Dec 11, 14 13:35 00.outline.txt	Page 1/7	Dec 11, 14 13:35	00.outline.txt	Page 2/7
	-	3.4 Centroid equation	ns (first order moments)	
US Particle Accelerator School			e and focusing forces	
sponsored by Old Dominion University		3.5 Image forces (eff	lect on centroid and envelope)	
Hampton, Virginia				
1930 January, 2014		4. Transverse Particle 4.1 Particle Equation		
"Beam Physics with Intense Space Charge"			The Lorentz Force Equation	
beau mpored with include opace charge		4.1.B Applied Field		
Lecturers:		4.1.C Machine Latt:		
Prof. Steven M. Lund		4.1.D Self Fields		
Physics and Astronomy Department			Motion in s and the Paraxial Approximatio	n
Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU)		4.1.F Axial Partic	le Kinetic Energy Isverse Particle Equations of Motion	
Michigan State University (MSU)		4.1.H Overview of A		
Dr. John J. Barnard		4.1.I Bent Coordina	ate System and Particle Equations of Motic	n with
Lawrence Livermore National Laboratory (LLNL)		Dipole Bends	and Axial Momentum Spread	
Lawrence Berkeley National Laboratory (LBNL)		Appendix A: Gamma a	and Beta Factor Conversions	
			icle Equations of Motion in Linear Focusin	g Channels
Grader:		4.1.A Introduction		
Dr. Daniel Winklehner Massachusetts Institute of Technology (MIT)		4.2.B Continuous Fo	Gradient Quadrupole Focusing - Electric Qu	adrupolec
Massachasells institute of rechnology (MII)			Fradient Quadrupole Focusing - Electric Qu Fradient Quadrupole Focusing - Magnetic Qu	
Class material including a course overview, lecture schedule, a more		4.2.E Solenoidal Fo		and around
detailed course description, lecture notes (pdf copies), problems sets,		4.2.F Summary of T	ransverse Particle Equations of Motion	
and the final exam can be found on the course web site:		Appendix A: Quadrug	pole Skew Coupling	
			mor Transform to Express Solenoidal Focus	ed
https://people.nscl.msu.edu/~lund/uspas/bpisc_2015			Le Equations of Motion in Uncoupled Form	
Topical Course Outline:			er Matrices for Solenoidal Focusing Applied Focusing Fields	
lopical course outline.		4.3.A Overview	Applied Focusing Fields	
"Beam Physics with Intense Space-Charge"			ld Expansions for Focusing and Bending	
		4.3.C Hard Edge Equ		
Note: This outline and the distribution files are arranged in logical			e Multipole Magnetic Moments	
presentation order. In the actual class, there are some deviations fro	om	4.3.E Good Field Ra		
this order due to practical constraints. The actual order of material			anent Magnet Assemblies	lied Fields
presented is given in the lecture schedule on the course web site.		4.4 Iransverse Partie 4.4.A Overview	cle Equations of Motion with Nonlinear App	fied Fields
Lecturer abbreviations:		4.4.B Approach 1: 1	Explicit 3D Form	
JJB - J.J. Barnard		4.4.C Approach 2: 1		
SML - S.M. Lund			s of Motion Without Space-Charge, Accelera	tion, and
		Momentum Spread		
1. Introduction to the Physics of Beams and Basic Parameters (JJB) 1.1 Particle equations of motion		4.5.A Hill's equat:	ion rix Form of the Solution to Hill's Equatic	n
1.1 Particle equations of motion 1.2 Dimensionless parameters: Perveance, phase advance, space charge			nmetry of Hill's Equation	011
tune depression			Solutions to Hill's Equation in a Periodi	c Lattice
1.3 Plasma physics of beams: collisions, Debye Length			Floquet's Theorem and the Phase-Amplitud	
1.4 Klimontovich equation, Vlasov equation, Liouville's theorem		of the Particle	Orbit	
1.4 Emittance and brightness		4.6.A Introduction		
2 Envolono Equationa I (IIP)		4.6.B Floquet's The		
2. Envelope Equations-I (JJB) 2.1 Paraxial Ray Equation			ude Form of the Particle Orbit se-Amplitude Form of the Solution to Hill'	s Equation
2.2 Envelope equations for axially symmetric beams			Phase-Amplitude Formulation	5 Equation
2.3 Cartesian equations of motion			veen the Principal Orbit Functions and the	
2.3.1 Quadrupole focusing		Phase-Amplit	de Form Orbit Functions	
2.3.2 Space charge force for elliptical beams			Particle Phase Advance	
2.4 Envelope equations for elliptically symmetric beams			ation of w(s) from Principal Orbit Functio	ns
3. Current Limits in Accelerators and Centroid equations-I (JJB)		4.7 Hill's Equation Single-Particle	The Courant-Snyder Invariant and the	
3.1 Axisymmetric beams		4.7.A Introduction	BILLCCAILCE	
3.1.1 Solenoids			the Courant-Snyder Invariant	
3.1.2 Einzel Lenses		4.7.C Lattice Maps	-	
3.2 Elliptically symmetric beams			The Betatron Formulation of the Particle	Orbit
3.2.1 Derivation of space charge term in envelope equation with		and Maximum Orbit	Excursions	
elliptical symmetry 3.2.2 Current limit for guadrupoles using Fourier transforms		4.8.A Formulation 4.8.B Maximum Orbit	Franciona	
3.2.2 Current limit for quadrupoles using Fourier transforms 3.3 Current limit for continuous focusing		4.8.B Maximum Orbit 4.9 Momentum Spread		
3.3.1 Calculation of sigma_0 (using matrix multiplication)		4.9 Momencum Spread 4.9.A Overview	Effects and benating	
3.3.2 Comparison of quadrupole current limit (from Fourier transfo	orm,	4.9.B Chromatic Efr	lects	
and matrix methods)	-	4.9.B Dispersive E		
L		_		

Dec 11, 14 13:35	00.outline.txt	Page 3/7	Dec 11, 14 13:35	00.outline.txt	Page 4/7
4.10 Acceleration and Normalized	l Emittance		Discussion		
4.10.A Introduction	_		Contact Information		
4.10.B Transformation to Norma		d. Greek en e	References		
	Between Transformed and Untransforme Induced Changes in gamma and beta	d Systems	Acknowledgments		
4.10.A Introduction	i induced changes in gamma and beca		6. Transverse Particle Res	sonances with Application to Circular Accel	erators
4.10.B Solution of the Longitu	dinal Equations of Motion		(SML)	Sonanceb with Application to clicatal need	CIUCOID
4.10.C Longitudinal Solution v			6.1 Overview		
4.10.D Quasistatic Potential H	Ixpansion		Hill's Equation Review:	: Betatron Form of Phase-Amplitude Solution	1
Contact Information			Transform Approach		
References Acknowledgments			6.2 Floquet Coordinates	Perturbations Acting on Orbits	
Acknowledgments				's Equation to a Simple Harmonic Oscillator	-
5. Transverse Equilibrium Distrik	oution Functions (SML)		Phase-Space Structure of	of Solution	
5.1 Vlasov Model			Expression of the Coura	ant-Snyder Invariant	
Vlasov-Poisson System			Phase-Space Area Transf	form	
Review: Lattices: Continuous,			6.3 Perturbed Hill's Equa Transformation Result f	ation in Floquet Coordinates	
Review: Undepressed Particle E 5.2 Vlasov Equilibria	mase Advance		6.4 Sources and Forms of		
Equilibrium Conditions			Power Series Expansion		
Single Particle Constants of t	the Motion		Connection to Multipole	e Errors	
Discussion: Plasma Physics App			6.5 Perturbed Solution: F		
5.3 The KV Equilibrium Distribut Hill's Equation with Linear Sp	lon Dago Chargo Forgog		Fourier Expansion of Pe Resonance Conditions	erturbations and Resonance Terms	
Review: Courant-Snyder Invaria				ints: Restrictions Resulting from Resonance	a
Courant-Snyder Invariants for	a Uniform Density Elliptical Beam		Tune Restrictions from	Low Order Resonances	
KV Envelope Equations			6.7 Space-Charge Effects		
Canonical Form of the KV Distr	ibution Function		Coherent and Incoherent	t Tune Shifts	
Matched Envelope Structure			Laslett Limit Contact Information		
Depressed Particle Orbits rms Equivalent Beams			References		
Discussions/Comments on the KV	/ Model		Acknowledgments		
Appendix A: Self-Fields of a Uni	form Density Elliptical Beam in Fre	e Space	_		
(handwritten notes)			7. Injectors and Longitudi		
Derivation #1: Direct Derivation #2: Simplified			7.1 Diodes and Injectors	s ited flow and child-Langmuir law	
Appendix B: Canonical Transforms	of the KV Distribution		7.1.2 Pierce electrodes		
(handwritten notes)				jectors and Lampel-Tiefenback solution	
Canonical Transforms			7.2 Injector Choices		
Simplified Moment Calculations 5.4 The Continuous Focusing Lim	it of the KM Distribution		8. Longitudinal Physics Pa	art II (IID)	
Reduction of Elliptical Model	it of the KV Distribution		8.1 Acceleration intr	roduction	
Wavenumbers of Particle Oscill	ations			rt bunches (in rf-accelerators)	
Distribution Form			8.3 Space charge of long	g bunches (g-factor model)	
Discussion			8.4 Longitudinal 1D Vlas	sov equation	
5.5 Continuous Focusing Equilib Equilibrium Form	Drium Distributions		8.5 Longitudinal fluid e 8.4 Longitudinal space of	equation	
Poisson's Equation			8.5 Longitudinal rarefac	ction waves and bunch end control	
Moments and rms Equivalent Bea	am Envelope Equation				
Example Distributions			9. Longitudinal Physics Pa		
5.6 Continuous Focusing: The Wa Distribution Form	terbag Equilibrium Distribution		9.1 Longitudinal cooling 9.2 Longitudinal resisti		
Poisson's Equation			9.3 Bunch compression	Ive instability	
Solution in Terms of Accelerat	or Parameters		9.4 Longitudinal envelop	pe equation	
Equilibrium Properties			9.4 Neuffer distribution	n function	
5.7 Continuous Focusing: The Th Overview	nermal Equilibrium Distribution		10 Thereway Contraid and	d Envelope Descriptions of Beam Evolution (CMT)
Distribution Form			10.1 Overview	a Envelope Descriptions of Beam Evolution (SML)
Poisson's Equation				roid and Envelope Equations of Motion	
Solution in Terms of Accelerat	or Parameters		Statistical Averages		
Equilibrium Properties	Camponing in a Thermal Denility	Deem	Particle Equations of M		
	Screening in a Thermal Equilibrium : turbed Potential Due to a Test Part		Distribution Assumption Self-Field Calculation:		
Solution for Characteristic De		1010		nvelope Equations of Motion	
5.9 Continuous Focusing: The De	ensity Inversion Theorem		10.3 Centroid Equations	of Motion	
	the Full Distribution Function			Oscillation and Stability Properties	
Example Application to the KV	Distribution y of Smooth, non-KV Vlasov Equilibr	ia	Effect of Driving Error Effect of Image Charges		
in Periodic Focusing Lattic			10.4 Envelope Equations		

Dec 11, 14 13:35 00.outline.txt Page 5/7	Dec 11, 14 13:35 00.outline.txt	Page 6/7
KV Envelope Equations	Perturbation Bound and a Sufficient Condition for Stability	
Applicability of Model	Interpretation and Example Applications	
Properties of Terms	12.7 rms Emittance Growth and Nonlinear Forces	
10.5 Matched Envelope Solutions	Equations of Motion	
Construction of Matched Solution	Coupling of Nonlinear Forces to rms Emittance Evolution	
Symmetries of Matched Envelope: Interpretation via KV Envelope Equations Examples	12.8 rms emittance Growth and Nonlinear Space-Charge Forces Equations of Motion	
10.6 Envelope Perturbations	rms Equivalent Beam Forms	
Perturbed Equations	Wangler's Theorem	
Matrix Form: Stability and EigenMode Symmetries	12.9 Uniform Density Beams and Extreme Energy States	
Decoupled Modes	Variational Formulation	
General Mode Limits 10.7 Envelope Modes in Continuous Focusing	Self-Field Energy Minimization	
Normal Modes: Breathing and Quadrupole Modes	12.10 Collective Relaxation and rms Emittance Growth Conservation Constraints	
Driven Modes	Relaxation Processes	
10.8 Envelope Modes in Periodic Focusing Channels	Emittance Growth Bounds from Space-Charge Nonuniformities	
Solenoidal Focusing	12.11 Halo Induced Mechanism of Higher-Order Instability	
Quadrupole Focusing	Halo Model for an Elliptical Beam	
Mode Launching	Pumping Mechanism	
10.9 Transport Limit Scaling Based on Envelope Models (see handwritten notes)	Stability Properties 12.12 Phase Mixing and Landau Damping in Beams	
Overview	(to be added in future versions)	
Example Calculation for a Periodic FODO Quadrupole Transport Channel	Contact Information	
Discussion on Application of Formulas in Design	References	
Results of More Detailed Models	Acknowledgments	
10.10 Centroid and Envelope Descriptions via		
1st Order Coupled Moment Equations Formulation	 Pressure, Scattering, and Electron Effects (JJB) 13.1 Beam/beam Coulomb collisions 	
Example Illustration - Familiar KV Envelope Model	13.2 Beam/residual-gas scattering	
Contact Information	13.3 Charge-changing processes	
References	13.4 Wall effects	
Acknowledgments	13.4.1 gas pressure instability	
11. Continuous Reputing Revolution Modes and Revolution (TTR)	13.5 Electron cloud processes	
11. Continuous Focusing Envelope Modes and Beam Halo (JJB) 11.1 Envelope modes of unbunched beams in continuous focusing	13.5.1 Multiple-bunch beam-induced multipacting 13.5.2 Single-bunch beam-induced multipacting	
11.2 Envelope modes of bunched beams in continuous focusing	13.6 Electron-ion instability	
11.3 Halos from mismatched beams		
11.3.1 What is halo? Why do we care	14. Heavy Ion Fusion and Final Focus (JJB)	
11.3.2 Qualitative picture of halo formation: mismatches	14.1 An application of intense beams: Heavy Ion Fusion	
resonantly drive particles to large amplitude 11.3.3 Core/particle models	14.1.1 Requirements 14.1.2 Targets for inertial confinement fusion	
11.3.4 Amplitude phase analysis	14.1.3 Accelerator	
	14.1.4 Drift compression	
12. Transverse Kinetic Stability (SML)	14.1.5 Final focus	
12.1 Overview: Machine Operating Points	14.2 Final focus	
Notions of Beam Stability	14.2.1 Predicting spot size using envelope equation	
Tiefenback Experimental Results for Quadrupole Transport 12.2 Overview: Collective Modes and Transverse Kinetic Stability	and estimate of effects from chromaticity 14.3 Experiments for Heavy Ion Fusion	
Possibility of Collective Internal Modes	14.5 Experimentes for neavy fon rusion	
Vlasov Model Review	15. Numerical Simulations (SML)	
Plasma Physics Approach to Understanding Higher Order Instability	15.1 Why Numerical Simulation?	
12.3 Linearized Vlasov Equation	15.2 Classes of Intense Beam Simulations	
Equilibrium and Perturbations Linear Vlasov Equation	15.2.A Overview 15.2.B Particle Methods	
Method of Characteristics	15.2.C Distribution Methods	
Discussion	15.2.D Moment Methods	
12.4 Collective Modes on a KV Equilibrium Beam	15.2.E Hybrid Methods	
KV Equilibrium	15.3 Overview of Basic Numerical Methods	
Linearized Equations of Motion	15.3.A Discretizations	
Solution of Equations Mode Properties	15.3.B Discrete Numerical Operations - Derivatives	
Physical Mode Components Based on Fluid Model	- Ouadrature	
Periodic Focusing Results	- Irregular Grids and Axisymmetric Systems	
12.5 Global Conservation Constraints	15.3.C Time Advance	
Conserved Quantities	- Overview	
Implications	- Euler and Runge-Kutta Advances	
12.6 Kinetic Stability Theorem Effective Free Energy	- Solution of Moment Methods 15.4 Numerical Methods for Particle and Distribution Methods	
Free Energy Expansion in Perturbations	14.4.A Overview	

Dec 11, 14 13:35	00.outline.txt	Page 7/7
 Leapfrog Advance Numerical Errors Illustrative Exam 4.C Field Solution Electrostatic Ove Green's Function Gridded Field Sol Methods of Gridde Spectral Methods 15.4.D Weighting: Dep Interpolating Overview of Appro- Approaches: Neare 15.4 Computational 15.5 Diagnostics 	for Electric Forces for Electric and Magnetic Forces and Stability of the Leapfrog Method pples rview Approach ution: Equation and Boundary Conditions of Field Solution and the FFT positing Particles on the Field Mesh and Fields to the Particles paches st Grid Point, Cloud in Cell, Area, Spline Cycle for Particle in Cell Simulations ion and Particle Loading ence trations	5
<pre>16.3 Summary of 6 stati on particular dist 16.4 Current limits 16.5 Using envelope equ 16.6 Longitudinal dynam 16.7 Instability summar 16.8 Halo summary</pre>	e space review of motion (radial and Cartesian) stical envelope equations and two equations ribution functions mations to estimate spot size nics summary	s based