USPAS Accelerator Physics Problem Set 8 - 60 pts.

S. M. Lund, Y. Hao Graders: C. Richard and C. Y. Wong

June 13, 2018

Problem 1

P024 Pillbox Cavitiy 30 pts.

Consider a pillbox cavity of radius $r_c = 75/2$ cm and axial length $\ell = 50$ cm

- a) 2 pts: What is the resonant frequency of the fundamental TM_{010} mode?
- b) 2 pts: What is the resonant frequency of the next highest TM_{011} mode?
- c) 6 pts: What value of β will have a transit-time factor, T = 1/2 for this cavity operating at the fundamental frequency? Use the single-gap transit-time factor derived in class. Feel free to use a numerical root finder or estimate from a plot. β should be greater than this value for T > 1/2.
- d) 5 pts: Explain how the cavity operating at the fundamental frequency might be modified to increase the acceleration efficiency [larger T for given β found in part (c]. Qualitative only.
- e) 15 pts: For the cavity operating at the fundamental frequency, assume an RF voltage $V_0 = E_0 \ell = 500$ kV and assume the cavity is made of copper with conductivity of $1/\sigma = 1.7 \times 10^{-8} \Omega m$, calculate:

U = stored EM energy $R_{\text{surf}} = \text{RF surface resistance}$ $\langle P_{\text{loss}} \rangle_{\text{rf}} = \text{average power lost over RF period}$ Q = Quality factor $R_s = \text{shunt impedance}$

Use formulas derived in the class notes.

Problem 2

P043 Chicane 10 pts.

A "chicane" consists of four identical sector dipoles as shown above. Each dipole has axial length L_{mag} and bends the beam by angle θ_B . The drift space between two adjacent dipoles is L_{drift} . Show for the chicane lattice that:

$$R_{56} = \frac{\mathrm{d}z}{\mathrm{d}\delta} \approx -2\theta_B^2 \left(L_{\mathrm{drift}} + \frac{2}{3}L_{\mathrm{mag}} \right)$$

Problem 3

P044 LCLS Parameters 20 pts.

Consider the parameters of LCLS:

Parameters	Values
Beam energy	$14.35~{\rm GeV}$
Peak current	3500 A
Pulse length	230 fs
FEL parameter	5×10^{-4}
RMS angular divergence	$1.7 \ \mu rad$
Undulator wavelength	$3 \mathrm{~cm}$
Undulator parameters K	3.7

Calculate the following:

- 1) Radiation wavelength, λ_r .
- 2) Bunch change of each electron bunch.

- 3) Approximate number of electrons in one micro-bunch.
- 4) 1-D gain length, L_{1D} .
- 5) Approximate undulator axial length.
- 6) Approximate peak radiation power.
- 7) The width of the frequency spectrum at saturation.