USPAS Accelerator Physics Problem Set 8-60 pts.

S. M. Lund, Y. Hao
Graders: C. Richard and C. Y. Wong

June 13, 2018

Problem 1

P024 Pillbox Cavitiy 30 pts.

Consider a pillbox cavity of radius $r_{c}=75 / 2 \mathrm{~cm}$ and axial length $\ell=50 \mathrm{~cm}$
a) 2 pts: What is the resonant frequency of the fundamental TM_{010} mode?
b) 2 pts: What is the resonant frequency of the next highest TM_{011} mode?
c) 6 pts: What value of β will have a transit-time factor, $T=1 / 2$ for this cavity operating at the fundamental frequency? Use the single-gap transit-time factor derived in class. Feel free to use a numerical root finder or estimate from a plot. β should be greater than this value for $T>1 / 2$.
d) 5 pts: Explain how the cavity operating at the fundamental frequency might be modified to increase the acceleration efficiency [larger T for given β found in part (c]. Qualitative only.
e) 15 pts: For the cavity operating at the fundamental frequency, assume an RF voltage $V_{0}=$ $E_{0} \ell=500 \mathrm{kV}$ and assume the cavity is made of copper with conductivity of $1 / \sigma=1.7 \times$ $10^{-8} \Omega \mathrm{~m}$, calculate:

$$
\begin{aligned}
& U=\text { stored EM energy } \\
& R_{\text {surf }}=\text { RF surface resistance } \\
& \left\langle P_{\text {loss }}\right\rangle_{\mathrm{rf}}=\text { average power lost over RF period } \\
& Q=\text { Quality factor } \\
& R_{s}=\text { shunt impedance }
\end{aligned}
$$

Use formulas derived in the class notes.

Problem 2

P043 Chicane 10 pts.

A "chicane" consists of four identical sector dipoles as shown above. Each dipole has axial length $L_{\text {mag }}$ and bends the beam by angle θ_{B}. The drift space between two adjacent dipoles is $L_{\text {drift }}$. Show for the chicane lattice that:

$$
R_{56}=\frac{\mathrm{d} z}{\mathrm{~d} \delta} \approx-2 \theta_{B}^{2}\left(L_{\mathrm{drift}}+\frac{2}{3} L_{\mathrm{mag}}\right)
$$

Problem 3

P044 LCLS Parameters 20 pts.

Consider the parameters of LCLS:

Parameters	Values
Beam energy	14.35 GeV
Peak current	3500 A
Pulse length	230 fs
FEL parameter	$5 \times 10^{-} 4$
RMS angular divergence	$1.7 \mu \mathrm{rad}$
Undulator wavelength	3 cm
Undulator parameters K	3.7

Calculate the following:

1) Radiation wavelength, λ_{r}.
2) Bunch change of each electron bunch.
3) Approximate number of electrons in one micro-bunch.
4) 1-D gain length, $L_{1 D}$.
5) Approximate undulator axial length.
6) Approximate peak radiation power.
7) The width of the frequency spectrum at saturation.
