
* It can be shown (see Appendix B) that D is unique given a focusing function £,

for a periodic lattice provided that 02—(: =+ integer
- In this context D is interpreted as a Lattice Function similarly to the
betatron function
- 0D gives the closed orbit of an off-momentum particle in a ring due to
dispersive effects
* The case of how to interpret and solve for D in a non-periodic lattice (transfer
line) will be covered later

- In this case initial conditions of D will matter
SM Lund, MSU & USPAS, 2020 Accelerator Physics 15



Extended 3x3 Transfer Matrix Form for Dispersion Function

Can solve D in

1
D"+ k,D==
0
by taking
D;, = Homogeneous Solution
D = Dy + D, D, = Particular Solution

Homogeneous solution is the general solution to

;{—I—/{th:O

* Usual Hill’s equation with solution expressed in terms of principle functions in 2x2
matrix form

EARCRF)
[ s[5,



Particular solution take to be the zero initial condition solution to
* Homogeneous part used to adjust for general initial conditions: always integrate from

zero initial value and angle

D' + k. D. — 1 Denote solution as from zero initial value
b P and angle at S = Si as D,(s) = D,(s|s;)

Dy(si) =0= Dglo(si)

Can superimpose the homogeneous and particular solutions to form a generalized

3x3 transfer matrix for the Dispersion function D as:
*+ Initial condition absorbed on homogeneous solution

D | - C(s|s;)  S(sls;) Dp(sls;) | [ D |
D" | = | C'(sls;) S'(slsi) Dy(sls;) |- | D
1 0 0 1 I .
[M(s]si)]  Dp(slsi) D D
Dy, (s]s; D’ = Ms(s|s;) - | D’
0 0 1 1 . 1 .

SM Lund, MSU & USPAS, 2020
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For a periodic solution:

D(s; + Ly) = D(s;)
D'(s; + Lp) = D'(s;)
This gives two constraints to determine the needed initial condition for periodicity

* Third row trivial

D(s;) — C(si + Lplsi)D(s;) — S(si + Lp|s;) D'(s;) = Dyp(si + Lypls;)
D'(si) — C'(si + Lyplsi)D(si) — S'(si + Lyp|si) D'(s:) = D,(si + Lylsi)

Solving this using matrix methods (inverse by minor) and simplifying the result
with the Wronskian invariant (S5C)

W = C(s|s;)S"(s|s;) — S(s]s;)C'(s]s;) =1

and the definition of phase advance in the periodic lattice (S6G)

1 1
COS 0y = §Tr M(s; + Ly|s;) = 5[0(87; + Ly|s;) + S'(si + Lyplsi)]



Yields:

D _ 1 1 —S/(Si—FLplSi) S(Sz—|—Lp|Sz> . DP(SZ‘—I-LP‘SZ')
D’ < 2(1—cos ooz) C/(Si + Lp|8i) 1— C(S@ + Lp|SZ) D;)(SZ + Lp|87,)

* Resulting solution for D from this initial condition will have the periodicity of
the lattice. These values always exist for real oy, (0(, < 180°)

* Values of D(s;), D’(s;) depend on location of choice of §; in lattice period

* Can use 3x3 transfer matrix to find D anywhere in the lattice

* Formulation assumes that the underlying lattice is stable with oo, < 180°

Alternatively, take Si = S to obtain

11— 5"(s+ Lyp|s)] Dp(s + Lpls) + S5(s + Ly|s) Dy, (s + Ly|s)
2(1 — cos o)

C'(s + Lyp|s)Dp(s + Lp[s) + [1 = C(s + Lyp|s)| D, (s + Ly|s)
2(1 — cos opy)

D(s) =

D'(s) =




Particular Solution for the Dispersion Function in a Periodic
Lattice

To solve the particular function of the dispersion from a zero initial condition,

1
D],D/ + KJ:I:Dp — ; Dp(8i> =0 = D;(SZ)

A Green’s function method can be applied (see Appendix A) to express the

solution in terms of projection on the principal orbits of Hill’s equation as:
i 1
D,(s) = / ds —G(s, s
P( ) . ,O(S) ( )
G(s,5) = S(s|s;)C(5]s;) — C(s|s;)S(8]s;)

C(s|s;) = Cosine-like Principal Trajectory

S(s|s;) = Sine-like Principal Trajectory

Cosine-Like Solution Sine-Like Solution

C"(s|s;) + ke (s)C(s|s;) =0 S"(s|s;) + kz(8)S(s]s;) =0
C(si|s;) =1 S(si|s;) =0

C'(si]s;) =0 S'(s;]8:) =1



Discussion:
* The Green’s function solution for D, together with the 3x3 transfer matrix
can be used to solve explicitly for D from an initial value
* The initial values D(s;), D’(s;) found will yield the unigue solution for D
with the periodicity of the lattice

The periodic lattice solution for the dispersion function can be expressed in terms
of the betatron function of the periodic lattice as follows:

From S7C:
L[ Clsls))  S(s]si) a=—43/2
M(sl|s;) = [ C'(sls;) S (s|s:) ]
_ [ \/'B( )[COSAw( ) + a; sin Ay)(s)] VB B sin Av(s)
%mg%( §) — 1;% sin Adp(s) /s [cos Agb(s) — arsin Ad(s)]
and using

P S s) = S&(s|s;)C(s|s;) — C(s|s;)S(S]s;
Dp(s) =/ ds @G(S,S) G(s,5) = S(s|s:)C(8|s:) — C(ss:)S(5]s:)

and the periodicity of the lattice functions [, & = ~p'/2



along with considerable algebraic manipulations show that the dispersion function
D for the periodic lattice can be expressed as:

B B(s) St /B(3) o .
D(s) = 50 / 5 L2 cos[Av(3) - Av(s) = 00,/
D/(s) - 53 D)
= ! T S pes) sSin s) — S)—o
B 24/5(3) Sin(Oox/Q)/s g p(3) AY() = AY(s) ox/2

A(s) = S 1~ ds
s; B(3)

* Formulas and related information can be found in SY Lee, Accelerator
Physics and Conte and MacKay, Introduction to the Physics of Particle
Accelerators

* Provides periodic dispersion function D expressed as an integral of betatron
function describing the linear optics of the lattice

- Have B(s) for a ring lattice, then also have the periodic dispersion function



Full Orbit Resolution in a Periodic Dispersive Lattice

Taking a particle initial condition,

r(s=s;) =x; 5:5_10

1 (s =s;) =z, Po
and using the homogeneous (Hill’s Equation Solution) and particular solutions
(Dispersion function) of the periodic lattice, the orbit can be resolved as

x(s) = C1C(s|s;) + C25(s|s;) + dD(s) (1, Cy = constants
—> t! = Cy + 6D Fixes constants Cy = ol — 3D
Giving,

x(s) = xp + x, = 2;C(s|s;) + 2;5(s|s;) + 0[D(s) — D;C(s|s;) — D;S(s]s;)]
x'(s) = a), + x, = 2;C'(s|sy) + 275" (s]s4) + 6[D'(s) — D;C'(s]si) — D;S"(s]s4)]

here’ D(S = Sz) = Dz
D'(s =s;) = D,
are initial dispersion values that are uniquely determined in the periodic lattice

* Varies with choice of initial condition (s = s;) in lattice

SM Lund, MSU & USPAS, 2020 Accelerator Physics



3x3 Transfer Matrices for Dispersion Function

In problems, will derive 3x3 transfer matrices:
* Summarize results here for completeness
* Can use Green function results and 2x2 transfer matrices from previous
sections to derive
* Can apply to any initial conditions D;, D;
— Only specific initial conditions will yield D periodic with (a periodic) lattice
— Useful in general form for applications to transfer lines, achromatic bends, etc.

1
D" + kD = —
P
- 5 - R
D" | =Ms(s|s;)- | D
—1 - S —1 - S

SM Lund, MSU & USPAS, 2020 Accelerator Physics 24



Drift: ~z(s) =0, p — 0

/N

s —S;)
M3 (s|s;) =

OO =
—_ O O

O =

Thin Lens: located at s = s; with focal strength f (no superimposed bend)

1
lim(S):—?5(S—Si), p — 00
[ 1 0 0
M3(8j|8i_) = —% 1 0
0 0 1|

* Can apply to entry and exit angles with sector bend (next page) for slanted edge
corrections to dipole when { is used to express the correct kick correction

SM Lund, MSU & USPAS, 2020 Accelerator Physics



Thick Focus Lens: with Ky = k = const > 0 (no superimposed bend)

" cos[VA(s — ;)] ﬁ sin[v/A(s —s;)] 0]
Ms(s|si) = | —V&sin[Via(s —s;)]  cos[Vi(s — ;)] 0
L 0 0 1 |
Thick deFocus Lens: with Kz = —R = const < 0 (no superimposed bend)

" cosh[V/A(s — s;)] —=sinh[VA(s — s;)]

0
Ms(s|si) = | Visinh[Vi(s — ;)] cosh[Vi(s — s;)] 0
0 0 1

Sector Bend with Focusing: p = const, K, = & = const > 0

[ cos[VA(s — 5:)] Lo sin[VAE(s — si)] & {1 - cos[VAE(s — si)]}
Ms(slsi) = | —VEsin[Vi(s —s;)]  cos[VA(s — s;)] ﬁ sin[v&(s — s;)]
0 0 1 |
Sector Bend with deFocusing: ¢ = const, kK, = —k = const < (
[ cosh[VA(s = 5:)]  desinh[VA(s - 5)] & {1+ cosh[VA(s - 5:)]} |
Ms(slsi) = | V&sinh[VA(s —s:)] cosh[Va(s —si)]  —Losinh[VA(s — ;)]

0 0 1
SM Lund, MSU & USPAS, 2020
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For the special case of a sector bend of axial length ¢ the bend with focusing,

corresponding to

1
p = const, Ky = —5

0

* Bend provides x-plane focusing
this result reduces for transport through the full bend to:

¢ =ph, 6= Bend Angle

- cosf  psinf  p(l —cosB) |
M; = —8129 cosf sind
0 0 1 _

For a small angle bend with |#| < 1, this further reduces to:

1 ¢ £0/2
Mgﬁ 0O 1 6
00 1

SM Lund, MSU & USPAS, 2020 Accelerator Physics



// Example: Dispersion function for a simple periodic lattice

For purposes of a simple illustration we here use an imaginary FO (Focus-Drift)
piecewise-constant lattice where the x-plane focusing is like the focus-plane of a
quadrupole with one thick lens focus optic per lattice period and a single drift with
the bend in the middle of the drift < > 0
* Focus element implemented by x-plane quadrupole transfer matrix
in S5B.
L,=05m k= 2()/10(12 in Focusing
n=0.5 p = R =15m, in bend, 25% Occupancy in Period

s/ L, |Lattice Periods]

//



// Example: Dispersion broadens the distribution in x

Uniform Bundle of particles D = 0 Same Bundle of particles D nonzero
* Gaussian distribution of momentum

spreads (0) distorts the x-y distribution

extents in x but not in y

[]
I U A

u "-'. s, e e 4B
LT Y g : o
K '_'-'M'a,

LAY A

-.-. A L {‘:' -:.
B Fia Ry T
My

am '.,"._:::"".' a'._ C-ET Y | JF"'.- - :-’:‘ -
ré .::'rt'{;'l.'-'ﬂ'-'?-" g ,_?-” ~Fy N
t,'.--‘!. . _.-]‘\..a i » d-.':.
Yyt :t'dn"q-.:"- A :“""l"- w Y
Ty =t LT A L -
. Ay Y '{ _-:'3"-'. -;‘::.\'; ‘
l‘.w.] -_"o }"’l
'J..-.:.'l :l a'“-

D=0 extent

/]



// Example: Continuous Focusing in a Continuous Bend
ka(s) = ka = const
p(s) = p = const

Dispersion equation becomes:

1
D" + koD = -
I
With constant solution:
1
D = 5— = const
K5o0P

From this result we can crudely estimate the average value of the dispersion
function in a ring with periodic focusing by taking:
p = Avg Radius Ring
L, = Lattice Period (Focusing)
oo, = x-Plane Phase Advance

00 L2
p 0P

SM Lund, MSU & USPAS, 2020 Accelerator Physics



Many rings are designed to focus the dispersion function D(s) to small values in
straight sections even though the lattice has strong bends
* Desirable since it allows smaller beam extents at locations near where D = 0
and these locations can be used to insert and extract (kick) the beam into and
out of the ring with minimal losses and/or accelerate the beam
- Since average value of D is dictated by ring size and focusing strength
(see example next page) this variation in values can lead to D being
larger in other parts of the ring
* Quadrupole triplet focusing lattices are often employed in rings since the use
of 3 optics per period (vs 2 in doublet) allows more flexibility to tune D while

simultaneously allowing parti¢lg.phase advances to also be adjusted

~ Period
i Sector

One Lattice Period

Ring Lattice: 12 Periods '. Triplet /\\\ X

(SIS-18, GSI) Quadrupoles




Dispersive Effects in Transfer Lines with Bends

It is common that a beam is transported through a single or series of bends in
applications rather than a periodic ring lattice. In such situations, dispersive
corrections to the particle orbit are analyzed differently. In this case, the same
particular + homogeneous solution decomposition is used as in the ring case with
the Dispersion function satisfying:

D"(s) + ka(s)D(s) = %

However, in this case D is solved from an initial condition. Usually (but not

always) from a dispersion-free initial condition $ = S; upstream of the bends
with:

D(SZ) =0 = DI(Si)

If the bends and focusing elements can be configured such that on transport
through the bend (s = sq4) that

D(Sd) =0 = D/(Sd)

Then the bend system is first order achromatic meaning there will be no final orbit

deviation to 1* order in 0 on traversing the system.



This equation has the form of a Driven Hill's Equation:

" + ky(s)r = p(s) z— D
p—1/p

The general solution to this equation can be solved analytically using a Green

function method (see Appendix A) based on principle orbits of the homogeneous

Hill’s equation as:

x(s) = x(s;)C(s|s;) + x'(s;)S(s|s;) + /Sdé G(s,5)p(s)
G(s,8) = S(s|s;)C(8|s;) — C(s|s;)S(5]s;)

Cosine-Like Solution Sine-Like Solution
C"(s|s;) + kz(8)C(s|s;) =0 S"(s|s;) + kz(8)S(s|s;) =0
C/(SZ'|S@') =0 8/(82"5@') =1

x(s;) = Initial value x

1’ (s;) = Initial value '

Green function effectively casts driven equation in terms of homogeneous solution

projections of Hill’s equation.

SM Lund, MSU & USPAS, 2020 Accelerator Physics
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Using this Green function solution from the dispersion-free initial condition gives

D(s) = S(sls;) [ d5 —=c(3ls;) — C(sls;) [ d5 ——S(ls,)
54 ’0(8) Si ,0(8)

C(s|s;) = Cosine-like Principal Trajectory

S(s|s;) = Sine-like Principal Trajectory

+ Alternatively, the 3x3 transfer matrices previously derived can also be applied
to advance D from a dispersion free point in the the linear lattice

The full particle orbit consistent with dispersive effects is given by

z(s)
z'(s)

(8;)C(s|s;) + x'(s;)S(s|s;) + 6D(s)
(5:)C'(s|si) + '(5:)S'(s[si) + 6D'(s)

I
I

» Note that D(s;) =0 = D'(s;) in this expansion due to the dispersion free
initial condition

SM Lund, MSU & USPAS, 2020 Accelerator Physics 34



For a 1* order achromatic system we requite for no leading-order dispersive
corrections to the orbit on transiting the lattice ( s; — s4). This requires:

Sd 1
0:/ 5 —C(3ls)

;o P8
Sd 1 S(
Si IO(S) ’ )

Various lattices consisting of regular combinations of bends and focusing optics
can be made achromatic to 1* order by meeting these criteria.

* Higher-order achromats also possible under more detailed analysis. See, for
examples: Rusthoi and Wadlineer. 1991 PAC, 607

- Pt
T W # ||I VS

{ r':. i | LY} '}
._J_.II #=Lipole Achromat
—i4 S

Ill:lf /. | ot | ?
I/I:-- . " -:_III"! f\ IIII"-.-"Ill

II./ -— A-Dipu le Achromal
/’l ! i .75 o Cog
K\_. / | : | II", IIl' '| i i | '-III II.II II| .
= w i) L 0
E

nge Dsal -2 70 (eg Arcwn Sery -1 ACPEomar (2 of 4 cellgd

Examples are provided in the following slides for achromatic bends as well as
bend systems to maximize/manipulate dispersive properties for species separation.

Further examples can be found in the literature



Symmetries in Achromatic Lattice Design

Input from C.Y. Wong, MSU

Symmetries are commonly exploited in the design of achromatic lattices to:
* Simplify the lattice design
* Reproduce (symmetrically) initial beam conditions downstream

Example lattices will be given after discussing general strategies:
Approach 1: beam line with reflection symmetry about its mid-plane

Plane of reflection

f 0

“““““““““ m : middle

f : final

1 : 1nitial

S = Sm S= 5S¢

If g'(sm) =0, then g(s;) = g(sr), g'(s:) = —g'(sy)

where g can be 3;, 5, or D
After the mid-plane, the beam traverses the same lattice elements in reverse order.
So if the lattice function angle (d/ds) vanishes at mid-plane, the lattice function
undergoes “time reversal” in the 2" half of the beam line exiting downstream at

the symmetric axial location with the same initial value and opposite initial angle.



Approach 2: beam line with rotational symmetry about the mid-point:

Note that the dipoles bend
in different directions

Trajectory in red: ideal
off-momentum particle
x(si) = D(s;)0 # 0

2'(s;) = D'(s;)0 =0

Focusing properties of dipoles are independent of bend direction (sign ).
Same reasoning as Approach 1 gives:

I 8, () = 0, then Buy (1) = Bay(s7)s By (s:) = Bl (s7)

Dispersive properties of dipoles change with bend direction. See Appendix C.
If D(s,,) =0 (instead of D), then D(s;) = —D(ss), D'(s;) = D'(s¢)

It D vanishes at mid-plane, the dispersive shift of an off-momentum particle also

exhibits rotational symmetry about the mid-point



Example: Achromatic Bend with Thin Lens Focusing
Input from C.Y. Wong, MSU
Apply Approach 1 with simple round numbers:

p, 0 fooonf ) =m/6
T b i b """ p=>6/mm

i a=1m

5= s 5= Sm b=1m

Bend Focus Focus Bend

10. Achromlatic Befzd MAI?—XS. 02|.00 05{()8/16 1"6.42.25 20
B. - 0
9. 4 - 1.8 / — : —
| B [ D(sm)—Olff—ptan§+a
8. - JF L6
7. 1.4 (see next slide)
— 0. - 1.2 —
. < = f=151m
A - 1.0 E
< 4 ] L 08 The bending system is achromatic,
3. - - 0.6 but the betatron functions are
2 04 asymmetric due to insufficient
I L 0.2 ]
0o ] Y lattice parameters to tune.
Y00 1 2 3 4 5 6 7 8
00 O ° » Add more elements to address



Constraint Derivation

For incident beam with D(s;) = 0 = D'(s;), the dispersion function only evolves
once the beam enters the dipole

D 1 b 0 D 1 b 0 D
D'l =101 0 D’ =0 1 0O|M|D
1/ 0 0 1 1/, ., \0 01 L)
where
1 0 0 1 a O cosf psinf p(1 — cosB)
M = —% 1 0 0 1 0 —S”ple cos 6 sin 6
0 0 1 0 0 1 0 0 1
and (dispersion free initial condition)
D 0
D’ =10
1 1

Note that the drift b after the thin lens focus does not affect D’
D’(sm) = D’(sm —b) =0 if M3 =0
Solution gives:

— [ = ptan 9 T a (parameter constraint for Achromat)



Discussion:
* Only have to design half the beam-line by exploiting symmetries:
* One constraint at mid-point satisfies two constraints at the end of the beam
line if an asymmetric design approach was taken
* Symmetric lattice easier to set/tune: strengths in 1* half of the beam line
identical to mirror pair in the 2" half
* [t is possible to achieve the same final conditions with an asymmetric beam
line, but this is generally not preferred
* There should be more lattice strength parameters that can be turned than
constraints — needs more optics elements than this simple example
* In simple example, dispersion function manipulated as desired but
betatron functions behave poorly .... not practical
* Except in simplest of cases, parameters often found using numerical
procedures and optimization criteria
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Discussion Continued:
* Usually Approach 1 and Approach 2 are applied for transfer line bends with

D(s;) =0= D(ss), D'(s;) =0= D'(sy¢)

However, this is not necessary

* Common applications with D(s;) = 0 = D’(s;) for linacs and transfer lines:

* Approach 1: fold a linac, or create dispersion at mid-plane to collimate /
select species from a multi-species beam
* Approach 2: translate the beam

+ Common applications for rings:

* Approach 1: Minimize dispersion in straight sections to reduce aberrations
in RF cavities, wigglers/undulators, injection/extraction, etc.

* Not only is it desirable to minimize the dispersion at cavities for acceleration
purposes for a smaller beam, but an accelerating section has no effect on the
dispersion function up to 1* order only if D = D’ = (0 . To see this:

* Consider an off-momentum particle with 2, = 6D =0, xp = 6D # 0
undergoing a purely longitudinal acceleration
* 0 changes while xp does not, so that D changes
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Example: Simplified Fragment Separator
Input from C.Y. Wong, MSU
Heavy ion beams impinge on a production target to produce isotopes for nuclear
physics research. Since many isotopes are produced, a fragment separator is
needed downstream to serve two purposes:

+ Eliminate unwanted isotopes

* Select and focus isotope of interest onto a transport line to detectors

Different isotopes have different rigidities, which are exploited to achieve isotope

selection
Rigidity [Bp] = p _ ymu ref particle (isotope) sets parameters
q q in lattice transfer matrices
5 (5]9) A[Bp] Deviation from the reference rigidity treated
J | Bplo as an effective momentum difference

* Applied fields fixed for all species

Dispersion exploited to collimate off-rigidity fragments
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Discussion:
* Only have to design half the beam-line by exploiting symmetries:
* One constraint at mid-point satisfies two constraints at the end of the beam
line if an asymmetric design approach was taken
* Symmetric lattice easier to set/tune: strengths in 1* half of the beam line
identical to mirror pair in the 2" half
* [t is possible to achieve the same final conditions with an asymmetric beam
line, but this is generally not preferred
* There should be more lattice strength parameters that can be turned than
constraints — needs more optics elements than this simple example
* Except in simplest of cases, parameters often found using numerical
procedures and optimization criteria
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NSCL A1900 Fragment Separator: Simplified Illustration
A1900 schematic

0 D = Dipole Bend  Show only dipoles D T

- N and quadrupoles ’ et
TA W, o5 FP

—
@)

Do *
QT QT = Quadrupole
1 ‘\\ D D . /‘ 13 Triplet Focus

QT ' * QT
- = . = =
\ . J [https://groups.nscl.msu.edu/

12
al900/overview/schematic.php]

Further Simplified Example: 2 segment version

OOX XODf

. Replace quadrupole triplets
Production

by thin lens doublets Focal
target
plane
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Design Goals:
* Dipoles set so desired isotope traverses center of all elements
*+ Dispersion function D is: large at collimation for rigidity resolution
small elsewhere to minimize losses
» 3 By should be small at collimation point (compact separated beam) and focal plane

Apply Approach 1 by requiring D' = 3/ = B; — (0 at mid-plane

Mid-Plane

Production

Focal Plane

p, 0 p, 0

l>ﬂ:'~
O;&,

—J2

Target _f2 @ O X b
<<§§§;7 D large <;74£>> h
N

_ _ /
D,=0=D, Bz, B, small D,=0=D),
B, =0=8, B, =0=4,
Be = By = Bo Bo is determined by the initial spatial and By = By = fo

angular distribution of the fragment beam
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Supplementary: Parameters for Simplified Fragment Separator
fi —fa P9 fa —fa  —fa fs PO —f2 f

0.bm Im 1m 2m Im 2m Im 2m Im Im 0.6m
1.4m 1.4m

Desired isotope: *'S'** from “’Ar(140 MeV/u) on Be target
Energy: 120 MeV/u Initial conditions at production target:

(%) = 1 mm (x'?) = 10 mrad

€z ~ /{x2)(x2) = 10 mm-mrad

Rigidity:  3.15 Tesla-m

Dipole p,0 are fixed
p=178m 6O=mn/4

Thus By (0) is uniquely

Impose constraints and solve f’s numerically:

fi=112m  Quadrupole G1=13.9T/m

determined by | Bp)] fa= 1 graédien; s G2 =13.9T/m
B,(0) = 1.7 Tesla f3=179m  forlengths Gs=87T/m

fo=41tm =0 G =37T/m

For other isotopes:
If initial <x2> : <:c’ 2> are same, scale all fields to match rigidity [Bp]
If not, the f’s also have to be re-tuned to meet the constraints
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Lattice functions and beam envelope

[ || | [ 1
T 1] 1 1 I . ] . .
0. Linear ‘A('hr(mrmr . MAD-IX 5.02.|0() i(]/(??’/fﬁ 1‘7.34.46 5¢ v Sllts at mld_pla’ne Where dlSPerSlon large to
0 | BB " collimate unwanted isotopes and discriminate
0. L4 momentum
10. - N
—_ - *x-envelope plotted for 3 momentum values:
E 20. - 3. 8
=)0, - L2 /
RS - Qa Leny = 5$€w + 0D
N 30. - 2.(
Q I | | i
0. - - 1. . . )
0, ] . *Aperture sizes and D (properties of lattice),
0, - [ 0. determine the angular and momentum
0 e s O acceptance of the fragment separator

w
o

100

(S,
o
T
N
o
T

op/p = 2.5%

o
T
[y
o
T

x—envelope|mm|
|

y—envelope[mm)|

|
S
o

op/p = —2.5%

|
N
o

-100

|
w
o

1 ] ] L | |
n 2 4 o) 10 12 14 16

i
s fm]
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Comments:

* The real A1900 separator has more stages for improved separation

* At points of high dispersion, a tapered energy degrading wedge is used to
increase effective values of ¢ to further enhance resolution of isotopic
components of the beam.

* Sextupoles can be included to correct for chromatic effects in the focusing
properties of the lattice
* See following notes on chromatic effects and correction of chromatic effects
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Example: Charge Selection System of the FRIB Front End
Input from C.Y. Wong, MSU

An ECR ion source produces a many-species DC beam

A charge selection system (CSS) is placed shortly downstream of each source to

select the desired species for further transport and collimate the rest
* The CSS consists of two quadrupole triplets

and two 90-degree sector dipoles ARTEMIS

* The dipoles have slanted poles applied to Chiarge ;Et““”"

increase x-focusing (k # 0) to enhance
dispersion in the middle of the CSS

FRIB CSS

75%

VENUS-like ECR

ralization « D P — — S

] Sol 2

ECR Beamline

(S52) WimasAs uonoa|es ajes adleyd

DIVI Lund, VDU & UDFAD, ZUZU
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Effective rigidity of ions emerging from ECR ion source

ECR ion sources typically emits a DC beam with several (many) species of ions
with different charges (q) and masses (m) giving different rigidities. We can
model species deviations with an effective momentum spread (0 ).

* Applied fields fixed for all species, so Rigidity measures strength of coupling

to the applied fields for all species

* Near source, low energy heavy ions are nonrelativistic
p o ymv - mu

Rigidity [Bp] == —
q q q

In our formulation setup for a single species beam of charge g and mass m, the off

momentum parameter O is defined by

B == (2)(2) = Beb+0) 1

q q Po

70”7 = Design Value

p = po + 0p 0 =
Po

|Bplo = Po _ Design Rigidity

50
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For a ions (species index j) of charge and mass 4j, ; accelerated through a

common electrostatic source potential V', we have

L
Energy Conservation: ¢;V = o MiY;
m;v;
— (B = "9 = 2V (my /)

Take for the various species:
m; = mo + Am
¢j = qo + Ag

Giving:

mo, Qo = Design Species

Bp] = =12 = /2V(m; /q;)

1/2
1+Am/mg
\/2V /QO ( 1_|_Aq§q0 )

[Bp] = [Bplo (ﬂiﬁg;go

1/2
i

[Bplo = +/2V(mo/qo)

= Design Rigidity

SM Lund, MSU & USPAS, 2020
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Define an effective off-momentum by the spread in Rigidity from design
§ = (5_p) _ AlBy)
p eff [BIO]O

Equating Rigidity expressions for 1) (Single Species) and 2) (multi-Species)

identifies the “effective” momentum spread o

m/me \ 1/2
[Bplo(1 4+ 6) = [Bplo (1;_+AAq§qo )

1/2
_ { 1+Am/mg
1+0= ( 1+Aq/qo )

* Common theme of physics: map new case (multi species) to simpler, familiar
case (single species with momentum spread)
* For ECR ion source may have operating cases with Am =0



Parameters for the CSS

p, 0,k il 3

)
S
)
o
S
¥
o
o
S
Q

Dipole:
f=n/2 p=2/rm

Mid-plane conditions:

Qy(Sm) = ay(8m) = D' =0
ke =0.1/p%> K, =0.9/p°
1 —n
2
/7 1 n S
Y+ Ryy =y +?y—0

where field index n = 0.9 from : 2"/ + kpx =2" + x=0

Quadrupoles:
Drifts: Initial Conditions:
lquad — 02 m
> a=0.4m Bx(si) = By(s;) = 3.971 m
Riz = — K1y = 8.30 m~ h— 0.35
T o . (s;) = ay(s;) = —0.380
Koy =— —fi,'gy — —15.60 m c=0.13 m

_ D) —
K3z = —K3y = (.01 m™? d=0.19 m D(s;) = D'(si) =0



Lattice Functions of CSS

Large dispersion and small beam size in x at mid-plane facilitates the collimation
of unwanted species

] [1_ 1] 1 [] |
L] L]

css MAD-X 5.02.00 15/08/16 10.13.13 5

- 2.5

- 2.0

- 1.5

D (m)

- 1.0

- 0.5

0.0

Y00 0 10 0 20 3.0 40 50 6.0
s (m)
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SOC: Chromatic Effects

Present in both x- and y-equations of motion and result from applied focusing
strength changing with deviations in momentum:

z'(s) + (fj_(?)nx(s) =0

p — 00

Koy (S) to neglect bending terms
"(s) + —2 s) =0
ke, = Focusing Functions
with v, By calculated from pg

~J 1, Magnetic Quadrupoles
|2, Solenoids, Electric Quadrupoles

* Generally of lesser importance (smaller corrections) relative to dispersive
terms (S9C) except possibly:
* In rings where precise control of tunes (betatron oscillations per ring lap)
are needed to avoid resonances
* In final focus where small focal spots and/or large axial momentum spread
(in cases with longitudinal pulse compression) can occur



Can analyze by redefining kappa function to incorporate off-momentum:

Fe ()
(1+9)"

However, this would require calculating new amplitude/betatron functions for

Kz new(S)

each particle off-momentum value 0 in the distribution to describe the evolution
of the orbits. That would not be efficient.

Rather, need a perturbative formula to calculate the small amplitude correction to
the nominal particle orbit with design momentum due to the off-momentum ¢ .



Either the x- and y-equations of motion can be put in the form:

z'(s) + (1K_£85))nx(5) =0

Expand to leading order in O :

2"(s) + Kk(s)(1 —nd)z(s) =0

Set:
xo(s) = Orbit Solution for 6 = 0
o(s) = mo(s) +n(s) L) T Db Solution
n(s) = Orbit Correction to xq for § # 0
Giving:
5136/ + rkxg =0 1)
(zo +m)" + k(1 —nd)(zo + 1) =0 2)

Insert Eq. 1) in 2) and neglect the 2™ order term in 0 - 1 to obtain a linear
equation for 7 :

n" + kn = ndkxg
SM Lund, MSU & USPAS, 2020
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This equation has the form of a Driven Hill's Equation:
X —
1" + k(s)x = p(s) L

D — NOKX

The general solution to this equation can be solved analytically using a Green
function method (see Appendix A) as:

* Same method used in analysis of dispersion function

x(s) = x(s;)C(s]s;) + 2'(s;)S(s|s;) + /SdE G(s, 3)p(8)
G(s,5) = S(s|s;)C(8|s;) — C(s|s;)S(5]s;)

Cosine-Like Solution Sine-Like Solution

C"(s|s;) + k(s)C(s|s;) =0 S"(s|s;) + k(s)S(s|s;) =0
C(SZ'|SZ') =1 S(SZ|SZ) =0

C/(Si|87;) =0 8/(87;|8Z') =1

x(s;) = Initial value x

x’(s;) = Initial value 2’

SM Lund, MSU & USPAS, 2020 Accelerator Physics
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Using this result, the general solution for the chromatic correction to the particle

orbit can be expressed as:

n(s) = 1(s:)C(sls:) + 7' (5:)S(s]s:) + nd [ d5 G(s,8)k(3)w0(3)
G(s,5) = S(s|s;)C(5|s;) — C(s|s;)S(8]s;)
n(s;) = Initial value 7

n'(s;) = Initial value n’

SM Lund, MSU & USPAS, 2020 Accelerator Physics
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Chromatic orbit perturbations are typically measured from a point in the lattice
where they are initially zero like a drift where the orbit was correct before

focusing quadrupoles. In this context, can take:

n(si) = 0=n'(s;)

n(s) = nd f;dé‘ G(s,5)k(8)xo(S)

The Green function can be simplified using results from S6F:

® ds

C'(s|s;) = wu(j) cos A(s) — wiw(s) sin Ap(s) Ay(s) = /S w2 (3)
S(slsi) = wiw(s)sin Ayp(s) w; = w(s = s;)
w, =w'(s = s;)

Giving after some algebra:
G(s,5) = S(s|s;)C(5]s;) — C(s|s;)S(5]s;)

w(s)w(s)[sin A(s) cos Ap(s) — cos A(s) sin A(S)]
= w(s)w(s)sin[Ap(s) — Ay(S)]

SM Lund, MSU & USPAS, 2020 Accelerator Physics



Using this and the phase amplitude form of the orbit:
zo(s) = Asw(s) cos|i(s)] B(s) = w*(s)
= Vew(s) cos[AY(s) + 1] = \/€eB(s) cos[Aw(s) + 1]

* Initial phase ¥; implicitly chosen (can always do) for initial amplitude A4; > 0

the orbit deviation from chromatic effects can be calculated as:

S 5 ds ° ds
n(s) = n5/ ds G(s,5)k(8)xo(s) Ap(s) = /S w2(3) ., B(3)

L w-form

= nd/ew(s) /Sd§ k(8)w?(3) sin[Adp(s) — Aep(3)] cos[A(S) + 1]

Betatron-form

= nd+/ef f ds k(8)B(8) sin[AvY(s) — A(8)] cos[AY(8) + 1]

Formula applicable to all types of focusing lattices:
* Quadrupole: electric and magnetic
* Solenoid (Larmor frame)
* Linac and rings



Comments:
*+ Perturbative formulas can be derived to calculate the effect on betatron tunes

(particle oscillations per lap) in a ring based on integrals of the unpreturbed
betatron function: see Wiedemann, Particle Accelerator Physics
* For magnetic quadrupole lattices further detailed analysis (see Steffen, High
Energy Beam Optics) it can be shown that:
- Impossible to make an achromatic focus in any quadrupole system.
Here achromatic means if

n(si) =0 =n'(si)
that there is an achromatic point s = sy post optics with
n(sy) =0=n"(sy)

* More detailed analysis of the chromatic correction to particle orbits in rings
show that a properly oriented nonlinear sextupole inserted into the periodic
ring lattice with correct azimuthal orientation at a large dispersion points can
to leading order compensate for chromatic corrections. We will cover this in
the slides that follow.

- Correction introduces nonlinear terms for large amplitude
- Correction often distributed around ring for practical reasons



Chromaticity

When a particle has higher/lower momentum (6 ), we expect focusing strength to
go down/up
* Important for rings since a relatively small shift in tune can drive the particle

into a nearby low-order resonance condition resulting in particle losses
Denote:

v, = x-Tune including off-momentum ¢

A x |rin
= Number x-Betatron Oscillations in Ring = ¢2 ring
-

1 ds . .
e — B, = Betatron Function including o

21 | B.(s)

Vo = Design x-Tune (6 = 0)

_ ds Design Betatron Function (6 = 0
=% P 30 8oz = Design Betatron Function (6 = 0)

Av, = v, — 1y, = x-Tune Shift




Define the chromaticity as the change in tune per change in momentum (0 ) to
measure the chromatic change in focusing strength of the lattice:
* Analogous treatment in y-plane

Av Av
- ~ = —=  z-Chromaticit
S op/Po 0 Y
Av, Ay, .
= = —< -Chromaticit

* Expect &z,y <O for any linear focusing lattice

SM Lund, MSU & USPAS, 2020 Accelerator Physics
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Go back to the leading order orbit equation of motion describing chromatic
effects:

2" (s) + ke (s)(1 —nd)xz(s) =0

This is the form of:

!/
T+ Ke® =P1& with  P1 = NOKg

Which suggests use of a Floquet transformation as in resonance theory:

x
U= : :
VBox Radial coordinate
1 ® ds
Y= vow Jo Bon(3) Angle advances by 2.t over ring

Vo = Unperturbed z-betatron oscillations in ring

SM Lund, MSU & USPAS, 2020 Accelerator Physics
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Then the same steps in the analysis as employed in our study or resonance effects

shows that .
T + K = P12
becomes:

.2 2
U = VOxﬁO:cplu

On the RHS of this perturbation equation, the coefficient of u is periodic with

period 2;7in ¥ , so we can complex Fourier expand it as
* Analogous to steps used to analyzed perturbations in resonances

i=+v—1

2 2 ik
Vo BoaP1 = Z Cre™ (). = Complex Constants

k=—o0
1 T 5 9 " 1 5 dg

_ —ikep = — =

Ck - I /_dep VOmBOacple 14 Vox Jo Box(S)

1 . ds

= ds Vo, Bop.pre”F? — dp =
o S VozBoxzp1€ Vou Ba

ring



— 1 —ik
Insert the expansion: Cr = 5= fringds Voz Bozpre” "¢

00

. 2 2 02 1k

U+ VU = VOa:ﬁOxplu — E Cre™ | u
k=—o0

Isolate the constant k= 0 value in sum and move to LHS, then all terms on RHS
have variation in ¥ :

Tune-Shift Perturbation
©,@)
i + [v5, — Colu Z Cre™ | u
k=0
L k=—00 _

Co = 5= fﬁngds BoxP1

The homogeneous part of this equation has the form:

Uiy, + viup, = 0 v, = x-Tune (shifted)
with:
Lo
szyga:_cozygaz_—x dsBOxpl
2m ring

» Vx measures the x-tune shift due to off momentum o contalned inp



The tune-shift AVz due to off-momentum 6 can now be evaluated:

Vv, = Vop + AUy

with Previous Analysis
2 2 19 2 Lo
V;U:(VOa:_l_AVZB) :EVOCU_CO:VOZC__ dSﬁoxpl
2
o Jying
2
= Vg T 200, AV, (Leading Order)
— ZVOZBAVCB — _VQO_; fringds BO:Bpl
Identifies:
1
AVJ: — T ds 50:1:291 P1 = né“az
47 ring
no
=~ ¢ ds Posks
n ring

Giving the chromaticity as:

_— Av, _ Av, __ n
§.CU — dp/po & T~ 4w fringds BO:BI{:U

SM Lund, MSU & USPAS, 2020 Accelerator Physics
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Summary of results with an analogous y-plane derivation:

Tunes
1 )
AV:U — T ds 60xp1x — _n_ ds BOCCK/CC
dm ring A ring
1 no
Av, = 0 ringds BoyP1y = 0 ringds Boy Ky
Chromaticities
A x 1 x
faz — / — T ds 50:13& — _i ds 50:{3%:(3
0 dm ring 0 Am ring
AVy 1 50 D1 n
Sy ) AT Jring > ) AT ing $ Poy iy

* Formulas, as expressed, apply to rings, but can be adapted for linacs
* Chromaticities &=,y are always negative in any linear focusing lattice

- Example: see FODO lattice function in following slides
* The same formulas can be derived from an analysis of thin lens transfer matrix

corrections used to model off-momentum .... see problems
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Reminder: Periodic Quadrupole FODO Lattice

Parameters: Characteristics:
L, = Lattice Period nL,/2 =¢=F/D Len
n € (0,1} = Occupancy (1 —n)L,/2 = d = Drift Len
k = Strength
K () (Kz = —Ky) —
e ____j _}i ——— e ___ _
d ¢ d
F Quad |- S --i- -
| | »
- . D Quad ' 5
1 € l 1
R —K -
“"‘ Lp "‘ d:(l—n)L /2
| . . | D
. Lattice Period 0 — n Lp /2

Formula connecting phase advance to field strength via & :

1 _
COSO‘O:COS@COSh@—I——n@(COS@Sinh@—Sin@COSh@)
Ui
U
1 —n)2 O = —+/|k|L
L2 2 G @ sinh @ o VIFlEy
21




Phase-Space Evolution (see also: S7):

. n _ _nN
gx - A4m iringds 637/{37 o 41 periodds 537/{’5’7 <0
[t |
S T ————
| al : Lattice
& 5 ' ! :
— 02F i | ] B
T = 00— | : P ] Ly =0.5m
I | | |
—02 - 1 | 1 i 1 I 1 L N N ] p— 0.5
R 0.0 02 ! 04 ' 06 ' 08 o !
- 15 ; : :- oy =7/3 = 60°
8 1.0 I I
3 05 ! ! ! (k = 39.24 m™?)
| — 00k e e e b e N - -
| -05 I I I
& -1.0 : : :
-15 . . . ) i . . ) . t . ) . t ) . . .
0.0 0.2 1 04 1 0.6 1 08 10
| I . . I |
| 's/L, [Lattice Periodg| i
| | I | |
x’ | x | x! | x | x! |
/) T Q\\ (\ //)
AI‘E& C// S \5 \) C/
€ = const * * * * *
Diverging Horizontal Converging Upright Diverging



Chromaticity correction in a magnetic quadrupole focusing
lattice with Sextupoles

To leading order, we will find that nonlinear focusing Sextupole optics can
introduce the correct form of perturbation to compensate for chromatic aberrations
in a quadrupole focusing lattice

* Important to do with limited amplitude since a large sextupole can also drive

ponlinear resonances ) ) )
Particle equations of motion in this context for a transverse magnetic field are:

ZE// — q Ba — BZ
mypBec Y Bp]
) 4 . B [Bp| = [Bplo(1 +9)
o myPec ©  [Bp]

Expand to leading order in 0 :

Ba,
'~ ——L (1-9§
[BP]O( )

!/ Bg
Y~ 1—9
[BIO]O( )




Review: Symmetries of applied field components

Within a 2D transverse model it was shown that transverse applied magnetic field

components entering the equations of motion can be expanded as:

* See: S3, Transverse Particle Dynamics: 2D components axial integral 3D components

* Applied electric fields can be analogously expanded

o0 n—1
* a - >a 4
E (Z) :Bx($7y)_ZBy(mvy) — Qn (7“_)
n=1 p
b, = const (complex) = A,, —iBB, z=x+ 1y —v—1
n = Multipole Index r, = Aperture " Pipe” Radius
B,, = ”Normal” Multipoles
A, = "Skew” Multipoles

Cartesian projections: B, —iBy, = (A, — iBy,)(x +y)" ! /ri !

Index | Name Normal (A, = 0) Skew (B, = 0)

n B, /B, Byr;} 1/B, B, /A Byri—t/ A,

1 Dipole 0 1 1

2 Quadrupole | y x x —y

3 Sextupole 2xy x2 e x? — g2 —2xy

4 Octupole 3z2y — 3 3 — 3xy? z3 — 3xy? —3z%y + 3

5 Decapole 43y — dxy® 2t —62°%Y% 4y zt — 62%y% + y*  —4a3y + 4xy?

SM Lund, MSU & USPAS, 2020
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Applied Quadrupole Field Component: linear focusing, normal orientation

Bg = Gy = k|Bploy k(s) = G(s) G = Mag. Field Gradient
B, = Gx = k|Bp|ox Bplo

Applied Sextupole Field Component: nonlinear focusing, normal orientation

B, =2Sxy B, . :
5 9 S(s) = — = Sextupole Field Amplitude
By =8 —y7) T

Superimpose quadrupole and sextupole field components (outside dipole bend):

By
B,

k| Bploy + 28y
k[Bploz + S(x* — y)

Insert in equations of motion:
a
/! B Y S 2

x' ~ — (1—-0)=—kr(1—=90)x —

| Bplo Bplo
"o B o — k(1 — S — S
Vo =) = k(-2 (1= 0oy
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Taking the sextupole amplitude small so that S(1 — ) ~ S
and rearranging

7 o Lo S 2 _ .2
x + KT i ORKT . [B,O]o(x y°)
Yy — Ky ~ E—(Yﬁ;y §—|—2 S Ty

S o Bplo
Former New
(Quadrupole) (Sextupole)

Set, and consider only x-plane dispersion, and resolve the particle orbit as:

x(s) = x5(s) + 6 - D(s) x3(s), ys(s) = Linear betatron motion
y(s) = yz(s) D(s) = Dispersion Function
(Periodic Ring Lattice)

* Here we bring the periodic dispersion component back for the ring lattice
though we are analyzing the evolution outside a bend
Insert these into the equations of motion, and neglect nonlinear amplitude terms
considering the orbit amplitudes 3, Y3 small and the momentum spread § to

be small.



S 2

z(s) =xza(s)+ 9 - D(s) v+ kx>~ 0K ~ B, (z° — y?)
y(s) = ys(s) ; S
Using. Yy — Ky~ —0-Ky + 2 [Bp]ozcy
D"+ kD=0

* Equations are applied outside of bend where P —>

approximating
§-kx=20-Kkrg+06° kD~ Krg
0-KY =0 KY3

And isolating the linear betatron amplitude component of the sextupole terms

S 2 2 8 2 2 M2 2 S
Tr° — — x5 +20Dxs + 62 D* — ~ 9 dDx
[Bp]o( v) [Bp]o( B 7 v5) Bplo "
S S S
2 (zpys + 0Dyg) ~ 2 0Dyp

Bl = * Bl Brlo

* Requires small particle oscillation amplitudes €3, ¥ and small 0

* Validity will typically need to be verified numerically

- Becomes questionable for larger g, Y3 and ¢

Gives:



S
xh 4+ kx :5(/4;—2 D)m
p g [Bﬂ]o 7

S
Y5 — Kyg ~ —0 (K_Q[Bp]oD) Y3

In the previous section we showed that the betatron tune shift in the equations

=K —2

S

[B:O]OD

z" + KeX = P12 y// + RylY = P1yY
is given by 1
Av, = —4— ds BozPix
T ring
1 Identify:
AVy — _E . ds 6pr1y
rne Pilz, 1y
with chromaticities )
AVx 1 Plx
= = —— ds —
S =75 AT Jing Foa ™5
Av 1
ﬁy _ vy _ ds 5pr1y
6 47T ring (5
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This gives for the chormaticities including the sextupole applied field to leading

order:
1 S
= —— ds Doz | K — 2 D
5 47 ring BO ( [Bp]o >
1 S
Eyg = — ds 3 (/ﬁ) — 2 D>
i dm ring o [Bp]O

* 1* term previous result, also called the natural chromaticity due to linear focus
* 2" term leading-order shifted chromaticity due to sextupole optic S # 0

Result shows that if you place a normal orientation sextupole optic at a point of
nonzero dispersion (D # 0), then you can adjust the amplitude S to null the
chromatic shift in focusing strength to leading order.

* Correction independent of 0 to leading order

* Want to place also where both betatron amplitudes 5z,y and Dispersion D

are large to limit setupole amplitudes &
* Need min of 2 sextupoles to correct both x- and y-chromaticities
* Typically want more sextupoles in ring for flexibility and to keep amplitudes

limited to maintain validity of ordering assumptions made

- Sextupoles also drive nonlinear resonances so large amplitudes problematic
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* Will generally also have B, > [y at one setupole and 3, > (3, at the other
sextupole (min 2 for correction in each plane simultaneously)
- Design lattice to take advantage so correction amplitudes do not “fight”
* Formulation applicable to bends in linacs also
- Can apply to Fragment Separators, LINAC folding sections (FRIB), ....

Problem assigned to illustrate chromatic corrections more

Sextupole correction of chromaticities one example of numerous creative optical
corrections exploiting properties of nonlinear focusing magnets:
* Creativity and may years of thinking / experience
* Specific to application and needs
* Electron microscope optics provides examples of nonlinear optics used to
correct higher order aberrations



Appendix A: Green Function for Driven Hill's Equation

Following Wiedemann (Particle Accelerator Physics, 1993, pp 106) first, consider more
general Driven Hill's Equation

2" 4+ k(s)x = p(s)

The corresponding homogeneous equation:

" + k(s)r =0

has principal solutions

x(s) = C1C(s|s;) + C2S(s|s;) (', Cy = constants

where
Cosine-Like Solution Sine-Like Solution
C"+k(s)C=0 S"+k(s)S=0
C(s=s;)=1 S(s=s;)=0
C'(s=s;)=0 S'(s=s;) =1

Recall that the homogeneous solutions have the Wronskian symmetry:
* See S5C

W(s) =C(s)S'(s) —C'(s)S(s) =1 C(s) =C(s|s;) etc.
SM Lund, MSU & USPAS, 2020 Accelorator Physics



A particular solution to the Driven Hill's Equation can be constructed using a
Greens' function method:

2(s) = / 45 G(s, H)p(3)

Sq

G(s,5) = S(s|s:)C(5]s;) — C(s|s:)S(5]s5)
Demonstrate this works by first taking derivatives: C(s) =C(s|s;), etc.

a:—S()/dsc()<>—c<>/d38<><§>

' :S’(S)/ ds C(8)p(s8) — C'(s) /Sdé' S(5)p(3)
Sq O S
+ () [S(5)C(s) ~ S()C(5)]
—5'(s) / 45 C(3)p(3) — C'(s) / 15 S(3)p(3)

S;

o —8”()/dsC —C”()/dsS()(§)
7/2 <= From Wronskian

—p(s) + S"(s) / 5 C@(s) - ¢'ts) [ 45 S(3)p(3)

Sq
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Insert these results for , =" in the Driven Hill's Equation:
q
From Definition of Principal Orbit Functions

2"+ k(s)z = p(s) + [S” /J% / %dg C(3)p(3) — [C" ﬂg] / %d§ S(3)p(3)

(2 S’L

= p(s)
Thereby proving we have a valid particular solution. The general solution to the
Driven Hill's Equation is then:

x(s) = C1C(sls;) + C28(sls;) + /Sd§ G (s, 3)p(S)

Sq

x(s=s;) = x(s;) N Cr = x(s;)

2’ (s =s;) = 2'(s;) Cy = ' (s;)

* Choose constants C1, C2 consistent with particle initial conditions at s = s;

x(s) = x(s;)C(s|s;) + 2'(s;)S(s|s;) + /8d§ G(s, 8)p(8)
G(s,5) = S(s|s;)C(5|s;) — C(s|s;)S(5]s;)




Appendix B: Uniqueness of the Dispersion Function in a
Periodic (Ring) Lattice

Consider the equation for the dispersion function in a periodic lattice

D”—I—H}CCD: 1 “w(5‘|’Lp) = kz(8)
P R(s+ Lp) = R(s)

It is required that the solution for a periodic (ring) lattice has the periodicity of the
lattice:

D(s+L,) = D(s)

Assume that there are two unique solutions to D and label them as D; Each must
satisfy:

1 :
D +keDj = = Dj(s +Ly) = Di(s)  j=1, 2

Subtracting the two equations shows that D)1 — D2 satisfies Hill’s equation:

(Dl — DQ)// + Iix(Dl — DQ) =0




The solution can be expressed in terms of the usual principal orbit functions of
Hill’s Equation in matrix form as:

[ 5By |, =L @ St | BB,

Because C and S do not, in general, have the periodicity of the lattice, we must

have for consistency with periodicity of D;(s + L,) = D;(s) :
Dl(Si) — DQ(Si)

Di(si) = Ds(si)
which implies a zero solution for D — D+ and:

D1(s) = Ds(s) == D us unique for a periodic lattice

The proof fails for oo, /(27) = integer however, this exceptional case should
never correspond to a lattice choice because it would result in operation beyond
the 1* stability boundary and/or with unstable particle orbits.

An alternative proof based on the eigenvalue structure of the 3x3 transfer matrices
for D can be found in “Accelerator Physics” by SY Lee.
* Proof helps further clarify the structure of D
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Appendix C: Transfer Matrix of a Negative Bend

Input from C.Y. Wong, MSU
For a clockwise bend (derived in the problem set):

D D T
D/ — MB D’ V’
1 1 S

f i J
cosf psinf p(1 — cosb)
Mp = —8129 cos 6 sin 6 p>0
0 0 1 0 >0

This definition of the X,y,s coordinates is right-handed

The transfer matrix for a negative (anti-clockwise) bend is obtained by making the
transformation P — —p, 0 — —0

cos |0 |p|sin|f] —|p| (1 —cos|0])

—SEl cos|f] — sin |6)]

0 0 1

Ly _ Ll



If one finds the result counterintuitive, it can be derived as follows:
Define T = —x

(The new set of coordinates is not right-handed,

~ o but this does not affect the reasoning)
The dispersion functions in the two coordinate systems are related by
D D -1 0 0
D'|=R|D where R = R_1 = 0 —1 0
1 1 0 0 1

The anti-clockwise bend is effectively clockwise in the primed coordinate system:

D D D D
D'| =Mgp (D —> R(D| =MzR|D
1/, 1) 1/, 1/,

Transfer matrix of anti-clockwise bend in normal coordinates:
cos (6] [plsin |6~ [l (1 - cos )
M_g =R 'MgR = —ST’OHQ' cos |0 — sin |6
0 0 1
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/msu/phy905_2020/

Redistributions of class material welcome. Please do not remove author credits.


mailto:lund@frib.msu.edu
https://people.nscl.msu.edu/~lund/msu/phy905_2020/
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