John Barnard Steven Lund USPAS June 13-24, 2011 Melville, NY

Injectors and longitudinal physics -- I

- 1. Fluid equations
- 2. Child-Langmuir Law (Reiser 2.5.2, Appendix 1)
- 3. Pierce electrodes
- 4. Transients in injectors
- 5. Injector choices

START WITH VLASON ÉQUATION FOR £ (×, p, t)

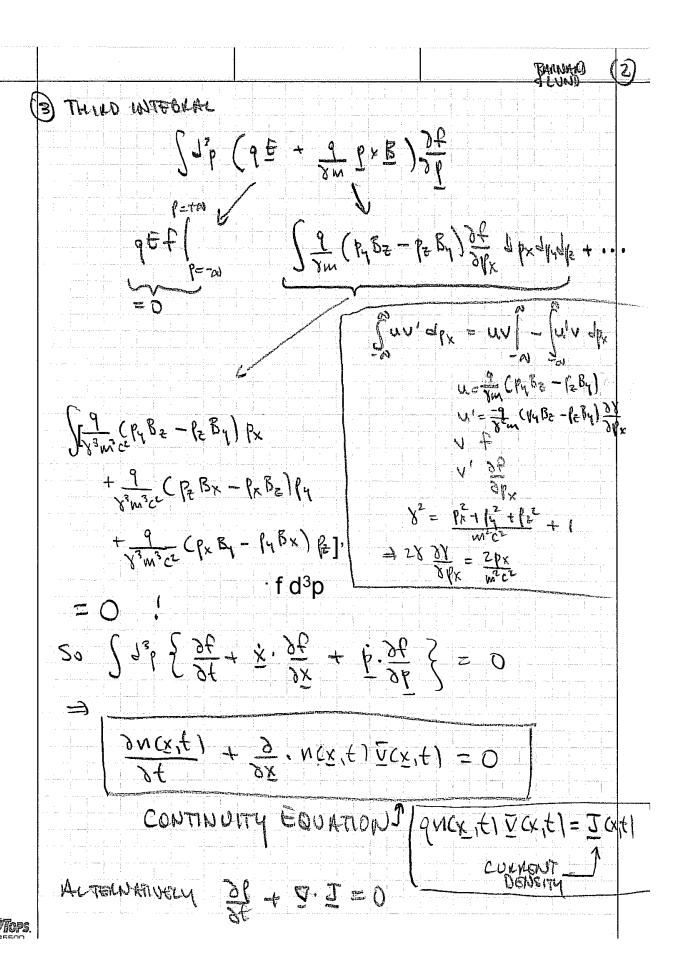
Here $\dot{x} = \frac{1}{3t} = \frac{1}{x}$

$$\dot{P} = \frac{dP}{dt} = Q\left(E(x_1,t) + \frac{P}{XM} \times B(x_1,t)\right)$$

INTEGRATE OVER MOMENTUM AND MULTIPLY BY YOWER OF P

a) CONTINUITY EQUATION

$$\int \eta_{3}^{5} \int \frac{\partial f}{\partial t} + \frac{1}{x} \cdot \frac{9x}{3} + \left(d \in Cx \cdot f \right) + \frac{x^{m}}{3} \times B(x^{*} \cdot f) \right) \frac{\partial f}{\partial t} \right\} = 0$$


DEFINE NCK, t) = \f(x,p,t) J3p

O FILST INTEGRAL

$$\int g_{s}^{2} \int \frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} \int f g_{s}^{2} = \frac{\partial f}{\partial u} (\kappa^{2} + 1)$$

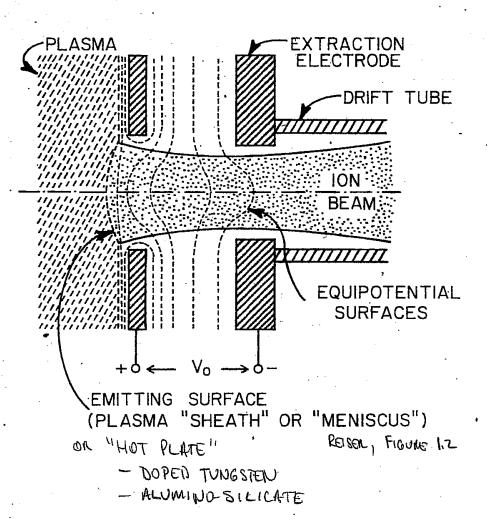
(3) SECOND INTEGLAC

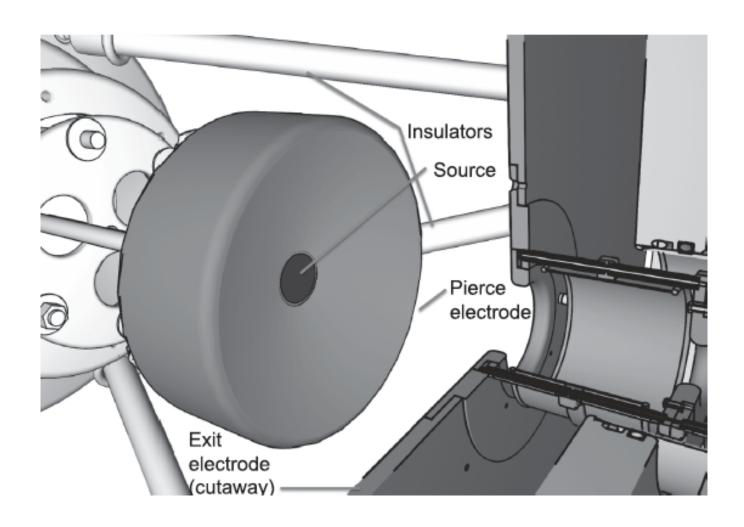
 $(\overline{})$

4 BULDHED 6) MOMENTUM EQUATION (FOR SIMPLICITY: ASSOME NON-RECATIONSTIC) $\dot{\underline{p}} = q(\underline{e}(x,t) + \underline{P} \times \underline{B}(x,t))$ MUTIVLY BY & & INTEGRATE OVER MOMENTUM (13p) $\int 7_{5}^{6} b \left\{ \times \frac{9f}{9f} + \times \times \times \frac{9x}{9f} + \times (4 = + \frac{m}{b} \times b) \cdot \frac{9b}{9f} \right\} = 0$ DEFINE P = m (3° (x-V)(x-V) + (x, P,t) (F = brezione = m [] x x x f - s m \(\overline{x} \in 1 \frac{1}{2} \range + m \overline{1} \overline{x} \overline{1} \frac{1}{2} \range \range + m \overline{1} \overline{1} \overline{1} \frac{1}{2} \range \range + m \overline{1} \overlin = m (13 b x x t - m n v v 1 FIRST INTEGLAL! 7936 x 24 = 36 936 x t = 3 NA SECONI INTEGRAL $\int \gamma_s b \times \dot{x} \cdot \dot{y}_t = \frac{3x}{5} \cdot \int \gamma_s b \times \dot{x} \times \dot{x}$ $= \frac{m}{1} \frac{9x}{9} \cdot \frac{1}{b} + \frac{9x}{9} \cdot N \sqrt{3} \sqrt{4}$ = \frac{\rightarrow{9x}}{9} \frac{5}{5} + \left(\frac{9x}{9}, \right) \times + \right(\frac{2x}{9\times}) \times + \right(\frac{2x}{9\times}) 3 THIRD INTEGRAC: 1 26 1 26 1 26 1 26 1 26 1 28 1 26 1 28 726 # (de +dxxB). 34 $= \frac{1}{1} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{1}{1} \int_{\mathbb{$

(3)

4 BULDHED 6) MOMENTUM EQUATION (FOR SIMPLICITY: ASSOME NON-RECATIONSTIC) $\dot{\underline{p}} = q(\underline{e}(x,t) + \underline{P} \times \underline{B}(x,t))$ MUTIVLY BY & & INTEGRATE OVER MOMENTUM (13p) $\int 7_{5}^{6} b \left\{ \times \frac{9f}{9f} + \times \times \times \frac{9x}{9f} + \times (4 = + \frac{m}{b} \times b) \cdot \frac{9b}{9f} \right\} = 0$ DEFINE P = m (3° (x-V)(x-V) + (x, P,t) (F = brezione = m [] x x x f - s m \(\overline{x} \in 1 \frac{1}{2} \range + m \overline{1} \overline{x} \overline{1} \frac{1}{2} \range \range + m \overline{1} \overline{1} \overline{1} \frac{1}{2} \range \range + m \overline{1} \overlin = m (13 b x x t - m n v v 1 FIRST INTEGLAL! 7936 x 24 = 36 936 x t = 3 NA SECONI INTEGRAL $\int \gamma_s b \times \dot{x} \cdot \dot{y}_t = \frac{3x}{5} \cdot \int \gamma_s b \times \dot{x} \times \dot{x}$ $= \frac{m}{1} \frac{9x}{9} \cdot \frac{1}{b} + \frac{9x}{9} \cdot N \sqrt{3} \sqrt{4}$ = \frac{\rightarrow{9x}}{9} \frac{5}{5} + \left(\frac{9x}{9}, \right) \times + \right(\frac{2x}{9\times}) \times + \right(\frac{2x}{9\times}) 3 THIRD INTEGRAC: 1 26 1 26 1 26 1 26 1 26 1 28 1 26 1 28 726 # (de +ofx x B). 34 $= \frac{1}{1} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{1}{1} \int_{\mathbb{$


(3)

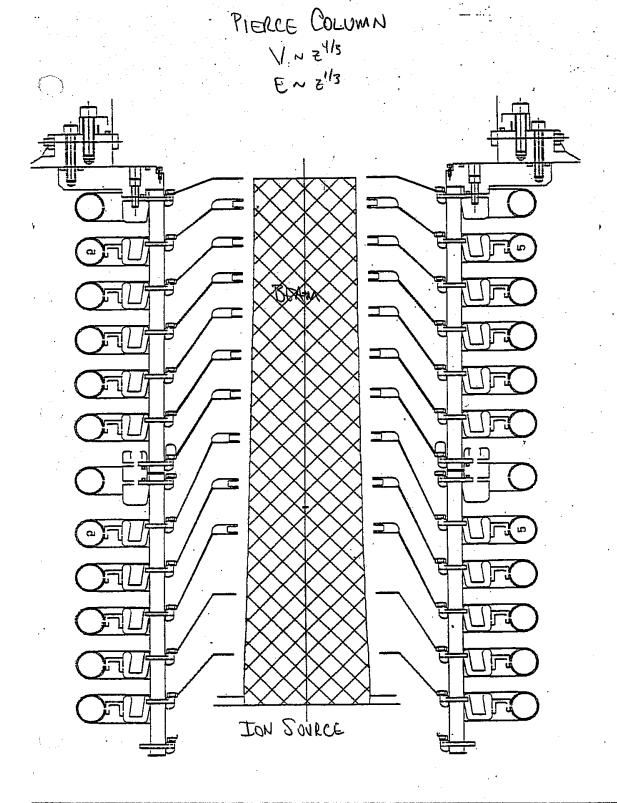

BANNAND (4) ADDING THE INTEGRACS TOGETHEX: $\frac{2f}{3} N \overline{\Lambda} + \left(\frac{9\overline{\lambda}}{3}, N \overline{\Lambda}\right) \overline{\Lambda} + N \overline{\Lambda} \cdot \frac{9\overline{\lambda}}{9\overline{\Lambda}} = N \overline{\Lambda} (\overline{E} + \overline{\Lambda} \times \overline{E}) - \overline{\mu} \frac{9\overline{\lambda}}{3} \overline{\xi}$ $n\frac{9f}{9\bar{\Lambda}} + \frac{9f}{9\bar{N}}\bar{\Lambda} + \left(\frac{3k}{9}\cdot N\bar{\Lambda}\right)\bar{\Lambda} + N\bar{\Lambda}\cdot\frac{9\bar{\Lambda}}{9\bar{\Lambda}} =$ BY CONTINUITY EQUATION pcxit) = mucxit) DIVIDING BY N: $\frac{gF}{g\bar{a}} + \bar{A} \cdot \frac{g\bar{x}}{g\bar{a}} = \frac{m}{d} (E + \Delta \times B) -$ CNON-NEUKTIVIAI() MOMENTUM EQUATION 1 $\frac{J\overline{V}}{J} = \frac{9}{M}(E + \overline{V} \times B) - \frac{1}{p} \frac{3}{NX} \cdot \frac{p}{2}$ (NOW-HELKINICIL)

 (\cdot)

Flops.



A mechanical drawing of a hot-plate diode used on the NDCX-1 experiment at LBNL. One quarter of the exit electrode is cut away for viewing the source geometry


	I CHILD-LANGMUIR EMISSION ASSUME EMISSION IS PLANAR I-D: \$=0.
### ##################################	$\frac{\partial v_{z}}{\partial t} + v_{z} \frac{\partial v_{z}}{\partial z} = 9 \frac{\partial b}{\partial z} \Rightarrow \frac{1}{2} m v_{z}^{2} = 9 \frac{b}{b}(z) (1)$
COS COST COST COST COST COST COST COST C	Continuity Edaktion $\frac{3\xi}{3\xi} + \frac{3}{9} = 0$ Continuity Edaktion $\frac{3\xi}{3\xi} + \frac{3}{9} = 0$ (3) (Note $\frac{1}{2} = -9$
	for time steady emission $pl = constant = J$ $\frac{J^2 \sqrt{1 - J}}{J^2} = \frac{J}{E_0} \left(\frac{Z_0 \sqrt{1 - J}}{M} \right)^{1/2}$
•	MULTIVUYING LY 20 AND INTEGRATING:
. · .	Assume $\frac{Q}{Q} = \frac{Jm'^{k}}{\epsilon_{0}(zq)''^{2}}z^{2}d'^{2} + const$ Assume $\frac{1}{Q} = 0$ at $z=0$ (Space-change Dimited
	$ \frac{d}{d} = 0 \text{ at } = 0 \implies \text{cmnt} = 0 $ $ \frac{d}{d} = \left(\frac{4J}{2}\right)^{1/2} \left(\frac{d}{d}\right)^{1/4} $ $ \frac{d}{d} = \left(\frac{2d}{2}\right)^{1/2} \left(\frac{d}{d}\right)^{1/4} $
	$\frac{3}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dt = \left(\frac{\varepsilon_0}{4}\right)^{\frac{\pi}{2}} \left(\frac{\pi}{2}\right)^{\frac{\pi}{2}} \left(\frac{\pi}{2}\right)^{\frac{\pi}{2}} \left(\frac{\varepsilon_0}{2}\right)^{\frac{\pi}{2}} \left(\frac{\varepsilon_0}{2}\right)^{\frac{\pi}{$

or
$$J = \frac{4}{9} \varepsilon_0 \left(\frac{2q}{m}\right)^{1/2} \frac{V_0^{3/2}}{J^2}$$

NOTE THAT IF WE MULTIFLY I BY THE BEAM AND IT V_b^2 , AND DIVIDE BY $V = \left(\frac{2qV_0}{m}\right)^{n/L}$

$$Q = \frac{1}{q} \left(\frac{\eta_2^2}{d^2} \right)$$
 or or a function of z : $Q(z) = \frac{1}{q} \left(\frac{\eta_2^2}{d^2} \right)$

DERCUEN DENTHE PARAXIME FOUNTON FOR PARTICLES IN AXISYMMETIC SYSTEMS:

ENVEROLE EDUNTION FOR YKISYMMETRIC BEHN

$$N_{11}^{p} + \frac{l_{2}\lambda}{l_{1}A_{1}^{p}} + \frac{5l_{2}\lambda}{J_{11}} N^{p} + \left(\frac{5N^{p}c}{m^{c}}\right)_{z}N^{p} - \frac{Q_{1}m^{b}c}{c^{2}}_{z}N^{2}_{z} - \frac{N_{2}^{p}}{c^{2}} - \frac{N_{2}^{p}}{c} = 0$$

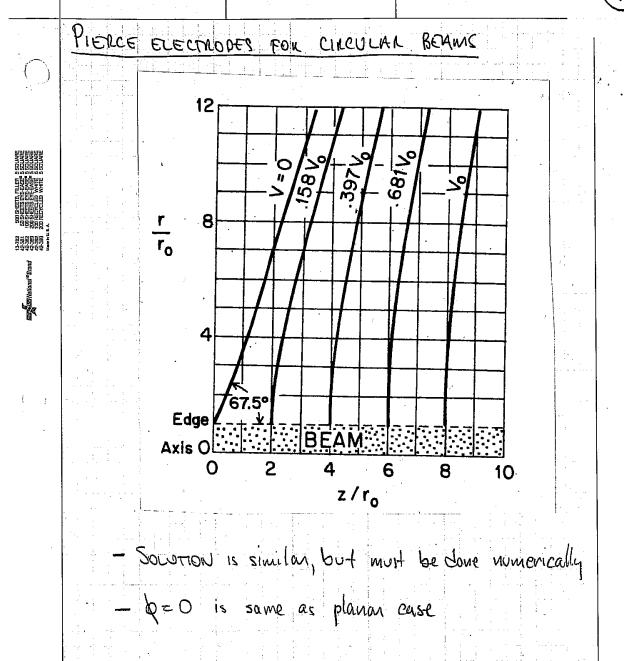
	RETURNING TO PALAXIAL ENVELORE EQUATION:
	(fo beel) 1/6" + 1/4 1/6 + [1/6" + 1/6"] 1/6 - 0 = 0
EETS	Fo N = t N = 0
и 42-182 100 SHEETE Made in U.S.A.	Te = 0 22/3
i National ^o Bra	$\sqrt{1} = \frac{1}{2} C z^{1/2}$ $\sqrt{1} = \frac{1}{2} C z^{1/3}$
	$\Rightarrow \left[\frac{1}{2}\frac{\beta^{1}}{\beta^{2}} + \frac{1}{2}\frac{\beta^{0}}{\beta^{0}}\right]v_{6}^{2} = Q$
(₁)	
	$\Rightarrow Q(e) = \frac{1}{2} \frac{N^2}{2}$
	So Child-Langmuir flow satisfier the
,	PALAXIAL ENVELOIS EQUATION FOR A CONSTANT BEAM LABIUL (AL IT SHOULD!)
()	

CHOOSE
$$V(z) = \left(\frac{T}{\chi}\right)^{2/3} (x + iy)^{4/3}$$

$$Q = \operatorname{Re}\left[\left(\frac{J}{\chi}\right)^{2/3}(x+iy)^{4/3}\right] \qquad \text{Let } x+iy$$

$$= \left(\frac{J}{\chi}\right)^{2/3}(x^2+y^2)^{2/3}\operatorname{Re}\left[\exp\left[i\frac{y}{3}\tan^{3}\left(\frac{y}{x}\right)\right]\right]$$

$$\varphi(x,y) = \left(\frac{\pi}{\chi}\right)^{2/3} \left(\chi^{2} + y^{2}\right)^{2/3} \cos\left[\frac{y}{3} + \tan^{-1}\left(\frac{y}{\chi}\right)\right]$$

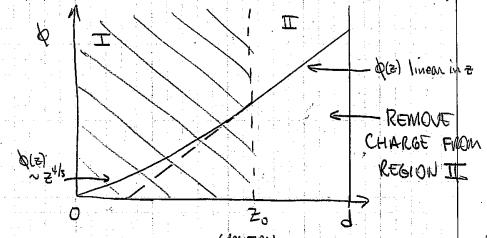

Note that
$$\phi(x,y) = \phi(x,-y) \Rightarrow \frac{\partial \phi}{\partial y}(x,y=0) = 0$$

$$\Rightarrow 0 = \cos\left(\frac{4}{3} + m^{-1}\left(\frac{7}{x}\right)\right)$$

$$\Rightarrow + \sin'\left(\frac{y}{x}\right) = \frac{3}{4}\left(\frac{\pi}{2}\right) = 67.5^{\circ}$$

FOR A GENERAL EQUIVOTENTIAL PASSING THROUGH XO:

$$X_o^{4/3} = (\chi^2 + \gamma^2)^{2/3} \cos \left[\frac{4}{3} \tan^{-1}\left(\frac{4}{x}\right)\right]$$


DURING TURN-ON THERE IS NO STACE CHARGEIN FRONT OF

BEAM, SO FIELDS MAY NOT BE GIVEN BY CHILD-LANGUUR

LAND.

CONTLING.

SOLUTION: ADJUST VOLTAGE ON DIODE SUCH THAT C-L LEIETD OCCURS EVERYWHERE THERE IS BERHIM.

$$= \sqrt{3} \left[\frac{4}{3} \left(\frac{20}{3} \right)^{1/3} - \frac{1}{3} \left(\frac{20}{3} \right)^{1/3} \right]$$

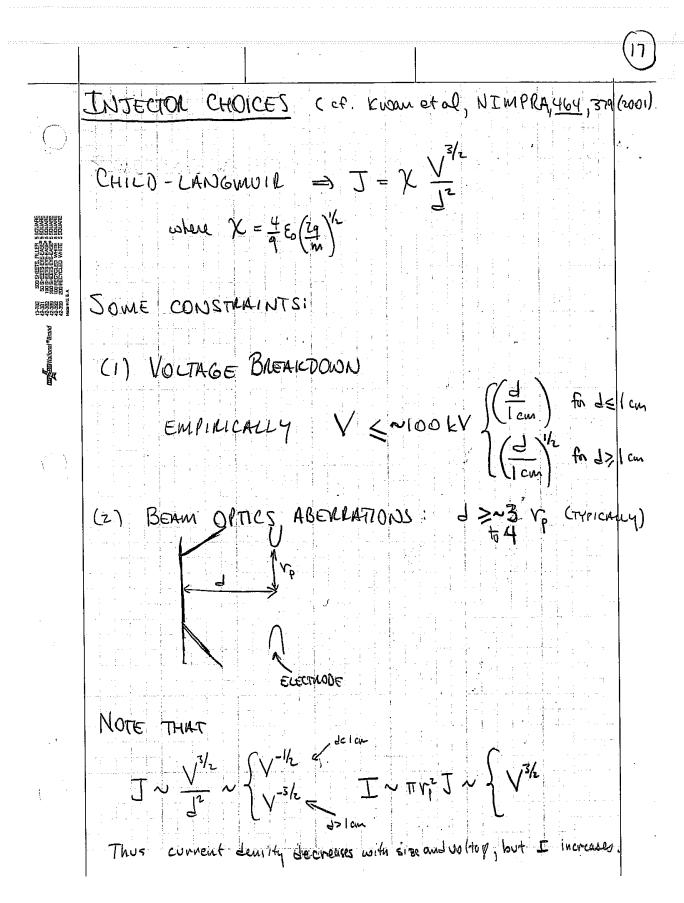
(MOTE VO IS THE DESIMED STEADY STATE VOLTAGE ACKOST DIODE)

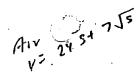
So IF WE KNOW 20(F) WE CAN DETERMINE \$(+).

 $\frac{1}{7}$ m $\dot{\xi}_{o}^{z} = 9\sqrt{o}\left(\frac{\xi_{o}}{4}\right)^{1/3}$

= (Zq Vo) 1/2/3 = (Zq Vo) 1/2/3

 $\Rightarrow 3 = \frac{1}{3} = \left(\frac{29 V_0}{m}\right)^{1/2} = \frac{1}{3} = \frac{3 (z_0 d^2)^{1/3}}{(29 V_0)^{1/2}}$


(since by constituent of) HEAD OF DEAM THAUELS Zo = $\left(\frac{29\sqrt{6}}{M}\right)^{1/2}\left(\frac{26}{L}\right)^{2/3}$ AT CHILD-LANGMUIL VELOCITY LIKE ALL YAKTICLES),


Let $\Lambda = \frac{3d}{(\frac{2qV_0}{m})^{1/2}} = \text{transit time across}$

 $\Rightarrow \frac{t}{r} = \left(\frac{z_0}{J}\right)^{1/3}$

 $\sqrt[5]{(2)} \approx \sqrt[4]{\left(\frac{4}{3}\left(\frac{20}{J}\right)^{1/3} - \frac{1}{3}\left(\frac{20}{J}\right)^{4/3}\right]}$

 $\int \int (J,t) = \int V_0 \left[\frac{4}{3} \left(\frac{t}{T} \right) - \frac{1}{3} \left(\frac{t}{T} \right)^q \right] \qquad \text{for } 0 < t < \Lambda$

From A. Fulters:

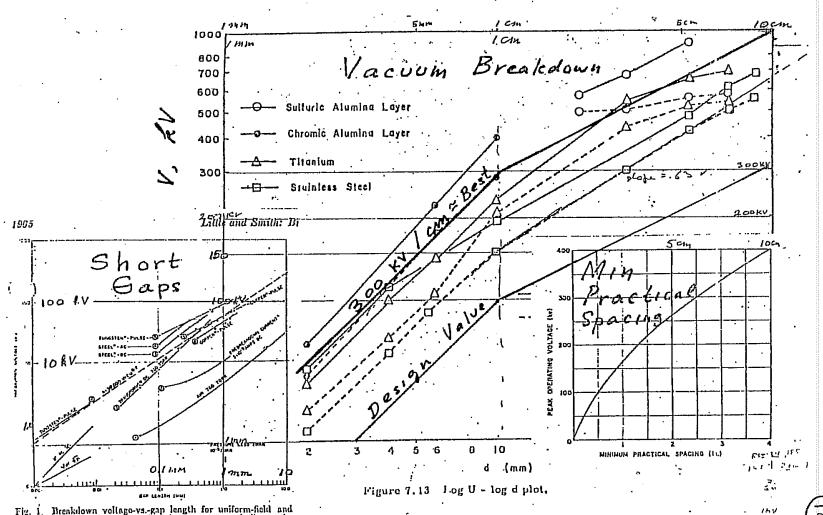
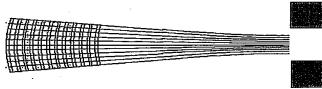


Fig. 1. Breakdown voltago-vs.-gap length for uniform-field and meat-uniform-field geometry. Numbers on curves indicate the

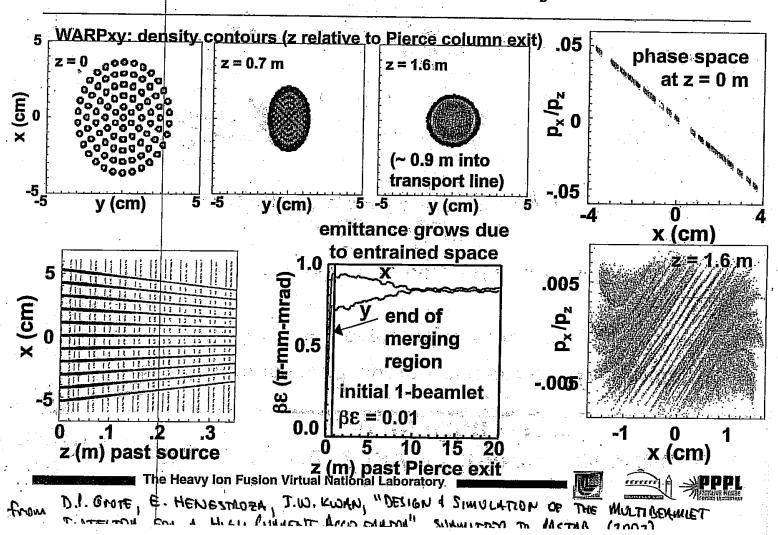

MULTIPLE BEHMLET INJECTORS CAN HAVE HIGHER CURRENT DENCITY DECLEASING SIZE OF INJECTOR

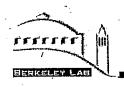
traditional design using single large diameter source

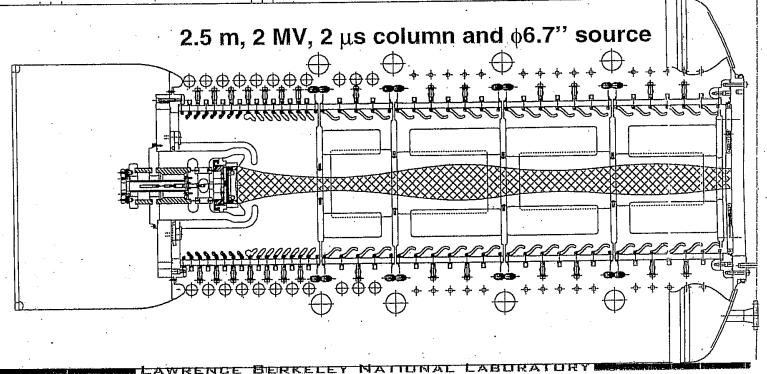
Each beamlet carries higher current density; But merging beamlets increases thermal spread.

Child-Langmuir $J_{CL} \propto \frac{V^{3/2}}{d^2}$ Breakdown limit $V \propto d^{1.0 \, to \, 0.5}$

advanced
design using
multiple
beamlets


 $J \propto V^{-1/2} \, to \, -5/2 \propto d^{-1/2} \, to \, -5/4$


Merge and match beamlets into an ESQ channel


Simulations of merging-beamlet injector

0.8 Ampere, 2 MV K+ Injector produced a λ=0.25μC/m beam

Electrostatic Quadrupole Accelerator for simultaneous focusing and acceleration of ion beams to 2 MV.

	SCALING OF BLIGHTNESS IN INTECTORS
en en de Tenense	$E_{N} = 4 e^{-\frac{1}{2} (x^{2})^{4}} < x^{2} >^{4} < x^{2}$
	= 12 16 VKT
42-182 100 SHEETS Made in U.S.A.	$B = T = \pi T \sim T$ $C_{0}^{2} + C_{0}^{2} + C_{0}^{2} = T$
National ^e Brand	⇒ FOR HIGH BRIGHTNESS & HIGH CURRENT MAY WISH TO ACCELERATE MANY BEAMLETS
	AND THEN MERGE TO FORM SINGLE BEAM.

MANY ISSUES NOT DISCUSSED HERE!

- Sources
- ELECTION THATTING
- CONVERGING BEAMS
- MATCHING TO AN ESQ (e.g.)
- man vt