John Barnard Steven Lund
 USPAS
 June 13-24, 2011
 Melville, NY

Injectors and longitudinal physics -- III

1. Longitudinal cooling from acceleration
2. Longitudinal instability
3. Bunch compression
4. Neuffer distribution

LONGitudinal CoQling

1. During injection betm undergoes Laxge congitupinal extansion
2. $T_{10}=T_{110}$ AT SOUNCE, BUT $T_{1} \neq T_{11}$ AFTER accelelation
3. Implications for beam stabluity and Emittance evolution
Consider I D piode:

AT END DE DRODE

$$
\begin{aligned}
& E_{0}=\frac{p_{z i}^{2}}{2 m} \\
& \Delta E_{10} \equiv \frac{\left\langle p_{z_{0}}^{2}\right\rangle}{2 m}=\frac{1}{2} k T_{1_{0}} \\
& E_{f}=q V_{0}+\frac{p_{z 0}^{2}}{2 m}=\frac{p_{z f}^{2}}{2 m} \\
& \Delta E_{l f}=\Delta E_{10} \neq \frac{1}{2} k T_{f} \\
& \operatorname{SINGE} E_{11}=\frac{p_{t}^{2}}{2 m} \Rightarrow \Delta E_{11}=\frac{2 p_{2} \Delta p_{t}}{2 m} \\
& \frac{\Delta E}{E}=\frac{2 \Delta p_{z}}{p_{z}} \\
& \frac{1}{2} k T_{f} \cong \frac{\Delta p_{z f}^{2}}{2 m}=\left(\frac{p_{z f} \Delta E_{f}}{2 E_{f}}\right)^{2} \frac{1}{2 m}=\frac{\Delta E_{f}^{2}}{4 E_{f}}=\frac{k T_{0}}{2}\left[\frac{1}{2} \frac{k T_{0}}{q V_{v}}\right] \\
& \Rightarrow k T_{f}=\frac{1}{2} k T_{0}\left[\frac{k T_{0}}{q V_{0}}\right]
\end{aligned}
$$

AT SOURCE

$$
k_{c} T_{f}=\frac{1}{2} k T_{0}\left[\frac{k T_{0}}{q V_{0}}\right]
$$

EXAMILE $1000^{\circ} \mathrm{C} \Leftrightarrow 0.1 \mathrm{eV}$
Fon $V_{0}=1 \mathrm{MeV}$

$$
k T_{0}=0.1 \mathrm{eV}
$$

$k T_{f}=5 . \times 10^{-9} \mathrm{eV}$
How cAN KTf <C ETO BUT $\Delta E_{f}=\Delta E_{0}$?

AREA is consexvets
(Pulse dheation STAMS THE SAME.)

(Bunch length oxows)
Arca is con staven
$\frac{\Delta p_{2}}{m} \Delta t$
$\frac{1}{2} \frac{\Delta p_{z 0}^{2}}{m} \Delta t=\frac{1}{2} \Delta p_{z f}\left(\frac{p_{z f}}{m}\right) \Delta t$
$\Rightarrow \Delta p_{z f}=\frac{\Delta p_{z 0}^{2}}{p_{z f}}$

$$
\Rightarrow k T_{f}=\frac{1}{2} k T_{0}\left(\frac{k T_{0}}{9 V_{n}}\right)
$$

$-\quad$ CHANOE in NQ (tation)
Note: $\quad \overline{z^{\prime}} \equiv\left\langle\frac{d z}{d s}\right\rangle ; \quad s=v_{0} t$
Let $u=\left\langle\frac{d z}{d t}\right\rangle ; \quad$ then $u=v_{0} z^{\prime}$

- fluid velocity in comoving frame

So

$$
\frac{\partial \lambda}{\partial s}+\frac{\partial}{\partial z}\left(\lambda \bar{z}^{\prime}\right)=0 \quad \Rightarrow \frac{\partial \lambda}{\partial t}+\frac{\partial}{\partial z}(\lambda u)=0
$$

$$
\begin{aligned}
& q \frac{\partial z^{\prime}}{\partial s}+\frac{1}{z} \frac{\partial}{\partial z} \bar{z}^{\prime}+\frac{1}{\lambda} \frac{\partial}{\partial z}\left(\lambda \Delta z^{\prime 2}\right)=\overline{z^{\prime \prime}} \\
& \Rightarrow \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial z}+\frac{1}{\lambda} \frac{\partial}{\partial z}\left(\lambda\left[\left\langle v_{z}^{2}\right\rangle-u^{2}\right]\right)=\bar{z}
\end{aligned}
$$

Since $\beta_{z}=m \int_{-\infty}^{\infty} n\left[v_{z}^{2}-u^{2}\right] d v_{z}=$ whine $n=\frac{\lambda}{\pi r_{b}^{2}}$

$$
\Rightarrow \frac{\partial u}{\partial f}+u \frac{\partial u}{\partial z}+\frac{\pi r_{b}^{2}}{m \lambda} \frac{\partial}{\partial_{z}} p_{z}=\widetilde{z}
$$

$$
\text { where } \begin{aligned}
z & =\frac{d^{2} t}{d t^{2}} \\
& =\frac{E_{2}}{m}
\end{aligned}
$$

Model de- Impeandas (in long Wnuelongta regt)

ONE module of MANY, EACH SEPARATED by distance L

$$
\begin{aligned}
& I=C \frac{d \Delta V}{d t}+\frac{\Delta V}{R} \quad I=[C L] \frac{d \Delta V / L}{d t}+\frac{\Delta V / L}{R / L} \\
& E=-\frac{\Delta V}{L} \quad C^{+}=C L \quad R^{*}=\frac{R}{L}
\end{aligned}
$$

LET $I=I_{0}+I_{1} e^{-i \omega t} \quad E=E_{0}+E_{1} e^{-i \omega t}$

$$
\begin{aligned}
I_{1} & =i \omega C^{+} E_{1}-\frac{E_{1}}{R^{*}} \\
\Rightarrow E_{1} & =\frac{-R^{*}}{1-i \omega C^{+} R^{*}} I_{1} \quad z^{*} \equiv-\frac{E_{1}}{I_{1}}=\frac{R^{*}}{1-i \omega C^{+} R^{*}}
\end{aligned}
$$

Returning to the id fluid equations

$$
\frac{\partial \lambda}{\partial t}+\frac{\partial}{\partial z} \lambda v=0 \quad \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial z}=\frac{-q g}{4 \pi \varepsilon_{0} m} \frac{\partial \lambda}{\partial z}+\frac{q E}{m}
$$

Let $\lambda=\lambda_{0}+\lambda_{1} \exp [i(k z-\omega t)]$

$$
u=v_{0}+u_{1} \operatorname{exj}\left[i\left(k_{z}-\omega t\right)\right]
$$

Continuous limit:

$$
\begin{aligned}
& R^{*}=R / L \quad \text { Rourtance pero unit Qength } \\
& C t=C L \quad C^{-1} \text { per unist asugth } \\
& E=\frac{\Delta V}{b} \\
& \begin{array}{c}
\text { Aurager clectuic } \\
\text { puelo }
\end{array}
\end{aligned}
$$

The determinant of the hove mate must vanish:

$$
\begin{aligned}
& \left(\omega-k v_{0}\right)^{2}+\frac{L_{q}}{m} z^{k} \lambda_{0}\left(\omega-k v_{0}\right)-e_{5}^{2} \varepsilon^{2}+\frac{\underline{q}}{m} z^{*} \lambda_{0} v_{0} k=0 \\
& \left.\left(\omega-k v_{0}\right)^{2}-c_{s}^{2} k^{2}+\frac{i q z^{*} \lambda_{0} \omega}{m}=0 \quad \text { (LAB } \quad \text { FUM } *\right)
\end{aligned}
$$

Using a Galilean tiansfomation, in the beam fame:

$$
\begin{aligned}
& \omega^{\prime}=\omega-k v_{0} \\
& k^{\prime}=k \\
& \omega^{\prime 2}-c_{5}^{2} k^{\prime 2}+\frac{\operatorname{qg} z^{*}\left(\omega^{\prime}\right) \lambda_{0}\left(\omega^{\prime}+k^{\prime} v_{0}\right)=0 \quad \text { denotes beam frame }}{m} \quad \text { (Berm }
\end{aligned}
$$

Note $z^{*}\left(\omega^{\prime}\right)=z^{*}\left(\omega=\omega^{\prime}+k^{\prime} v_{0}\right)$

Since $\lambda_{1}, E_{1} \alpha \exp \left[\left(\left(L_{0}-\omega^{t} t^{i}\right)\right]\right.$
Croosung' '" (ike woo) $\quad z^{\prime}=c_{r} t$ line of conit phaxl - Forward proparith $\left(I_{w} \omega^{\prime}<0\right) \Rightarrow \lambda_{1} \sim \operatorname{ox}\left[-\frac{c_{5} V_{0}}{2}\left(\frac{4 \pi \varepsilon_{0}}{9}\right) R^{*}\right] \Rightarrow$ DECMY IIN6 Perividotion
Choosinc "-"
$\left(\right.$ ke $\left.\omega^{\prime}<0\right) \geq z^{\prime}=-c_{t} t^{\prime}$ is line of comstant phase \Rightarrow BACCOARA P RORHCATING

$$
\Rightarrow \lambda_{1} \sim \exp [+\frac{c_{s} v_{0}}{2}\left(\frac{q \pi \varepsilon_{0}}{g}\right) R^{*} \not \underbrace{}_{G}]
$$

If lower condition holds has

$$
G \sim \sqrt{\lambda}
$$

$$
R^{*}=100 \Omega / m
$$

CHAPTER 4. SIMULATIONS WITH MODULE IMPEDANCE

For All
simulations
(p11-15)
$V_{0}=c / 3$

a)

Electrostatic Potential on Axis vs z
$I=3 \mathrm{kA}$
$l_{b}=10 \mathrm{~m}$
$\frac{r_{b}}{r_{p}}=0.4$
$k T_{1}=k T_{11}=10 \mathrm{kel}$

Electrostatic Potential on Axis vs z

Figure 4.2: A simulation with $100 \Omega / \mathrm{m}$ resistance shows moderate growth. (a) 6.6 $\mu \mathrm{s}$, (b) $10.9 \mu \mathrm{~s}$, (c) $17.5 \mu \mathrm{~s}$

$$
\begin{aligned}
& \text { from D.A. Callahan Miller, in. D) Theris } \\
& \text { U.C. Davis, } 1994
\end{aligned}
$$

$$
R^{*}=100 \Omega / \mathrm{m}
$$

65

Figure 4.3: The perturbation reflects off the beam end and decays as it travels forward. (a) $28.4 \mu \mathrm{~s}$, (b) $35.0 \mu \mathrm{~s}$, (c) $39.4 \mu \mathrm{~s}$

> from D.A. Callahan miller, Th. D. Thesis
> U.C. Davis, 1994
> (FORWHND WaVE)

$$
R^{*}=200 \Omega / \mathrm{m}
$$

Figure 4.1: A simulation with $200 \Omega / \mathrm{m}$ resistance shows large amounts of growth. (a) $6.6 \mu \mathrm{~s}$, (b) $10.9 \mu \mathrm{~s}$, (c) $17.5 \mu \mathrm{~s}$

$$
\begin{aligned}
& \text { fom D.A.Callaham Miller, Ph. D. Thesis } \\
& \text { U.C. Davis, } 1994
\end{aligned}
$$

$$
\begin{aligned}
& \text { CASE II RESISTiVE + CApACITIVE IMpEDANCE } \\
& Z^{*}=\frac{R^{*}}{1-i \omega C^{+} R^{*}}=\frac{R^{*}+i \omega C^{+} R^{* 2}}{1+1 \omega^{2} C^{+2} R^{* 2}} \\
& \text { GOING BACK To shot } 7 \text { : } \\
& \text { IN LHE flense: } \\
& \left(\omega-k v_{0}\right)^{2}-c^{2} k^{2}+\frac{L q R^{*} \lambda_{0} \omega}{m\left(1+\omega^{2} c^{2} p^{* 2}\right)}-\frac{q \omega^{2} C+R^{*^{2}} \lambda_{0}}{m\left(1+\omega^{2} C^{2} p^{x^{2}}\right)}=0 \\
& \left(\omega-k v_{0}\right)^{2}-c_{1}^{2} k^{2}-\frac{4 \pi \varepsilon_{0}}{g} \frac{\omega^{2} C R^{* 2} c_{s}^{2}}{\left(1+\omega^{2} C^{2} R^{2}\right)}+\frac{14 \pi \varepsilon_{0} c^{2} R_{x}^{*} \omega}{g\left(1+\omega^{2} C^{2} R^{2}\right)}
\end{aligned}
$$

In BEAM FKAME:

$$
\left.w^{12}-c_{s}^{2} k^{2}-\frac{4 \pi \varepsilon_{0}}{g} \frac{\left(w^{\prime}+k^{\prime} v_{0}\right)^{2} C R^{k^{2}} c_{s}^{2}}{\left(1+\left(\omega^{\prime} \epsilon k^{2} v_{0}\right)^{2} C^{2} R^{2}\right.}\right)+\frac{\left(4 \bar{m}_{0} c_{c}^{2} R_{x}^{2}\left(w^{\prime}+c^{c} v_{0}\right)\right.}{g\left(1+w^{2} C^{2} R^{* 2}\right)}
$$

So if one take limit $C \rightarrow \infty$ the final two terms tend to zero. Thus Capacitance has reduced the instability growth rate.
$\omega^{\prime 2}-c_{s}^{2} k^{\prime 2}-\frac{2 \Gamma_{R}\left(c_{s} / v_{0}\right)\left(\omega^{\prime}+k^{\prime} v_{0}\right)^{2} C^{\dagger} R^{*}}{\left(1+\left(\omega^{\prime}+k^{\prime} v_{0}\right)^{2} C^{\dagger 2} R^{* 2}\right)}+\frac{2 \Gamma_{R}\left(c_{s} / v_{0}\right)\left(\omega^{\prime}+k^{\prime} v_{0}\right)}{\left(1+\left(\omega^{\prime}+k^{\prime} v_{0}\right)^{2} C^{\dagger 2} R^{* 2}\right)}=0$
For $2\left(\mathrm{c}_{\mathrm{s}} / \mathrm{v}_{0}\right) \Gamma_{\mathrm{R}} \mathrm{R}^{*} \mathrm{C}^{\dagger} \ll 1$:

$$
\begin{align*}
\times & \left(\cos \left[\frac{1}{2} \tan ^{-1}\left(\frac{2 \Gamma_{R}}{c_{s} k^{\prime}\left(1+\left(k^{\prime} v_{0} R^{*} C^{\dagger}\right)^{2}\right)}\right)\right]\right. \tag{B}\\
& \left.-i \sin \left[\frac{1}{2} \tan ^{-1}\left(\frac{2 \Gamma_{R}}{c_{s} k^{\prime}\left(1+\left(k^{\prime} v_{0} R^{*} C^{\dagger}\right)^{2}\right)}\right)\right]\right)
\end{align*}
$$

$$
\begin{equation*}
\omega^{\prime} \simeq \pm c_{s} k^{\prime} \mp i \frac{\Gamma_{R}}{1+\left(k^{\prime} v_{0} R^{*} C^{\dagger}\right)^{2}} \quad \text { for } \frac{2 \Gamma_{R}}{c_{s} k^{\prime}\left(1+\left(k^{\prime} v_{0} R^{*} C^{\dagger}\right)^{2}\right)} \ll 1 \tag{C}
\end{equation*}
$$

Logarithmic Gain G of the longitudinal instability as a function of perturbation wavenumber k, for $\mathrm{R}=100 / \mathrm{m}, \mathrm{C}^{\dagger}=0$ (upper curves) and $\mathrm{C}^{\dagger}=2 \times 10^{-10} \mathrm{~F}-\mathrm{m}$ (lower curves), after a growth time corresponding to $I_{\mathrm{b}} / \mathrm{c}_{\mathrm{s}}$, where $\mathrm{I}_{\mathrm{b}}=10 \mathrm{~m}$ and $\mathrm{cs}=4.9 \times 10^{5} \mathrm{~m}$

Figure 4.6: When capacitance is added to the system, a larger perturbation is launched, but little growth occurs (a) $6.6 \mu \mathrm{~s}$, (b) $10.9 \mu \mathrm{~s}$, (c) $17.5 \mu \mathrm{~s}$

> from D.A.Callahan Miller, Ph. D. Thesis, U.C. Davis, 1994

Summary de Lasoituninay Instadllity
"Resistive Wall" or "Long itudinli" Instablgity HAS POTENTIAL TO DEGRLADE LONGITUDINAL EMITTANCF in HIGH COKKENT ACCELELATORS.

However, cavacitance feig. From Accelontins. GHIS) DECREASES GROWTH CAN MITIGATG INSThisiuty,

NOT Discussen:

1. LODGITUDINAC TEMU OMATOLE DIMAR INSTABILLTH (C,f - RISEX 6.3.3)
2. FEEO BACK HAS BEEN MOVOIED TO CONTLOL InSTHDRIM If NEEDED

Duft Comilession

Objects:
Alply a head-to-tail velocity that to increaie curdent by decreasing fulse iudretion During compresion "earls" the not requireo

AT END OF DAFT COMPREISION, VELOCIMM "TILT" SHOULD be minimized, so tent chromitic ADERLATONS IN FINAL FOCUS ALE MIUIMIZED.

$$
\begin{array}{ll}
\frac{\partial \lambda}{\partial t}+\frac{\partial}{\partial z} \lambda v=0 & \text { CONTINUITY EqUATION } \\
\frac{\partial v}{\partial t}+v \frac{\partial v}{\partial z}=\frac{-q g}{m 4 \pi \epsilon_{0}} \frac{\partial \lambda}{\partial z} & \text { MQMENTUM EquATION }
\end{array}
$$

$$
\begin{aligned}
& \text { Let } \quad \lambda=\lambda_{0}(t)\left(1-\frac{4 z^{2}}{l^{2}(t)}\right) \\
& V=-\Delta V(t) \frac{z}{l(t)} \quad \leftarrow \begin{array}{c}
\text { LINEAR VELOCItY } \\
\text { PROFILE }
\end{array}
\end{aligned}
$$

(1) Mass conservation:

$$
\begin{aligned}
Q_{c}=\int_{-l / 2}^{l / 2} \lambda d z=\lambda_{0} & \int_{-\frac{l}{2}}^{l / L}\left(1-\frac{4 z^{2}}{l^{2}}\right) d z=\frac{2}{3} \lambda_{0} l= \\
& (\text { constant } \\
& \begin{array}{l}
\lambda_{0}=\lambda_{0}(t) \\
l=l(t))
\end{array}
\end{aligned}
$$

calculating Partial Denivativet:

$$
\begin{aligned}
& \frac{\partial \lambda}{\partial t}=\dot{\lambda}_{0}\left(1-\frac{4 z^{2}}{l^{2}}\right)+2 \lambda_{0}\left(\frac{4 z^{2}}{l^{3}}\right) \dot{l} \\
& \frac{\partial \lambda}{\partial z}=\frac{-P z}{\ell^{2}} \lambda_{0} \\
& \frac{\partial V}{\partial t}=-\Delta \dot{V}\left(\frac{z}{l}\right)+\frac{\Delta V z}{l^{2}} \dot{l} \\
& \text { FROM } \Delta V \text { dicinition of } \\
& \Delta \mathrm{Y}=-\dot{l}
\end{aligned}
$$

$$
\frac{\partial V}{\partial z}=-\frac{\Delta V}{l}
$$

(2) CONTINVITY EQUATION $\Rightarrow\left\{\begin{array}{c}\frac{8 z^{2} \lambda_{0}}{l^{3}}(\Delta v+\dot{\ell})=0 \\ \left(1-\frac{4 z^{2}}{l^{2}}\right)\left(\dot{\lambda}_{0}-\frac{\Delta V \lambda_{0}}{l}\right)=0\end{array}\right.$
(3) MOMENTUM EQURTION $\Rightarrow\left(\frac{z}{l}\right)\left[-\Delta \dot{V}+\frac{\dot{l} \Delta V}{l}+\frac{\Delta \dot{V}^{2}}{l}+\frac{819}{m 4 \pi \epsilon_{0}} \frac{\lambda_{0}}{l}\right]=0$
(1) \& (2) $\Rightarrow \frac{\dot{\lambda}_{0}}{\lambda_{0}}=\frac{\Delta V}{l}=\frac{-\dot{l}}{l}$
(3) \ddagger (4) $\Rightarrow \ddot{l} \quad-\frac{1299}{4 \pi \varepsilon_{0} m} \frac{Q_{c}}{l^{2}}=0$
where $Q_{i}=\frac{2}{3} \lambda_{0} l=$ conct. CHilkbe IUNCH (NOT
LONGitudinal "envelore" equation pedubure) (without emititnce)

Multifly by \dot{l} \& integhate:

$$
\begin{aligned}
& \frac{\dot{l}^{2}}{2}+\frac{12 q g}{4 \pi \varepsilon_{0} m} \frac{Q_{L}}{l}=\frac{\dot{l}_{f}^{2}}{\sum_{0}^{2}}+\frac{12 q g}{4 \pi \varepsilon_{0} m} \frac{Q_{L}}{l_{f}} \\
& \Rightarrow l_{0}=\sqrt{\frac{16 q 9}{4 \pi \varepsilon_{0} m} \lambda_{f}\left[1-\frac{l_{f}}{l_{0}}\right]} \\
& \begin{array}{l}
\text { Hene subsckipt "f" } \\
=\text { "final" }
\end{array} \\
& \$ \text { sunscipe "o" } \\
& \text { =originala minitial }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Note } Q_{C}=\frac{2}{3} \lambda_{0} l \\
& \text { = chakge } \\
& C=\underset{H u \text { riosion }}{\operatorname{com}}=\frac{l_{0}}{l_{f}} \\
& \frac{\Delta v}{v_{0}}=\underset{\text { veloiity }}{\text { tilt }}=\frac{|i|}{v_{0}} \\
& \rightarrow \quad \frac{\Delta v}{v}=\sqrt{8 g Q_{f}\left[1-\frac{1}{c}\right]} \\
& \text { for } Q_{f}=10^{-4} \\
& g=1.1 \\
& C=20 \\
& \Rightarrow \frac{\Delta v}{v}=0.029 \\
& \text { DAET LENGTH } \cong \frac{l}{A V} V_{0}=\frac{l}{A V / V}=345 \mathrm{~m} \text { fo } l=10 \mathrm{~m}
\end{aligned}
$$

Vlasou-equation for a driftiup beam:

$$
\begin{aligned}
& \frac{\partial f}{\partial s}+x^{\prime} \frac{\partial f}{\partial x}+x^{\prime \prime} \frac{\partial f}{\partial x^{\prime}}+y^{\prime} \frac{\partial f}{\partial y}+y^{\prime \prime} \frac{\partial f}{\partial y^{\prime}}+z^{\prime} \frac{\partial f}{\partial z}+z^{\prime \prime} \frac{\partial f}{\partial z^{\prime}}=0 \\
& \text { Let } f^{\prime}\left(z z^{\prime}, s\right) \equiv \iiint \int f f d x d x^{\prime} d y d y^{\prime}
\end{aligned}
$$

Integrating Vlaiou equation:
If $z^{\prime \prime} \neq f\left(x ; x^{\prime}, y, y^{\prime}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{\partial \tilde{f}}{\partial s}+\iiint x \int_{=f f^{\alpha}}^{\int^{\frac{\partial f}{\partial x}} J x} d x^{\prime} d y d y^{\prime}+\cdots z^{\prime} \frac{\partial \tilde{f}}{\partial z}+z^{\prime \prime} \frac{\partial \tilde{f}}{\partial z^{\prime}}=0 \\
& \Rightarrow \quad \frac{\partial \tilde{f}}{\partial s}+z^{\prime} \frac{\partial \tilde{f}}{\partial z}+z^{\prime \prime} \frac{\partial \tilde{f}}{\partial z^{\prime}}=0 \quad 10 \text { Vlasov }
\end{aligned}
$$

Now let $\lambda \equiv q \int \tilde{f} d z^{\prime} ; \quad \lambda \overline{z^{\prime}}=q \int \tilde{f} z^{\prime} d z^{\prime} ; q \lambda \overline{z^{\prime 2}}=\int \tilde{f} z^{\prime 2} d z^{\prime}$
FLUIA EQUATIONS Also, let $\Delta z^{12} \equiv \overline{z^{12}}-\left(\overline{z^{\prime}}\right)^{2}$

Integrating id Vlason avac z^{\prime} :

$$
\frac{\partial \lambda}{\partial s}+\frac{\partial}{\partial z}\left(\lambda \bar{z}^{\prime}\right)=0
$$

(CONTINVITY EQUATION)
MULTILYING BY z^{\prime} INEGIRTNG VLAION OL z^{\prime} :

$$
\frac{\partial}{\partial s} \lambda \bar{z}^{\prime}+\frac{\partial}{\partial z} \lambda \overline{z^{\prime 2}}-\lambda z^{\mu}=0
$$

DIVIDING BI λ, USING CONTNUITY EQUHTION \& DEFINITION O: Δz^{12} :
3)
(MOMENTOM
EQUMTION)

LONGITOONAE EnveLore EQvatond

$$
\frac{\partial \tilde{f}}{\partial s}+z^{\prime} \frac{\partial \tilde{f}}{\partial z}+z^{\prime} \frac{\partial \tilde{f}}{\partial \tilde{z}^{\prime}}=0
$$

$Q_{c}=$ total change
If $z^{\prime \prime}=-K(5) z+\frac{99}{4 \pi \varepsilon_{0} m v^{2}}\left(\frac{12 Q_{0}}{L^{3}}\right) z$

$$
\Rightarrow \frac{\partial}{\partial s}\left\langle z^{2}\right\rangle \tau 2\left\langle z z^{\prime}\right\rangle
$$

$$
\begin{aligned}
& \frac{\partial}{\partial s}\left\langle z z^{\prime}\right\rangle=\left\langle z^{\prime 2}\right\rangle+\frac{99}{4 \pi \varepsilon_{0} m v^{2}}\left(\frac{12 Q_{c}}{L^{3}}\right)\left\langle z^{2}\right\rangle-k(1)\left\langle z^{2}\right\rangle \\
& \frac{\partial}{\partial s}\left\langle z^{\prime 2}\right\rangle=2\left(\frac{99}{4 \pi \varepsilon_{0} m v^{\prime}}\right)\left(\frac{12 Q_{c}}{L^{3}}\right)\left\langle z z^{\prime}\right\rangle-2 k\left(s^{\prime}\left\langle z z^{\prime}\right\rangle\right.
\end{aligned}
$$

Nort $\left\langle z^{2}\right\rangle=\frac{1}{Q_{c}} \int_{-N}^{\infty} \int_{-L / v^{2}}^{L_{2}} z^{2} f\left(z, z^{\prime}\right) d z d z^{\prime}=\frac{1}{20} L^{z}$

$$
\begin{aligned}
\varepsilon_{z}^{2} & =25\left[\left\langle z^{2}\right\rangle\left\langle z^{n}\right\rangle-\langle z z\rangle^{2}\right] \\
\Rightarrow & \frac{d^{2} L}{d s^{2}}=\frac{16 \varepsilon_{z}^{2}}{L^{3}}+\frac{12 g q Q_{c}}{4 \pi \varepsilon_{0} m v^{2} L^{2}}-K(s) L
\end{aligned}
$$

Let $n_{z}=L / 2$

$$
\Rightarrow \frac{d^{2} r_{z}}{d s^{2}}=\frac{\varepsilon_{z}^{2}}{r_{z}^{3}}+\frac{3}{2} \frac{g q Q_{c}}{4 \pi \varepsilon_{0} m v^{2}} \frac{1}{r_{z}^{2}}-k(s) r_{z}
$$

If we regard the envelope radii r_{x}, r_{y} as specified functions of s, then these equations of motion are Hill's equations familiar from elementary accelerator physics:

$$
\begin{gathered}
x^{\prime \prime}(s)+\kappa_{x}^{\mathrm{eff}}(s) x(s)=0 \\
y^{\prime \prime}(s)+\kappa_{y}^{\mathrm{eff}}(s) y(s)=0 \\
\kappa_{x}^{\mathrm{eff}}(s)=\kappa_{x}(s)-\frac{2 Q}{\left[r_{x}(s)+r_{y}(s)\right] r_{x}(s)} \\
\kappa_{y}^{\mathrm{eff}}(s)=\kappa_{y}(s)-\frac{2 Q}{\left[r_{x}(s)+r_{y}(s)\right] r_{y}(s)}
\end{gathered}
$$

Suggests Procedure:

* Calculate Courant-Snyder invariants under assumptions made
\rightarrow Construct a distribution function of Courant-Snyder invariants that generates the uniform density elliptical beam projection assumed
- Nontrivial step: guess and show that it works

Resulting distribution will be an equilibrium that does not evolve in s in 4D phase-space, but lower-dimensional phase-space projections can evolve in s

Self - consistent longitudinal distribution
Recall Hill's equation: (From Steve Lund's notes on "Transverse equilibrium distributions," p. 20-26.)
$z^{\prime \prime}+K(s) z=0$
The Courant-Snyder invariant Cz can be written:

$$
C_{z}=\left(\frac{z}{r_{z}}\right)^{2}+\left(\frac{r_{z} z^{\prime}-r_{z}^{\prime} z}{\varepsilon_{z}}\right)^{2} \quad \begin{aligned}
& =\text { constant along a } \\
& \text { particle trajectory }
\end{aligned}
$$

At each s, particle lies on ellipse of constant area $\pi \varepsilon_{z}$.
Along each trajectory: $\frac{d C_{z}}{d s}=0$

$$
\frac{d f}{d s}=\frac{d f}{d C_{z}} \frac{d C_{z}}{d s}=0 \quad \begin{aligned}
& \text { so } f\left(C_{z}\right) \text { is a solution of the } \\
& \text { Vlasov equation. }
\end{aligned}
$$

BUT $\quad \lambda=\int f\left(z, z^{\prime}, s\right) d z^{\prime} \quad$ must be of the form
$\lambda=\left(a_{0}+b_{0} z^{2}\right) \Rightarrow E_{z}=-g \frac{\partial \lambda}{\partial z} \sim z$
So what $f\left(C_{z}\right)$ yields $\lambda=\left(a_{0}+b_{0} z^{2}\right)$?
Answer: $f\left(C_{z}\right)=\frac{3 N}{2 \pi \varepsilon_{z}} \sqrt{1-C_{z}}$
$\frac{\text { Self-consistent Longitudinal Distribution: }}{\text { Neuffel Dirmibution } \quad \text { Duffel, Phiticle Accerchaions }}$

Returning to the id Vlasov equation:

$$
\frac{\partial f}{\partial s}+z^{\prime} \frac{\partial f}{\partial z}+z^{\prime \prime} \frac{\partial f}{\partial z^{\prime}}=0
$$

If $z^{\prime \prime}=-A \frac{\partial \lambda}{\partial z}-K(s) z$
THEN,

$$
f\left(z, z^{\prime}, s\right)=\frac{3 N}{2 \pi \varepsilon_{z}} \sqrt{1-\frac{z^{2}}{r_{z}^{2}}-\frac{r_{z}^{2}\left(z^{1}-r_{z}^{\prime} z / r_{z}\right)^{2}}{\varepsilon_{z}^{2}}}
$$

for $\quad-r_{z}<z<r_{z}$
\$ $\frac{r_{z}^{\prime} z}{r_{z}}-\frac{\varepsilon_{z}}{r_{z}} \sqrt{1-\frac{z^{2}}{r_{z}^{2}}} \leqslant z^{\prime} \leqslant \frac{r_{z}^{\prime} z}{r_{z}}+\frac{\varepsilon_{z}}{r_{z}} \sqrt{1-\frac{z^{2}}{r_{z}^{2}}}$
is a solution to the 10 Ulasov equation
Hell $\quad \varepsilon_{z}^{2}=25\left(\left\langle z^{2}\right\rangle\left\langle z^{\prime 2}\right\rangle-\left\langle z z^{\prime}\right\rangle^{2}\right]=\operatorname{ConstanT}$
$N=$ total number of particles in bunch
$r_{z}=$ hand edge of bunch
NOTE THAT $\lambda(z)=\frac{3}{4} \frac{N}{r_{z}}\left(1-\frac{z^{2}}{r_{z}^{2}}\right)=\int_{-r_{z}}^{r_{z}} f\left(z, z^{z} s\right) d z^{\prime}$
$\Rightarrow \frac{\partial \lambda}{\partial z} \propto z \Rightarrow$ LINEAL SINCE CHNWGF FIELD

Neuffer Distribution Function

$$
f\left[z, z^{\prime}\right]=\frac{3 N}{2 \pi \varepsilon_{z}} \sqrt{1-\frac{z^{2}}{r_{z}^{2}}-\frac{r_{z}^{2}\left(z^{\prime}-r_{z}^{\prime} z / r_{z}\right)^{2}}{\varepsilon_{z}^{2}}} \quad \text { for: } \quad r_{z} \leq z \leq r_{z} . \frac{r_{z}^{\prime} z}{r_{z}}-\frac{\varepsilon_{z}}{r_{z}} \sqrt{1-\frac{z^{2}}{r_{z}^{2}}} \leq z^{\prime} \leq \frac{r_{z}^{\prime} z}{r_{z}}+\frac{\varepsilon_{z}}{r_{z}} \sqrt{1-\frac{z^{2}}{r_{z}^{2}}}
$$

Here $N=r_{z}=r_{z}{ }^{\prime}=1 ; \varepsilon_{z}=0.3$
The Heavy Ion Fusion Virtual National Laboratory

Leads to flurd equetions.

$$
\begin{aligned}
& \frac{\partial \lambda}{\partial s}+\frac{\partial}{\partial z}\left(\lambda \bar{z}^{\prime}\right)=0 \\
& \frac{\partial \bar{z}}{\partial s}+z^{\prime} \frac{\partial z^{\prime}}{\partial z}+\frac{1}{\lambda} \frac{\partial}{\partial z}\left(\lambda z^{\prime}\right)+\frac{c^{\prime}}{\lambda_{0}^{\prime} v_{0}} \frac{\partial \lambda}{\partial z}=0
\end{aligned}
$$

\Rightarrow S/ACE chacge waUes
\angle Lonaitudinhe
on Resastue ondel Lat Pomury

\Rightarrow PALABOUC BUNCA cOMPAESSLON $\frac{\partial \lambda}{\partial z}$ م
VLASOU EQUATHON ALSO \Rightarrow ENVELOFE EQuITION

$$
\frac{d^{2} r_{z}}{d s^{2}}=\frac{\varepsilon_{z}^{2}}{r_{z}^{3}}+\frac{3}{2} \frac{g q Q_{c}}{4 \pi \varepsilon_{0} v^{2}} \frac{1}{r_{z}^{2}}-k(s) r_{z}
$$

KINETC Soliotion to Vlasou equation satispy ing rmis envelote Equafions is "Marfick Disthigution" (anacogove to kV).

$$
f\left(z, z^{\prime}\right)=\frac{3 N}{2 \pi \varepsilon_{4}} \sqrt{1-\frac{z^{2}}{V_{Q^{2}}}-\frac{n^{2}\left(z^{\prime}-n^{\prime} z / n\right)^{2}}{\varepsilon^{2}}}
$$

Leads to flurd equetions.

$$
\begin{aligned}
& \frac{\partial \lambda}{\partial s}+\frac{\partial}{\partial z}\left(\lambda \bar{z}^{\prime}\right)=0 \\
& \frac{\partial \bar{z}}{\partial s}+z^{\prime} \frac{\partial z^{\prime}}{\partial z}+\frac{1}{\lambda} \frac{\partial}{\partial z}\left(\lambda z^{\prime}\right)+\frac{c^{\prime}}{\lambda_{0}^{\prime} v_{0}} \frac{\partial \lambda}{\partial z}=0
\end{aligned}
$$

\Rightarrow S/ACE chacge waUes
\angle Lonaitudinhe
on Resastue ondel Lat Pomury

\Rightarrow PALABOUC BUNCA cOMPAESSLON $\frac{\partial \lambda}{\partial z}$ م
VLASOU EQUATHON ALSO \Rightarrow ENVELOFE EQuITION

$$
\frac{d^{2} r_{z}}{d s^{2}}=\frac{\varepsilon_{z}^{2}}{r_{z}^{3}}+\frac{3}{2} \frac{g q Q_{c}}{4 \pi \varepsilon_{0} v^{2}} \frac{1}{r_{z}^{2}}-k(s) r_{z}
$$

KINETC Soliotion to Vlasou equation satispy ing rmis envelote Equafions is "Marfick Disthigution" (anacogove to kV).

$$
f\left(z, z^{\prime}\right)=\frac{3 N}{2 \pi \varepsilon_{4}} \sqrt{1-\frac{z^{2}}{V_{Q^{2}}}-\frac{n^{2}\left(z^{\prime}-n^{\prime} z / n\right)^{2}}{\varepsilon^{2}}}
$$

