USPAS Accelerator Physics Problem Set 6-90 pts.

S. M. Lund, Y. Hao
Graders: C. Richard and C. Y. Wong

June 11, 2018

Problem 1

P012 Normalized Emittance 20 pts.

Consider a distribution of particles evolving according to the particle equation of motion:

$$
x^{\prime \prime}+\frac{(\gamma \beta)^{\prime}}{\gamma \beta} x^{\prime}+\kappa(s) x=0
$$

Denote an average over the distribution as $\langle\ldots\rangle$.
A statistical measure of beam phase-space area is provided by the normalized RMS emittance:

$$
\varepsilon \equiv(\gamma \beta)\left[\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}\right]^{\frac{1}{2}}
$$

Show directly using the equation of motion that ε is constant.
Would you expect ε to be conserved if the equation of motion had non-linear terms?

$$
x^{\prime \prime}+\frac{(\gamma \beta)^{\prime}}{\gamma \beta} x^{\prime}+\kappa(s) x=F(x)
$$

Explain why. It is not necessary to rework the problem.
Hint: It is easier to show that $\frac{\mathrm{d}}{\mathrm{d} s} \varepsilon^{2}=0$

Problem 2

P023 Slip Factor 20 pts.

a) 5 pts: Consider a circular accelerator/storage ring composed of a uniform magnetic field, $\mathbf{B}_{y}=B_{0} \hat{y}=$ constant. The ideal reference path for a particle of momentum p_{0} has radius R_{0} in the plane perpendicular to \mathbf{B}_{y}. A particle with momentum $p=p_{0}+\delta p$ will have a different closed path and radius R.

Calculate the slip factor, η, in terms of γ_{0} for this situation.
b) 5 pts: Next, repeat part (a) for a racetrack accelerator with two uniform dipole bends separated by a field free drift of length d. Calculate the slip factor, η, in terms of γ and d / R_{0}.

c) 10 pts: For $d=2 R_{0}$ in part (c), plot η as a function of γ and note where it changes sign. Is this the "transition γ "? What speed in $\beta=v / c$ does this correspond to?

Problem 3

P019 Transit Time Factor 50 pts.

Many RF cavities are multi-gap. They can be modeled by the usual Panofsky equation if an appropriate transit time factor, T, is employed.

The energy gain of a particle traversing the cavity is:

$$
\Delta W=q \int_{-L / 2}^{L / 2} E(0, z) \sin \left(\frac{2 \pi z}{\beta \lambda_{\mathrm{rf}}}+\phi\right) \mathrm{d} z
$$

when approximating $\beta \simeq$ constant in the cavity.
a) 15 pts: For this structure, derive a transit time factor, T, to show that:

$$
\Delta W=q E_{0} L T \cos \phi
$$

with

$$
\begin{aligned}
E_{0} & =\frac{1}{L} \int_{-L / 2}^{L / 2}|E(0, z)| \mathrm{d} z=\text { average magnitude of field over the cell } \\
T & =\frac{\sin \left[\pi g /\left(\beta \lambda_{\mathrm{rf}}\right)\right]}{\pi g /\left(\beta \lambda_{\mathrm{rf}}\right)} \sin \left(\frac{\pi \beta_{s}}{2 \beta}\right)
\end{aligned}
$$

b) 30 pts: Assuming that the length of each gap is $g=\frac{1}{8} \beta_{s} \lambda_{\mathrm{rf}}$, plot T vs. β for the follow four cases:

1) $f_{\mathrm{rf}}=80.5 \mathrm{MHz}, \beta_{s}=0.041$
2) $f_{\mathrm{rf}}=80.5 \mathrm{MHz}, \beta_{s}=0.085$
3) $f_{\mathrm{rf}}=322 \mathrm{MHz}, \beta_{s}=0.29$
4) $f_{\mathrm{rf}}=322 \mathrm{MHz}, \beta_{s}=0.53$

For each case, estimate the approximate range of β for $T>0.65$ corresponding to efficient RF acceleration.
Use any graphics package you want to make plots. Please no hand plots.
c) 5 pts: Explain why this two gap transit time factor shows more variation in β than for a one gap model. Why can T be zero for some values of β ? Qualitative answers only.

