USPAS Accelerator Physics

Problem Set 5-120 pts.

S. M. Lund, Y. Hao
Graders: C. Richard and C. Y. Wong

June 8, 2018

Problem 1

P013 Resonances 40 pts.

Consider the driven harmonic oscillator equation for $U(\varphi)$:

$$
\begin{gathered}
\frac{\mathrm{d}^{2} U(\varphi)}{\mathrm{d} \varphi^{2}}+\nu_{0}^{2} U(\varphi)=A \cos (\nu \varphi)+B \sin (\nu \varphi) \\
\nu_{0}=\text { constant restoring frequency } \\
\nu=\text { constant driving frequency } \\
A, B=\text { constant amplitudes } \\
\\
A \cos (\nu \varphi)+B \sin (\nu \varphi)=\text { driving terms }
\end{gathered}
$$

The general solution for $U(\varphi)$ can be expanded as:

$$
U(\varphi)=U_{h}(\varphi)+U_{p}(\varphi)
$$

where $U_{h}(\varphi)$ is the general solution to the homogeneous equation:

$$
\begin{gathered}
\frac{\mathrm{d}^{2} U_{h}(\varphi)}{\mathrm{d} \varphi^{2}}+\nu_{0}^{2} U_{h}(\varphi)=0 \\
\Longrightarrow U_{h}(\varphi)=C_{1} \cos \left(\nu_{0} \varphi\right)+C_{2} \sin \left(\nu_{0} \varphi\right) \\
C_{1}, C_{2} \text { constants }
\end{gathered}
$$

and $U_{p}(\varphi)$ is the particular solution to:

$$
\frac{\mathrm{d}^{2} U(\varphi)}{\mathrm{d} \varphi^{2}}+\nu_{0}^{2} U(\varphi)=A \cos (\nu \varphi)+B \sin (\nu \varphi)
$$

a) 5 pts: For $\nu \neq \nu_{0}$, show that a solution $U_{p}(\varphi)$ exists proportional to the driving term and find the constant of proportionality.
b) 5 pts: Use the results of part (a) to construct the solution $\left(\nu \neq \nu_{0}\right)$ for $U(\varphi)$ satisfying the initial conditions at $\varphi=0$:

$$
\begin{aligned}
& U(\varphi=0)=U_{0} \\
& \left.\frac{\mathrm{~d} U}{\mathrm{~d} \varphi}\right|_{\varphi=0}=\dot{U}_{0} ; \quad \frac{\mathrm{d} U}{\mathrm{~d} \varphi} \equiv \dot{U}(\varphi)
\end{aligned}
$$

c) 10 pts: Set $\nu=\nu_{0}+\delta \nu$, and find the leading order form of the solution valid for $|\delta \nu| / \nu_{0} \ll 1$ and $|\varphi \delta \nu| \ll 1$. What does this limit imply on the amplitude of the particle oscillation as $\nu \rightarrow \nu_{0}$?
d) 5 pts : What do these results imply for a general periodic forcing function:

$$
\frac{d^{2}}{d \varphi^{2}} U(\varphi)+\nu_{0}^{2} U(\varphi)=f(\varphi)
$$

$$
f(\varphi)=\text { periodic forcing function with } f(\varphi+2 \pi)=f(\varphi)
$$

How does this fit in with the analysis of machine tunes carried out in the class notes?
e) 5 pts : Suppose the drive frequency is exactly equal to the resonant frequency (i.e., $\nu=\nu_{0}$):

$$
\frac{d^{2}}{d \varphi^{2}} U(\varphi)+\nu_{0}^{2} U(\varphi)=A \cos \left(\nu_{0} \varphi\right)+B \sin \left(\nu_{0} \varphi\right)
$$

Motivated by part c), show that a particular solution exists

$$
U_{p}(\varphi)=\frac{A}{2 \nu_{0}} \varphi \sin \left(\nu_{0} \varphi\right)-\frac{B}{2 \nu_{0}} \varphi \cos \left(\nu_{0} \varphi\right)
$$

with no approximations. Write down the general solution. Does this agrees with (c)? Should it?
f) 10 pts: For the case of $\nu \neq \nu_{0}$, estimate the deviation in $\delta \nu / \nu_{0}$ to wash out the resonance. Please keep arguments simple.
Hint: Look at the second order deviations in $\delta \nu / \nu_{0}$.

Problem 2

P014 Resonance Driving Perturbations 15 pts.

In class we derived the perturbed Hill's equationfor transverse magnetic field perturbations:

$$
x^{\prime \prime}+\kappa_{x} x=\mathcal{P}_{x} \quad \kappa_{x}=\frac{G}{[B \rho]}
$$

where

$$
\mathcal{P}_{x}=\mathcal{P}_{x}(x, y)=\text { perturbation in x-plane }
$$

Use the results from class to explicitly identify \mathcal{P}_{x} for the following conditions:
a) 5 pts: Normal and skew orientation dipole field perturbations.
b) 5 pts: Normal and skew orientation quadrupole field perturbations. Which of these can be included in κ_{x} ? Which of these results in y-plane coupling?
c) 5 pts: Normal and skew orientation sextupole field perturbations. In either case, is the x motion independent of y when $y \neq 0$? Do "normal" and "skew" orientations have clear physical distinction for sextupole perturbations? Why or why not?

Caution: You must correctly interpret the index n in the class notes to identify the appropriate multipole field term.

Problem 3

P033 Symplectic Matrices 20 pts.

Prove the following statements for a symplectic matrix, \mathbf{M} :

1) If \mathbf{M} is symplectic, then \mathbf{M}^{-1} is symplectic.
2) If \mathbf{M} and another matrix \mathbf{N} are both symplectic, then $\mathbf{M} \cdot \mathbf{N}$ is also symplectic.
3) For the 1-D case, the symplectic condition becomes $\operatorname{det}(\mathbf{M})=1$.
4) If λ is an eigenvalue of \mathbf{M}, then λ^{-1} is also an eigenvalue of \mathbf{M}.

Problem 4

P034 Transfer Map Free Parameters 20 pts.

Consider a 2-D Hamiltonian system with phase-space ($x, x^{\prime}, y, y^{\prime}$). From the symplectic condition, find how many free parameters the 4-D transfer map can have. In general, for an N -dimensional Hamiltonian system, how many free parameters are there in the transfer map?

Problem 5

P037 FODO Dispersion Suppression 25 pts.

For a FODO cell with dipole and axially short quadrupole magnets $\left(Q_{f} / 2, B, Q_{d}, B, Q_{f} / 2\right)$, the betatron and dispersion functions at the middle plane of the focusing quadrupole are β_{f} and d_{f} from the periodic boundary condition. The bending angle of each dipole is θ and the phase advance of the cell is ψ. Here the bending angle is small so that small angle approximation can be utilized.

1) Find the 3×3 transfer matrix, \mathbf{M} of the cell.
2) To match the cell's dispersion function to zero, a dispersion suppressor needs to be be attached to the end. Show that using n FODO cells with zero bending angle cannot suppress the dispersion.
3) To design a proper dispersion suppressor, we can use two FODO cells with reduced bending angles. The dipoles in the first cell have bending angle θ_{1} and the dipoles in the second cell have bending angle θ_{2}. Find θ_{1} and θ_{2} to create the dispersion suppressor.

