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Problem 1

P013 Resonances 40 pts.

Consider the driven harmonic oscillator equation for U(ϕ):

d2U(ϕ)

dϕ2
+ ν20U(ϕ) = A cos(νϕ) +B sin(νϕ)

ν0 = constant restoring frequency

ν = constant driving frequency

A, B = constant amplitudes

A cos(νϕ) +B sin(νϕ) = driving terms

The general solution for U(ϕ) can be expanded as:

U(ϕ) = Uh(ϕ) + Up(ϕ)

where Uh(ϕ) is the general solution to the homogeneous equation:

d2Uh(ϕ)

dϕ2
+ ν20Uh(ϕ) = 0

=⇒ Uh(ϕ) = C1 cos(ν0ϕ) + C2 sin(ν0ϕ)

C1, C2 constants

and Up(ϕ) is the particular solution to:

d2U(ϕ)

dϕ2
+ ν20U(ϕ) = A cos(νϕ) +B sin(νϕ)

a) 5 pts: For ν 6= ν0, show that a solution Up(ϕ) exists proportional to the driving term and find
the constant of proportionality.

b) 5 pts: Use the results of part (a) to construct the solution (ν 6= ν0) for U(ϕ) satisfying the
initial conditions at ϕ = 0:

U(ϕ = 0) = U0

dU

dϕ

∣∣∣
ϕ=0

= U̇0;
dU

dϕ
≡ U̇(ϕ)
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c) 10 pts: Set ν = ν0 + δν, and find the leading order form of the solution valid for |δν|/ν0 � 1
and |ϕδν| � 1. What does this limit imply on the amplitude of the particle oscillation as
ν → ν0?

d) 5 pts: What do these results imply for a general periodic forcing function:

d2

dϕ2
U(ϕ) + ν20U(ϕ) = f(ϕ)

f(ϕ) = periodic forcing function with f(ϕ+ 2π) = f(ϕ)

How does this fit in with the analysis of machine tunes carried out in the class notes?

e) 5 pts: Suppose the drive frequency is exactly equal to the resonant frequency (i.e., ν = ν0):

d2

dϕ2
U(ϕ) + ν20U(ϕ) = A cos(ν0ϕ) +B sin(ν0ϕ)

Motivated by part c), show that a particular solution exists

Up(ϕ) =
A

2ν0
ϕ sin(ν0ϕ)− B

2ν0
ϕ cos(ν0ϕ)

with no approximations. Write down the general solution. Does this agrees with (c)? Should
it?

f) 10 pts: For the case of ν 6= ν0, estimate the deviation in δν/ν0 to wash out the resonance.
Please keep arguments simple.

Hint: Look at the second order deviations in δν/ν0.

Problem 2

P014 Resonance Driving Perturbations 15 pts.

In class we derived the perturbed Hill’s equationfor transverse magnetic field perturbations:

x′′ + κxx = Px κx =
G

[Bρ]

where
Px = Px(x, y) = perturbation in x-plane

Use the results from class to explicitly identify Px for the following conditions:

a) 5 pts: Normal and skew orientation dipole field perturbations.

b) 5 pts: Normal and skew orientation quadrupole field perturbations. Which of these can be
included in κx? Which of these results in y-plane coupling?

c) 5 pts: Normal and skew orientation sextupole field perturbations. In either case, is the x-
motion independent of y when y 6= 0? Do “normal” and “skew” orientations have clear
physical distinction for sextupole perturbations? Why or why not?

Caution: You must correctly interpret the index n in the class notes to identify the appropriate
multipole field term.
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Problem 3

P033 Symplectic Matrices 20 pts.

Prove the following statements for a symplectic matrix, M:

1) If M is symplectic, then M−1 is symplectic.

2) If M and another matrix N are both symplectic, then M ·N is also symplectic.

3) For the 1-D case, the symplectic condition becomes det(M) = 1.

4) If λ is an eigenvalue of M, then λ−1 is also an eigenvalue of M.

Problem 4

P034 Transfer Map Free Parameters 20 pts.

Consider a 2-D Hamiltonian system with phase-space (x, x′, y, y′). From the symplectic condition,
find how many free parameters the 4-D transfer map can have. In general, for an N-dimensional
Hamiltonian system, how many free parameters are there in the transfer map?

Problem 5

P037 FODO Dispersion Suppression 25 pts.

For a FODO cell with dipole and axially short quadrupole magnets (Qf/2, B,Qd, B,Qf/2), the
betatron and dispersion functions at the middle plane of the focusing quadrupole are βf and df
from the periodic boundary condition. The bending angle of each dipole is θ and the phase advance
of the cell is ψ. Here the bending angle is small so that small angle approximation can be utilized.

1) Find the 3× 3 transfer matrix, M of the cell.

2) To match the cell’s dispersion function to zero, a dispersion suppressor needs to be be attached
to the end. Show that using n FODO cells with zero bending angle cannot suppress the
dispersion.

3) To design a proper dispersion suppressor, we can use two FODO cells with reduced bending
angles. The dipoles in the first cell have bending angle θ1 and the dipoles in the second cell
have bending angle θ2. Find θ1 and θ2 to create the dispersion suppressor.
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