3.4 Centroid equations (first order moments)
3.4.1 Space charge and focusing forces
3.5 Image forces (effect on centroid and envelope)

4. Transverse Particle Dynamics (SML)
4.1 Particle Equations of Motion
4.1.A Introduction: The Lorentz Force Equation
4.1.B Applied Fields
4.1.C Machine Lattice
4.1.D Self Fields
4.1.E Equations of Motion in x and the Paraxial Approximation
4.1.F Axial Particle Kinetic Energy
4.1.G Summary: Transverse Particle Equations of Motion
4.1.H Overview of Analysis to Come
4.1.I Bent Coordinate System and Particle Equations of Motion with Dipole Bends and Axial Momentum Spread

Appendix A: Gamma and Beta Factor Conversions

4.2 Transverse Particle Equations of Motion in Linear Focusing Channels
4.1.A Introduction
4.2.B Continuous Focusing
4.2.C Alternating Gradient Quadrupole Focusing – Electric Quadrupoles
4.2.D Alternating Gradient Quadrupole Focusing – Magnetic Quadrupoles
4.2.E Solenoidal Focusing
4.2.F Summary of Transverse Particle Equations of Motion

Appendix B: The Larmor Transform to Express Solenoidal Focused Particle Equations of Motion in Uncoupled Form

Appendix C: Transfer Matrices for Solenoidal Focusing

4.3 Description of Applied Focusing Fields
4.3.A Overview
4.3.B Magnetic Field Expansions for Focusing and Bending
4.3.C Hard Edge Equivalent Models
4.3.D 2D Transverse Multipole Magnetic Moments
4.3.E Ind Field Radius, the
4.3.F Example Permanent Magnet Assemblies

4.4 Transverse Particle Equations of Motion with Nonlinear Applied Fields
4.4.A Overview
4.4.B Approach 1: Explicit 3D Form
4.4.C Approach 2: Perturbed Form

4.5 Linear Equations of Motion Without Space-Charge, Acceleration, and Momentum Spread
4.5.A Hill’s equation
4.5.B Transfer Matrix Form of the Solution to Hill’s Equation
4.5.C Wronskian Symmetry of Hill’s Equation
4.5.D Stability of Solutions to Hill’s Equation in a Periodic Lattice
4.6 Hill’s Equation: Floquet’s Theorem and the Phase-Amplitude Form of the Particle Orbit
4.6.A Introduction
4.6.B Floquet’s Theorem
4.6.C Phase-Amplitude Form of the Particle Orbit
4.6.D Summary: Phase-Amplitude Form of the Solution to Hill’s Equation
4.6.E Points on the Phase-Amplitude Formulation
4.6.F Relation between the Principal Orbit Functions and the Phase-Amplitude Form Orbit Functions
4.6.G Undepressed Particle Phase Advance

Appendix C: Calculation of w(s) from Principal Orbit Functions
4.7 Hill’s Equation: The Courant-Snyder Invariant and the Single-Particle Emitter
4.7.A Introduction
4.7.B Derivation of the Courant-Snyder Invariant
4.7.C Lattice Maps
4.8 Hill’s Equation: The Betatron Formulation of the Particle Orbit and Maximum Orbit Excursions
4.8.A Formulation
4.8.B Maximum Orbit Excursions
4.9 Momentum Spread Effects and Bending
4.9.A Overview
4.9.B Chromatic Effects
4.9.B Dispersive Effects
<table>
<thead>
<tr>
<th>Dec 11, 14 13:35</th>
<th>00.outline.txt</th>
<th>Page 5/7</th>
</tr>
</thead>
</table>

- **KV Envelope Equations**
 - Applicability of Model
 - Properties of Terms
 - 10.5 Matched Envelope Solutions
 - Construction of Matched Solution
 - Symmetries of Matched Envelope: Interpretation via KV Envelope Equations
 - Examples

- **10.6 Envelope Perturbations**
 - Perturbed Equations
 - Wanger's Theorem
 - Matrix Form: Stability and EigenMode Symmetries
 - Decoupled Modes
 - General Mode Limits

- **10.7 Envelope Modes in Continuous Focusing**
 - Normal Modes: Breathing and Quadrupole Modes
 - Driven Modes

- **10.8 Envelope Modes in Periodic Focusing Channels**
 - Solenoidal Focusing
 - Quadrupole Focusing
 - Mode Launching

- **10.9 Transport Limit Scaling Based on Envelope Models**
 - (see handwritten notes)
 - Overview
 - Example Calculation for a Periodic FODO Quadrupole Transport Channel
 - Discussion on Application of Formulas in Design
 - Results of More Detailed Models

- **10.10 Centroid and Envelope Descriptions via 1st Order Coupled Moment Equations**
 - Formulation
 - Example Illustration - Familiar KV Envelope Model

- **Contact Information**
 - References
 - Acknowledgments

- **11. Continuous Focusing Envelope Modes and Beam Halo (JJB)**
 - 11.1 Envelope modes of unbunched beams in continuous focusing
 - 11.2 Envelope modes of bunched beams in continuous focusing
 - 11.3 Halos from mismatched beams
 - 11.3.1 What is halo? Why do we care
 - 11.3.2 Qualitative picture of halo formation: mismatches resonantly drive particles to large amplitude
 - 11.3.3 Core/particle models
 - 11.3.4 Amplitude phase analysis

- **12. Transverse Kinetic Stability (SMI)**
 - 12.1 Overview: Machine Operating Points
 - Notions of Beam Stability
 - Tiefenback Experimental Results for Quadrupole Transport
 - Possibility of Collective Internal Modes
 - Vlasov Model Review
 - Plasma Physics Approach to Understanding Higher Order Instability

- **12.3 Linearized Vlasov Equation**
 - Equilibrium and Perturbations
 - Linear Vlasov Equation
 - Method of Characteristics
 - Discussion

- **12.4 Collective Modes on a KV Equilibrium Beam**
 - KV Equilibrium
 - Linearized Equations of Motion
 - Solution of Equations
 - Mode Properties
 - Physical Mode Components Based on Fluid Model

- **12.5 Global Conservation Constraints**
 - Conserved Quantities
 - Implications

- **12.6 Kinetic Stability Theorem**
 - Effective Free Energy
 - Free Energy Expansion in Perturbations

<table>
<thead>
<tr>
<th>Dec 11, 14 13:35</th>
<th>00.outline.txt</th>
<th>Page 6/7</th>
</tr>
</thead>
</table>

- **Perturbation Bound and a Sufficient Condition for Stability**
 - Interpretation and Example Applications

- **12.7 rms Emission Growth and Nonlinear Forces**
 - Equations of Motion
 - Coupling of Nonlinear Forces to rms Emission Evolution

- **12.8 rms Emission Growth and Nonlinear Space-Charge Forces**
 - Equations of Motion
 - rms Equivalent Beam Forms

- **12.9 Uniform Density Beams and Extreme Energy States**
 - Variational Formulation
 - Self-Field Energy Minimization

- **12.10 Collective Relaxation and rms Emission Growth**
 - Conservation Constraints
 - Relaxation Processes
 - Emission Growth Bounds from Space-Charge Nonuniformities

- **12.11 Halo Induced Mechanism of Higher-Order Instability**
 - Halo Model for an Elliptical Beam
 - Pumping Mechanism
 - Stability Properties

- **12.12 Phase Mixing and Landau Damping in Beams**
 - (to be added in future versions)

- **Contact Information**
 - References
 - Acknowledgments

- **13. Pressure, Scattering, and Electron Effects (JJB)**
 - 13.1 Beam/beam Coulomb collisions
 - 13.2 Beam/residual-gas scattering
 - 13.3 Charge-changing processes
 - 13.4 Wall effects
 - 13.4.1 gas pressure instability
 - 13.5 Electron cloud processes
 - 13.5.1 Multiple-bunch beam-induced multipacting
 - 13.5.2 Single-bunch beam-induced multipacting
 - 13.6 Electron-ion instability

- **14. Heavy Ion Fusion and Final Focus (JJB)**
 - 14.1 An application of intense beams: Heavy Ion Fusion
 - 14.1.1 Requirements
 - 14.1.2 Targets for inertial confinement fusion
 - 14.1.3 Accelerator
 - 14.1.4 Drift compression
 - 14.1.5 Final focus
 - 14.2 Final focus
 - 14.2.1 Predicting spot size using envelope equation
 - 14.3 Experiments for Heavy Ion Fusion

- **15. Numerical Simulations (SMI)**
 - 15.1 Why Numerical Simulation?
 - 15.2 Classes of Intense Beam Simulations
 - 15.2.A Overview
 - 15.2.B Particle Methods
 - 15.2.C Distribution Methods
 - 15.2.D Moment Methods
 - 15.2.E Hybrid Methods
 - 15.3 Overview of Basic Numerical Methods
 - 15.3.A Discretizations
 - 15.3.B Discrete Numerical Operations
 - Derivatives
 - Quadrature
 - Irregular Grids and Axisymmetric Systems
 - 15.3.C Time Advance
 - Overview
 - Euler and Runge-Kutta Advances
 - Solution of Moment Methods
 - 15.4 Numerical Methods for Particle and Distribution Methods
 - 15.4.A Overview
14.4.B Integration of Equations of Motion
- Leapfrog Advance for Electric Forces
- Leapfrog Advance for Electric and Magnetic Forces
- Numerical Errors and Stability of the Leapfrog Method
- Illustrative Examples
15.4.C Field Solution
- Electrostatic Overview
- Green's Function Approach
- Gridded Field Solution: Equation and Boundary Conditions
- Methods of Gridded Field Solution
- Spectral Methods and the FFT
15.4.D Weighting: Depositing Particles on the Field Mesh and Interpolating Fields to the Particles
- Overview of Approaches
- Approaches: Nearest Grid Point, Cloud in Cell, Area, Splines
15.4.E Computational Cycle for Particle in Cell Simulations
15.5 Diagnostics
15.6 Initial Distribution and Particle Loading
15.7 Numerical Convergence
15.8 Practical Considerations
15.8.A Overview
15.8.B Fast Memory
15.8.C Run Time
15.8.D Machine Architectures
15.9 Overview of the WARP Code
15.10 Example Simulations
Contact Information
Acknowledgments
References
16. Summary of Lectures by John J. Barnard (JJB)
16.1 Emittance and phase space review
16.2 Particle equations of motion (radial and Cartesian)
16.3 Summary of 6 statistical envelope equations and two equations based on particular distribution functions
16.4 Current limits
16.5 Using envelope equations to estimate spot size
16.6 Longitudinal dynamics summary
16.7 Instability summary
16.8 Halo summary
16.9 Electron, gas, pressure, and scattering effects summary
16.10 Summary of HIF