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Problem 1

P005a Magnetic Optics 15 pts.

From the Lorentz force equation, show that a static magnetic field ~B (~x) cannot change the particle
kinetic energy, E = (γ − 1)mc2. Make no approximations.

m
d

dt

(
γ~β
)

= q~β × ~B

γ =
1√

1− ~β2
; ~β =

1

c

d~x

dt

Problem 2

P009 Thin lens transfer matrix for a single particle 30 pts.

Consider the thin-lens focusing function κx = 1
f δ(s− s0) and the equation of motion:

x′′+
1

f
δ(s− s0)x = 0

f = constant focal length

s0 = axial location of the optic

a) 10 pts: Derive the 2× 2 transfer matrix M for the optic:[
x
x′

]
s+0

= M ·
[
x
x′

]
s−0

where s±0 are the coordinates infinitesimally to the left and right of the optic at s = s0. M is
the thin-lens transfer matrix.
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b) 10 pts: Construct a thin lens limit, lim`→0, for 2× 2 thick lens transfer matrices for focusing
and defocusing quadrupoles with κ = κ̂q = const.

Mthick focus =

[
cos(
√
κ`) 1√

κ
sin(
√
κ`)

−
√
κ sin(

√
κ`) cos(

√
κ`)

]

Mthick defocus =

[
cosh(

√
κ`) 1√

κ
sinh(

√
κ`)

√
κ sinh(

√
κ`) cosh(

√
κ`)

]

Hint: Require the same “impulse”
∫
κx(s) ds be applied to a particle going through the thick

and thin lens to relate κl and f . Use this constraint when taking the limit keeping κ` finite.

c) 10 pts: A 2× 2 transfer matrix

M =

[
M11 M12

M21 M22

]
gives the solution to Hills’ equation x′′ + κ(s)x = 0 through some advance. Using that the
Wronskian symmetry

detM = M11M22 −M21M12 = 1

always holds for any physical solution, show that M can always be replaced by two drifts and
a thin lens kick as

M = Mdrift2 ·Mthin lens ·Mdrift1

Mdrift =

[
1 `
0 1

]
Mthin lens =

[
1 0
− 1
f 1

]
Find d1, d2, and f in terms of M11, M22, M12, and M21 for the equivalence to hold.

In this equivalence will the axial lengths of the physical and thin lens systems be the same?
Does it matter if the axial lengths are unequal?

Problem 3

P030 Accelerator Bending Parameters 10 pts.

Fill in the following table for different accelerators.
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NSLS II LHC FRIB

Type Ring Ring Folding segment (π rotation)

Energy 3 GeV 7 TeV Ek = 150 MeV/u

Species Electron Proton 238
78+U

Number of dipoles 60 1200 4

Bending Field [T] 0.4 8.3

Dipole Length [m] 9

Problem 4

P047 Dipole Edge Corrections 30 pts.

a) 10 pts: Horizontal correction:

A dipole with entry and exit angles α (defined relative to reference orbit, see figure above)
can be divided into three sections: a sector dipole in the center with a wedge magnet on both
ends. The sector dipole has the transfer matrix derived in class.

For a short sector, argue from the Lorentz force equation that the particle experiences the
following corrections for the orbit displacement x through the wedge:

∆x′ =
By(0)

[Bρ]
tan(α)x

∆x = 0
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to show that:

Mwedge =

[
1 0

tan(α)
ρ 1

]
;

1

ρ
=
By(0)

[Bρ]

This “kick” correction will be applied entering and exiting the magnet.

b) 3 pts: Show that the x-transfer matrix of the full dipole can be expressed as:

Mx = Mwedge ·Msector ·Mwedge =

[
cos(θ−α)

cosα ρ sin(θ)

− sin(θ−2α)
ρ cos2(α)

cos(θ−α)
cosα

]

Hint:

cos(θ) + tan(α) sin(θ) =
cos(θ − α)

cos(α)

sin(θ)− tan(α) cos(θ) =
sin(θ − α)

cos(α)

c) 10 pts: Vertical Correction

There is also a vertical correction to the kick due to the slanted edge entry which results from
fringe fields.

Using arguments analogous to part a), the y-plane angular deflection entering the magnet is:

∆y′ =
qv
∫
Bx(y) ds

γmv2
=

1

[Bρ]

∫
edge

Bx(y) ds

Argue that:

∆y′ = −tan(α)

[Bρ]

∫
edge

B · ds∫
edge

B · ds = yBy(0)
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to obtain:

∆y′ = −tan(α)

ρ
y, ∆y = 0

My|edge =

[
1 0

− tan(α)
ρ 1

]

for the edge correction going into the dipole. The same correction applies going out of the
dipole.

Hint: Consider the vacuum Maxwell equations and the apply to the fringe field entering the
magnet as suggested in the sketch below.

d) 3 pts: Show that:

My = My|edge ·My|sector ·My|edge =

[
1− θ tanα ρθ

− tanα
ρ (2− θ tanα) 1− θ tanα

]

e) 4 pts: A box dipole is commonly constructed for easy fabrication.
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Use results from parts b) and d) to show for a box dipole that:

Mx =

[
1 ρ sin(θ)
0 1

]
My =

[
1− θ tan(θ/2) ρθ

−1
ρ tan(θ/2)[2− θ tan(θ/2)] 1− θ tan(θ/2)

]
≈

[
cos(θ) ρ sin(θ)

− sin(θ)
ρ cos(θ)

] ∣∣∣∣∣
θ�1

Problem 5

P031 Symmetric Lattice 10 pts.

Let M represent the 1-D linear betatron transfer map of a section of a lattice. Given that the
lattice has mirror symmetry with respect to its mid-point, find the required conditions that this
symmetry imposes on M.
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