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Problem 1

P020 Motion Near Synchronous Particle: Difference Equations 25
pts.

In class we derived the longitudinal difference equations:

∆φn −∆φn−1 = − 2πN

γ3s,n−1β
2
s,n−1

∆Wn−1
mc2

∆Wn −∆Wn−1 = qE0,nLnTn(βs,n)[cos(φs,n + ∆φn)− cos(φs,n)]

∆φn = φn − φs,n; ∆Wn = Wn −Ws,n

a) 2 pts: Which term generates the nonlinearity? Why?

b) 8 pts: Following the steps in class, linearize the difference equations for small phase excursions
about the synchronous particle and express the result as a 2× 2 transfer matrix, Ms defined
by: [

∆φ
∆W

]
n

= Ms ·
[

∆φ
∆W

]
n−1

Show that detMs = 1 and resolve Ms as the product of a thin lens and a drift as:

Ms =

[
1 0
− 1
f 1

]
·
[
1 d
0 1

]
and identify the drift length, d, and the inverse focal length, 1/f . Is it a problem if d < 0?
Will the system still focus? Why?

c) 10 pts: Assume negligible synchronous particle energy gain and a regular periodic lattice with:

βs,n = βs = const; =⇒ γs,n = γs = const

E0,n = E0 = const;

Tn = T = const;

Ln = L = const

φs,n = φs = const
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Define a synchronous phase advance using Ms in part (b) and calculate the synchronous phase
advance, σs, per cell, L. Compare the result to the synchrotron wavenumber, ks, calculated
in class for small phase advance per cell. Should you expect the relationship obtained? Why?

d) 5 pts: Suppose we apply the linear equations in the limit of small acceleration within the
continuous approximation derived in class. For an orbit with max phase extent ∆φ0, find an
expression for the longitudinal emittance in ∆φ-∆W phase-space with:

πεs = Area of ellipse in ∆φ-∆W

The units of εs will be radians-eV (energy). How should we scale this result to measure εs in
∆t-∆W phase-space to measure area in eV-sec?

Problem 2

P021 Hamiltonian Form of Synchrotron Equations of Motion 30
pts.

In class we showed in the continuous approximation that the longitudinal equations of motion about
the synchronous particle are:

dφ

ds
= −Aw

dw

ds
= B(cosφ− cosφs,n)

w =
∆W

mc2
; A =

2π

λrf(γsβs)3
; B =

qE0T

mc2

assuming that γsβs varies slowly.

a) 10 pts: Find a Hamiltonian, H(φ, pφ), and conjugate ’momentum’ variable, pφ, such that the
equations of motion are given by:

dφ

ds
=
∂H

∂pφ
dpφ
ds

= −∂H
∂φ

Compare H to Hφ constructed in class.

b) 10 pts: Consider a distribution of particles evolving according to H in longitudinal phase-
space. Neglect particle-particle interactions (not in formulation). A smooth distribution
f(φ, pφ, s) ≥ 0 must satisfy:

∂f

∂s
+

∂

∂φ

(
f

dφ

ds

)
+

∂

∂pφ

(
f

d pφ
ds

)
= 0

since ’probability’ must flow somewhere. Show for non-linear longitudinal dynamics that:

df

ds

∣∣∣
particle trajectory

= 0
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Explain how this implies the total phase-space weight of the particles at a given density is
constant in the non-linear evolution. You may want to read about Liouville’s Theorem of
non-interacting particles in statistical mechanics if you need help.

c) 5 pts: If γsβs 6= constant, but varies slowly to maintain validity of the continuous formulation,
will H be constant? Why?

Keep all other factors T , φs, E0, λrf constant in s.

d) 5 pts: If the phase excursion is small (φ = φs + ∆φ where ∆φ is small with γsβs slowly
varying, derive a second order differential equation for the evolution of ∆φ. Do you expect
this equation to have a conserved longitudinal emittance? Why?

For this part, start from the continuous formulation with:

(γsβs)
3 d

ds
(φ− φs) = −2π

λrf

∆W

mc2

d∆W

ds
= qE0T (cosφ− cosφs)

Take λrf, E0, T , φs, to be constants. Write results using:

k2s =
2π

λrf

qE0T sin(−φs)
γ3sβ

3
smc
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Problem 3

P022 RF Phase Choice 10 pts.

In class, for the continuous model with qE0 > 0, we showed that where:

qEz(r = 0, z = 0, t = 0) = qE0 cos(φs) > 0 =⇒ accel

qEz(r = 0, z = 0, t = 0) = qE0 cos(φs) < 0 =⇒ deccel

and where

V (φ) = B[sin(φ)− φ cos(ψs)]; B =
qE0T

mc2
> 0

has concavity

d2V (φ)

dφ2

∣∣∣
φ=φs

> 0 =⇒ stability (focusing)

d2V (φ)

dφ2

∣∣∣
φ=φs

< 0 =⇒ instability (defocusing)

locally about the synchronous particle.
Use these to argue:

a) 2 pts: Range of φs for deceleration and focusing?

b) 2 pts: Range of φs for acceleration and defocusing?

c) 2 pts: Separately from parts a) and b), what value of φs will provide maximum longitudinal
focusing and acceptance using the continuous model? Why? Does this allow acceleration?
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d) 4 pts: ”Fast Rotation” Consider a bunch with weak or no acceleration in the continuous model
filling a small phase-width of the bucket. If E0 suddenly jumps, argue what will happen to
the longitudinal phase-space ellipse. At what propagation distance will the bunch have the
shortest phase width? Use the synchrotron wavenumber, ks, to estimate the distance. What
value of φs should be chosen to minimize the distance?

Problem 4

P042 NSLS II Longitudinal Parameters 50 pts.

NSLS II adopts a double bent achromat, DBA, lattice.

Parameters Values

Energy [GeV] 3.0

Circumference [m] 780

Number of dipoles 60

Dipole field [T] 0.4

Beam current [A] 0.5

RF frequency [MHz] 499.68

Harmonic number 1320

From the design parameters of NSLS II shown in the table above, calculate the following:

1) Calculate the axial length of the dipoles assuming all dipoles are the same.

2) In the DBA lattice, the dispersion, D, and dispersion slope, D′, are zero at one end of the
dipoles and non-zero at the other end. Find the dispersion inside the dipole magnet.

3) Calculate the energy loss due to the dipole field.

4) If the synchronous accelerating phase of the RF cavity is π/6, what is the minimum RF
voltage required? How much power is required?

5) The actual RF voltage is about 3 MV. Using this value, find the longitudinal tune of NSLC
II.

6) What is the critical radiation frequency of the dipole radiation?

7) Find the partition number, D, due to the synchrotron radiation in the dipole.
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8) Find the longitudinal damping rate, αE , and compare with the period of longitudinal oscil-
lations.

9) Find the equilibrium energy spread in NSLS II.
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