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Problem 1

P013 Resonances 40 pts.

Consider the driven harmonic oscillator equation for U(ϕ):

d2U(ϕ)

dϕ2
+ ν20U(ϕ) = A cos(νϕ) +B sin(νϕ)

ν0 = constant restoring frequency

ν = constant driving frequency

A, B = constant amplitudes

A cos(νϕ) +B sin(νϕ) = driving terms

The general solution for U(ϕ) can be expanded as:

U(ϕ) = Uh(ϕ) + Up(ϕ)

where Uh(ϕ) is the general solution to the homogeneous equation:

d2Uh(ϕ)

dϕ2
+ ν20Uh(ϕ) = 0

=⇒ Uh(ϕ) = C1 cos(ν0ϕ) + C2 sin(ν0ϕ)

C1, C2 constants

and Up(ϕ) is the particular solution to:

d2U(ϕ)

dϕ2
+ ν20U(ϕ) = A cos(νϕ) +B sin(νϕ)

a) 5 pts: For ν 6= ν0, show that a solution Up(ϕ) exists proportional to the driving term and find
the constant of proportionality.
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b) 5 pts: Use the results of part (a) to construct the solution (ν 6= ν0) for U(ϕ) satisfying the
initial conditions at ϕ = 0:

U(ϕ = 0) = U0

dU

dϕ

∣∣∣
ϕ=0

= U̇0;
dU

dϕ
≡ U̇(ϕ)

c) 10 pts: Set ν = ν0 + δν, and find the leading order form of the solution valid for |δν|/ν0 � 1
and |ϕδν| � 1. What does this limit imply on the amplitude of the particle oscillation as
ν → ν0?

d) 5 pts: What do these results imply for a general periodic forcing function:

d2

dϕ2
U(ϕ) + ν20U(ϕ) = f(ϕ)

f(ϕ) = periodic forcing function with f(ϕ+ 2π) = f(ϕ)

How does this fit in with the analysis of machine tunes carried out in the class notes?

e) 5 pts: Suppose the drive frequency is exactly equal to the resonant frequency (i.e., ν = ν0):

d2

dϕ2
U(ϕ) + ν20U(ϕ) = A cos(ν0ϕ) +B sin(ν0ϕ)

Motivated by part c), show that a particular solution exists

Up(ϕ) =
A

2ν0
ϕ sin(ν0ϕ)− B

2ν0
ϕ cos(ν0ϕ)

with no approximations. Write down the general solution. Does this agrees with (c)? Should
it?

f) 10 pts: For the case of ν 6= ν0, estimate the deviation in δν/ν0 to wash out the resonance.
Please keep arguments simple.

Hint: Look at the second order deviations in δν/ν0.

Problem 2

P014 Resonance Driving Perturbations 15 pts.

In class we derived the perturbed Hill’s equationfor transverse magnetic field perturbations:

x′′ + κxx = Px κx =
G

[Bρ]

where
Px = Px(x, y) = perturbation in x-plane

Use the results from class to explicitly identify Px for the following conditions:

a) 5 pts: Normal and skew orientation dipole field perturbations.
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b) 5 pts: Normal and skew orientation quadrupole field perturbations. Which of these can be
included in κx? Which of these results in y-plane coupling?

c) 5 pts: Normal and skew orientation sextupole field perturbations. In either case, is the x-
motion independent of y when y 6= 0? Do “normal” and “skew” orientations have clear
physical distinction for sextupole perturbations? Why or why not?

Caution: You must correctly interpret the index n in the class notes to identify the appropriate
multipole field term.

Problem 3

P016 Dispersion Function 50 pts.

The dispersion function in a periodic ring satisfies:

D′′(s) + κ(s)D(s) =
1

ρ(s)

ρ(s) = bend radius, κ(s) = focusing function

D(s+ Lp) = D(s), ρ(s+ Lp) = ρ(s), κ(s+ Lp) = κ(s)

Lp = lattice period

a) 5 pts: Argue the solution for D is unique. This implies that there is a unique closed orbit
x = δ ·D for every value of off-momentum δ. This aids interpretation of D.

Hint: Let D1 and D2 be two independent solutions and look for a contradiction.

b) 5 pts: Argue that the solution for D can be expressed in an extended 3 × 3 transfer matrix
from as: DD′

1


s

=

M11(s|si) M12(s|si) d(s|si)
M21(s|si) M22(s|si) d′(s|si)

0 0 1

DD′
1


s=si

where M(s|si) is the usual 2× 2 transfer matrix from Hill’s equation.

Express the periodicity requirement D(s + Lp) = D(s) in this 3 × 3 formulation. Do you
expect this equaiton to have a solution? Explain your answer.

c) 15 pts: Show for ρ =constant and:

κ = const > 0 :

d(s|si) =
1

ρκ
[1− cos(

√
κ(s− si))]

d′(s|si) =
1

ρ
√
κ

sin[
√
κ(s− si)]

κ = const < 0 :

d(s|si) =
1

ρ|κ|
[−1 + cosh(

√
|κ|(s− si))]

d′(s|si) =
1

ρ
√
|κ|

sinh[
√
κ(s− si)]
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Use the Green’s functions results from class and forms derived for M.

d) 5 pts: Use κ = 1/ρ2 in part (c) to show for a sector dipole that the 3 × 3 transfer matrix
through a bend of length ` can be expressed as:

M =

 cos θ ρ sin θ ρ(1− cos θ)
− sin θ
ρ cos θ sin θ

0 0 1


DD′

1


s

= M ·

DD′
1


s=si

` = ρθ, θ = bend angle

Show for a small angle bend (θ � 1) that:

M =

1 ` `θ
2

0 1 θ
0 0 1


e) 10 pts: Derive the 3× 3 transfer matrix for D for:

1) A drift with κ = 0 and ρ→∞.

2) A thin lens at s = si with κ = δ(s−si)
f where f = constant and ρ → ∞. Here, δ(x) is a

Dirac-delta function.

3) Within a uniform sector bend with large bend radius ρ where we take κ ≈ 0 and ρ =
constant.

First use direct methods as opposed to Green’s functions.

Then show that the results agree with the Green’s functions for 1) and 2) and for the small
angle bend result derived from the Green’s functions for 3).

f) 10 pts: A particle is kicked out of a ring with dispersion D = Di and D′ = D′i just after the
kick. The particle is then transported through an extraction line with a drift length d, a thin
lens focusing kick with focal length f , and then a sector bend of radius ρ = R and length `,
and finally though an uspecified series of optics to the target.
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Using the results from part e), derive constraints on the lattice parameters d, f , R, and ` that
can be enforced to ensure that D = D′ = 0 after the bending magnet to have zero dispersion
in the straight transport and focusing line to the target?

Are these constraints practical to implement in the lab? Why? Qualitative answer only.

Problem 4

P097 Chromaticity Correction 20 pts.

Two normal orientation sextupoles are added to a linear quadrupole focusing lattice ring with
natural chromaticities:

ξx0 = − 1

4π

∮
ring

ds βx0κx = − 1

4π

∮
ring

ds βx0κ

ξy0 = − 1

4π

∮
ring

ds βy0κy =
1

4π

∮
ring

ds βy0κ

where κx = −κy = κ. Two ”thin” sextupoles with equal effective axial lengths `s strengths and
strengths ∫

sextupole 1
ds S = Ŝ1`s∫

sextupole 2
ds S = Ŝ2`s

are placed in the lattice at s = s1, s2. Here, Ŝ1,2 denote the effective sextupole strengths at s = s1,2.
D is the periodic dispersion function of the ring.
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a) 10 pts: Derive thin lens formulas for ξx and ξy, the chromaticity in x and y using formulas
derived in class in terms of `s, Ŝ1, [Bρ]0, ξx0, ξy0 and βx01, βy01, βx02, βy02, D1, D2. Here,
βx01 = β0x(s = s1), etc.

b) 5 pts: Solve for Ŝ1, Ŝ2 for ξx = 0 = ξy for zero chromaticity.

c) 5 pts: From part b), can you correct for chromaticity when D = 0? Explain where the
sextupoles should be placed in the lattice in terms of βx0, βy0 amplitudes to allow correction
with minimal sextupole strengths.
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