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Abstract

Implementation of an iterative matching scheme for the Kapchinskij-Vladimirskij

equations in the WARP code

by

Sven H. Chilton

Master of Science in Nuclear Engineering

University of California, Berkeley

Professor John Verboncoeur, Chair

The WARP code is a robust electrostatic particle-in-cell simulation package used

to model charged particle beams with strong space-charge forces. A fundamental operation

associated with seeding detailed simulations of a beam transport channel is to generate ini-

tial conditions where the beam distribution is matched to the structure of a periodic focusing

lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs

called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution

of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and

thermal defocusing forces. Recently, an iterative numerical method was developed (Lund,

Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations

for periodic focusing lattices, Physical Review Special Topics – Accelerators and Beams 9,

064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe
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manner. This method is extended and implemented in the WARP code as a Python package

to vastly ease the setup of detailed simulations. In particular, the Python package accom-

modates any linear applied lattice focusing functions without skew coupling, and a more

general set of beam parameter specifications than its predecessor. Lattice strength iteration

tools were added to facilitate the implementation of problems with specific applied focusing

strengths.

Professor John Verboncoeur
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Motivation

The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) carries

out research on warm dense matter physics and developing heavy ion driven energy pro-

duction via inertial confinement fusion. A heavy ion accelerator-based driver is envisioned

to consist of one or more linear accelerators focusing ion beams propagating toward a tar-

geting chamber. Inertial fusion devices have been designed with as few as 8 beams and as

many as hundreds. In the so-called final focusing region, the beams are focused tightly onto

the target, with a spot size of ∼2 mm (diameter). At the center of the targeting chamber

is a spherical capsule of fuel, typically a deuterium-tritium mixture, usually encased in a

thin plastic shell. Beam energy incident on the capsule is then absorbed in the outer layer

of the pellet, causing the plastic coating to ablate in rocket-like blowoff. This ablation

compresses the fuel, increasing its density and pressure, facilitating nuclear fusion. Fuel

temperature also increases during the compression. Ideally, the fuel temperature should be
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higher than the Coulomb barrier (which inhibits fusion reactions) but not so high that the

fusion cross-section of the fuel is lowered.

A fusion capsule can be driven either directly or indirectly. In a direct drive, the

beams deposit energy in the target directly, while in an indirect drive, the beams deposit

energy onto an intermediate called a hohlraum. When beams are absorbed in the walls of

a hohlraum, the deposited kinetic energy heats the walls, which then radiate x-rays. The

hohlraum’s internal geometry is tuned such that the x-rays deposit energy on the capsule

as uniformly as possible. The x-rays are emitted and absorbed many times, which aids this

smoothing.

Direct drive has an advantage over indirect drive in that a greater fraction of the

beam energy can be imparted onto the target by eliminating the larger hohlraum volume

needing to be heated in indirect drive. However, it is considerably more difficult to ensure

that the target is radiated uniformly with direct drive composed of a limited number of

beams. Non-uniformities in heating can lead to less efficient target compression, premature

fuel mixing, and even ejection of fuel.

Inertial confinement devices to date (such as NIF, the National Ignition Facility

at Lawrence Livermore National Laboratory) employ lasers as a driver. Three types of

lasers are presently under consideration for driving fusion reactions: glass, diode-pumped

solid state, and KrF. Using ion beams for this purpose presents several clear advantages

for a practical power plant. Glass lasers are limited in their repetition rate because the

lasing material must cool down between each pulse. Diode-pumped solid state lasers of

the necessary power are prohibitively expensive. KrF lasers have much shorter system



3

lifetimes than either glass or diode lasers. Moreover, ion beams are expected to make more

efficient drivers than lasers. That is, the ratio of energy imparted onto the target to the

energy required to create the driving beam is much greater for ion beams than lasers. In

terms of heating targets, laser drives typically have an efficiency between 10 and 20% [1],

while heavy ion drives have a corresponding efficiency between 25 and 35%. This greater

efficiency helps drive down the cost of electricity (COE) for a heavy ion fusion system.

According to Ref. [2], a prototype 1GW heavy ion fusion power plant would have a COE

of 7.18 cents/kWeh, while Ref. [1] implies a comparable cost for a laser-driven power plant.

However, several figures in Ref. [1] seem to indicate that for driver energies and pulse rates

equal to those in Ref. [2], a laser drive would have a much higher COE than a heavy ion

drive.

Ions can be focused with electromagnetic fields in vacuum rather than with mate-

rial lenses. Energy imparted into a material lens can damage the optics over many shots and

destroy an expensive and complex system component. The fact that ion beams need not

touch the elements focusing them allows for high beam repetition rates that could destroy

material lenses over many shots. As such, heavy ion fusion drivers are expected to have

a much longer lifetime than an equivalent laser-driven system. Perhaps most importantly,

the final focusing elements in a heavy ion fusion device do not lie in the beam path, and

are thus easier to protect from debris from the target implosions, neutrons, and gamma

rays. Typically, a thick liquid shield (in some designs Flibe) encases the targeting chamber,

protecting the final focusing elements and allowing for tritium breeding.

Computer-based numerical modeling of charged particle beams subject to both
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applied focusing forces and self-generated defocusing forces is essential to designing a heavy

ion driver. Given the typical situation of a periodic focusing system and a charged particle

beam much longer than the focusing period length, the Kapchinskij-Vladimirskij (KV)

envelope equations describe, to low order, the statistical evolution of the transverse beam

edge radii. So-called matched solutions to the KV equations have the same period length as

the focusing system. Matched beams are believed to be the most radially compact solutions

to the KV equations. Thus, beam matching is of fundamental importance in efficient

accelerator design. Constructing matched envelope solutions to the KV equations is also a

fundamental step in setting up more detailed simulations to verify machine performance.

Focusing ion beams presents a significant challenge. Space-charge and emittance

(transverse phase space area) both act to defocus the beam. Beams used in an HIF driver

are typically strongly space-charge dominated. To see why, consider a typical driver pulse

with an ion kinetic energy of 4.0 GeV, a total energy of 3.61 MJ, and a pulse duration of

9.3 ns (see Sec. II and Table I of Ref. [2]). This pulse is divided over 48 beams composed

of singly charged 197Au ions in a characteristic design choice. This implies that the each

individual beam has a value of dimensionless perveance Q = 7.1 × 10−5 [see Eq. (2.13)].

For comparison, consider the Tevatron accelerator at the Fermi National Laboratory. The

Tevatron accelerates bunches with ∼ 1012 protons to a kinetic energy of 1 TeV, with a bunch

length of approximately 10 ns. This implies a maximum value Q = 8.3 × 10−16. Since the

perveance of a beam characteristic of heavy ion fusion drives is orders of magnitude greater

than that of charged particle beams in more conventional accelerators, any beam model

applicable to heavy ion fusion must include strong space-charge effects.
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Traditional schemes for computing matched beams employ root finding algorithms

to determine the initial beam radii and angles necessary to ensure a match [3, 4, 5]. An

optimal formulation of the conventional root finding procedure for envelope matching has

been presented by Ryne [4]. Typical root finding procedures for matching can be surprisingly

problematic even for relatively simple focusing lattices. Variations in initial conditions can

lead to many inflection points in the envelope functions at the end of the lattice period.

Thus initial guesses close to the actual values corresponding to the periodic solution are

often necessary to employ standard root finding techniques. This is especially true for

complicated focusing lattices with low degrees of symmetry and where focusing strengths

(or equivalently, undepressed single particle phase advances) are large. For large focusing

strength and strong space-charge intensity, the matched envelope solution can be unstable

over a wide range of system parameters [3, 5]. Such instabilities can restrict the basin of

attraction when standard numerical root finding methods are used to calculate the needed

matching conditions — especially for certain classes of solution parameterizations.

In this report we present an iterative procedure first discussed in Ref. [6] to

numerically calculate matched envelope solutions of the KV equations. The method is

implemented in WARP, a large, multidimensional particle-in-cell (PIC) code that serves as

the primary simulation code for the HIFS-VNL. The method has also been extended to

support a broader class of focusing systems.

The basis of our iterative matching procedure is that the distribution of particle

orbits internal to the beam must have a locus of turning points consistent with the beam

edge (envelope). In the absence of beam space-charge, particle oscillation (betatron) ampli-
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tudes calculated from the sine- and cosine-like principal orbits describing particles moving

in the applied focusing fields of the lattice directly specify the matched beam envelope [7].

For finite beam space-charge, the principal orbits and the matched beam envelope cannot

be calculated a priori because the defocusing forces from beam space-charge uniformly dis-

tributed within the (undetermined) beam envelope are unknown. In the iterative matching

(IM) method, a relation between the particle orbits in the presence of space-charge and

the beam envelope is viewed as a consistency equation. This consistency constraint can be

viewed as an expression of a Courant-Snyder invariant [6, 8]. Starting from a simple trial

envelope solution that accounts for both space-charge and applied focusing forces in a gen-

eral manner, the consistency condition is used to iteratively correct the envelope functions

until converged matched envelope solutions are obtained that are consistent with particle

orbits internal to the beam.

The IM method offers superior performance and reliability in constructing matched

envelopes over conventional root finding because the IM iterations are structured to reflect

the periodicity of the actual matched solution rather than searching for parameters that lead

to periodicity. The IM method works for all physically achievable system parameters (even

in cases of envelope instability) and is most naturally expressed and rapidly convergent when

the relative beam space-charge strength is expressed in terms of the depressed particle phase

advance. All other parameterizations of solutions (specified perveances and emittances,

etc.) can be carried out by simple extensions of the IM method rendering the approach

fully general. The natural depressed phase advance parameterization is also useful when

carrying out parametric studies because phase advances are the most relevant parameters for
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analysis of resonance-like effects central to charged particle dynamics in accelerators. The

IM method provides a complement to recent analytical perturbation theories developed to

construct matched beam envelopes in lattices with certain classes of symmetries [9, 10, 11].

In contrast to these analytical theories, the IM method can be applied to arbitrary linear

focusing lattices without skew coupling (i.e. x-y coupling in the linear applied focusing

forces). The highly convergent iterative corrections of the IM method have the same form

for all order iterations after seeding, rendering the method straightforward to code and

apply to numerically generate accurate matched envelope solutions.

In some applications, it is helpful to specify properties of the focusing lattice other

than the maximum focusing strength. The undepressed particle phase advance gives the

phase change over one lattice period of a single particle subject only to applied focusing

fields. A package has been added to allow users to specify a desired undepressed phase

advance for a focusing lattice with a given shape. The package calculates the scale factor

by which the original lattice focusing function must be multiplied to achieve the desired

phase advance. This facility helps code users explore parametric transport limits which are

often expressed in terms of phase advances.

1.2 WARP

WARP is an electrostatic, multidimensional PIC code developed to model ion

beams with intense space-charge for applications to heavy ion fusion [12, 13, 14]. The

code contains a versatile set of tools, including particle-moving, field-solving, loading, and

diagnostic routines. These are linked by an interactive Python interpreter to allow users to
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employ them in a wide variety of simulations without altering the source code. The code

includes optimized relativistic and nonrelativistic particle movers and has 2D transverse

slice, r-z, and full 3D beam descriptions. Particles are moved synchronously in time in all

cases.

WARP is implemented in Fortran 90 (for compiled code; see Ref. [15]) and Python

(see Refs. [16, 17]). The Python interface is employed to link Fortran routines to code less

numerically intensive operations, such as diagnostics. It also grants the user flexibility

to guide simulations. The Fortran routines carry out intense numerical work. A linkage

program called Forthon (see Ref. [18]) allows a Python interpreter to access functions defined

and quantities calculated in the Fortran routines.

WARP can use matched beams to seed more detailed beam simulations. In the

past, WARP has employed root finding algorithms via external packages to calculate initial

conditions necessary for matched beams. As discussed previously, such methods can prove

problematic. Moreover, these matching methods were only implemented for a few specific,

simple lattice types in WARP.

In this study we present the following improvements to WARP: the implementation

of a more powerful iterative matching scheme for the KV envelope equations, and the

addition of a package allowing users to scale lattice focusing strengths to obtain desired

undepressed phase advances.
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Chapter 2

Theoretical Model

In this chapter we examine the transverse dynamics of charged particle beams

subject to applied linear focusing forces. In Sec. 2.1, we derive a model in terms of first and

second-order beam moments of the beam distribution function. This model is sufficiently

general to allow for lattice skew coupling. In Sec. 2.2, we neglect skew coupling and derive

the standard KV envelope equations.

2.1 Moment Advance

We consider an unbunched beam containing a single ion species with charge q

and mass m. We denote the axial coordinate s and the transverse/particle coordinates x

and y. We assume that the beam propagates with axial relativistic factors βb = vb/c and

γb = 1/
√

1 − β2
b in the lab frame, with vb allowed to vary in s. In general, external focusing

elements acting on the beam will not be perfectly aligned with the lab coordinate system.

Assuming that a focusing element is rotated by an angle θ with respect to the x-axis, we
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find that the coordinates in the lens frame (indicated by subscript l) are related to the lab

coordinates (no subscript) as follows (see Ref. [19]):

x = xl cos θ − yl sin θ ; y = xl sin θ + yl cos θ. (2.1)

θ can assume a different value in each optical element, but within each optical element, θ

is constant.

In the lens frame, the applied focusing effects decouple and the particle equations

of motion are given by

x′′l (s) +
(γbβb)

′

γbβb
x′l(s) + κx(s)xl(s) = − q

mγ3
bβ

2
b c

2

∂φ

∂xl
,

y′′l (s) +
(γbβb)

′

γbβb
y′l(s) + κy(s)yl(s) = − q

mγ3
bβ

2
b c

2

∂φ

∂yl
.

(2.2)

Here, primes denote derivatives with respect to the axial machine coordinate s, the functions

κx(s) and κy(s) represent linear applied focusing forces of the transport lattice, c is the speed

of light in vacuo, and φ is the electrostatic potential of the beam. Equations relating the κ

functions to magnetic and/or electric fields of practical focusing elements are presented in

Ref. [5].

For a general quantity ζ, 〈ζ〉 denotes the transverse statistical average of ζ with

respect to the beam distribution function, i.e.

〈ζ〉 ≡
∫

ζf(x, y, x′, y′, s) dx dy dx′ dy′
∫

f(x, y, x′, y′, s) dx dy dx′ dy′
. (2.3)

Here, f denotes the ion distribution function and the integrals are evaluated over the entire

transverse phase space. 〈x〉 and 〈y〉 represent the transverse beam centroid coordinates.

We assume that the beam has a uniform density elliptical profile centered at the

beam centroid and rotated at some angle α (which can vary in s) with respect to the lab
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frame. The relationship between the coordinates in the rotated beam frame (indicated by

subscript b) and the lab frame is given by:

x− 〈x〉 = xb cosα− yb sinα ; y − 〈y〉 = xb sinα+ yb cosα. (2.4)

Neglecting image charge effects, the electrostatic potential within the beam is

φ(xb, yb) = − λ

2πǫ0

[

x2
b

(rx + ry)rx
+

y2
b

(rx + ry)ry

]

+ const. (2.5)

Here, ǫ0 is the permittivity of free space and λ is the beam’s line charge. The beam’s

semi-axial widths rx and ry are related to transverse beam moments as follows:

r2x
4

= 〈x2
b〉 =

(

〈x2〉 − 〈x〉2
)

cos2 α+
(

〈y2〉 − 〈y〉2
)

sin2 α+ 2 (〈xy〉 − 〈x〉〈y〉) sinα cosα,

r2y
4

= 〈y2
b 〉 =

(

〈x2〉 − 〈x〉2
)

sin2 α+
(

〈y2〉 − 〈y〉2
)

cos2 α− 2 (〈xy〉 − 〈x〉〈y〉) sinα cosα.

(2.6)

It is convenient to introduce centroid-centered coordinates

x̃ ≡ x− 〈x〉 ; ỹ ≡ y − 〈y〉. (2.7)

Figure 2.1 illustrates the relationships between the coordinate systems employed

in this model.
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s

x

xl

yl

y

ry(s)
rx(s)

α(s)〈y〉(s)

〈x〉(s)

x̃

xb

ỹ

yb

θ

Figure 2.1: Illustration of the relationships between the coordinate systems used

Given any two centroid-centered quantities ã and b̃, it is readily shown that

〈ãb̃〉 = 〈ab〉 − 〈a〉〈b〉. (2.8)

Thus, we have

r2x
4

= 〈x2
b〉 = 〈x̃2〉 cos2 α+ 〈ỹ2〉 sin2 α+ 2〈x̃ỹ〉 sinα cosα,

r2y
4

= 〈y2
b 〉 = 〈x̃2〉 sin2 α+ 〈ỹ2〉 cos2 α− 2〈x̃ỹ〉 sinα cosα.

(2.9)

In an actual beam transport lattice suitable for heavy ion fusion, the beams gener-

ally occupy the majority of the beam pipe. As such, the beams will in principle be subjected

to image charge effects. However, such effects tend to average out over a lattice period, and

as a first approximation we will neglect image term contributions in the model developed.

The beam potential in Eq. (2.5) is expressed in terms of xb and yb. The chain rule
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is then applied with Eqs. (2.1) and (2.4) to express the beam particle equations of motion

in the lab frame [19, 20]:

x′′ = −(γbβb)
′

γbβb
x′ −Kfxxx−Kfxyy +Ksxx(x− 〈x〉) +Ksxy(y − 〈y〉),

y′′ = −(γbβb)
′

γbβb
y′ −Kfyyy −Kfyxx+Ksyy(y − 〈y〉) +Ksyx(x− 〈x〉).

(2.10)

All the quantities above vary in s. The various K functions are defined as follows:

Kfxx ≡ κx cos2 θ + κy sin2 θ,

Kfxy ≡ (κx − κy) sin θ cos θ,

Kfyx ≡ (κx − κy) sin θ cos θ = Kfxy,

Kfyy ≡ κy cos2 θ + κx sin2 θ,

Ksxx ≡ Ksxb cos2 α+Ksyb sin2 α,

Ksxy ≡ (Ksxb −Ksyb) sinα cosα,

Ksyx ≡ (Ksxb −Ksyb) sinα cosα = Ksxy,

Ksyy ≡ Ksyb cos2 α+Ksxb sin2 α,

(2.11)

where κx and κy are the lattice focusing functions discussed earlier,

Ksxb ≡
2Q

(rx + ry)rx
,

Ksyb ≡
2Q

(rx + ry)ry
,

(2.12)

and

Q =
qλ

2πǫ0mγ3
bβ

2
b c

2
=

qI

2πǫ0mc3γ3
bβ

3
b

. (2.13)

Here, I denotes the beam current. Q is termed the dimensionless perveance, and provides

a measure of beam space-charge strength [3]. It will, in general, vary in s, but if the beam

propagates at a constant velocity and has a constant line charge, Q is constant. Note that
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the K functions all have subscripts beginning with f or s. An initial f subscript means the

function is related to applied focusing terms, while an initial s subscript means the function

is related to space-charge terms.

From Eq. (2.10), we see that the first-order moments (i.e. the centroid coordinates

and angles in the lab frame) evolve as follows:

d

ds

























〈x〉

〈y〉

〈x′〉

〈y′〉

























=

























〈x′〉

〈y′〉

− (γbβb)
′

γbβb
〈x′〉 −Kfxx〈x〉 −Kfxy〈y〉

− (γbβb)
′

γbβb
〈y′〉 −Kfyy〈y〉 −Kfyx〈x〉

























. (2.14)

For convenience, we express the second-order moments in terms of centroid-frame coordi-

nates x̃ and ỹ. Combining the chain rule with Eqs. (2.10) and (2.8) yields the following

equations for second-order moment evolution:

d

ds











































































〈x̃2〉

〈x̃x̃′〉

〈x̃′2〉

〈ỹ2〉

〈ỹỹ′〉

〈ỹ′2〉

〈x̃ỹ〉

〈x̃′ỹ〉

〈x̃ỹ′〉

〈x̃′ỹ′〉











































































=











































































2〈x̃x̃′〉

〈x̃′2〉 +Kxx〈x̃2〉 +Kxy〈x̃ỹ〉 − (γbβb)
′

γbβb
〈x̃x̃′〉

2Kxx〈x̃x̃′〉 + 2Kxy〈x̃′ỹ〉 − 2 (γbβb)
′

γbβb
〈x̃′2〉

2〈ỹỹ′〉

〈ỹ′2〉 +Kyy〈ỹ2〉 +Kyx〈x̃ỹ〉 − (γbβb)
′

γbβb
〈ỹỹ′〉

2Kyy〈ỹỹ′〉 + 2Kyx〈x̃ỹ′〉 − 2 (γbβb)
′

γbβb
〈ỹ′2〉

〈x̃′ỹ〉 + 〈x̃ỹ′〉

〈x̃′ỹ′〉 +Kxx〈x̃ỹ〉 +Kxy〈ỹ2〉 − (γbβb)
′

γbβb
〈x̃′ỹ〉

〈x̃′ỹ′〉 +Kyy〈x̃ỹ〉 +Kyx〈x̃2〉 − (γbβb)
′

γbβb
〈x̃ỹ′〉

Kxx〈x̃ỹ′〉 +Kxy〈ỹỹ′〉 +Kyy〈x̃′ỹ〉 +Kyx〈x̃x̃′〉 − 2 (γbβb)
′

γbβb
〈x̃′ỹ′〉











































































,

(2.15)
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where

Kxx ≡ Ksxx −Kfxx,

Kyy ≡ Ksyy −Kfyy,

Kxy ≡ Ksxy −Kfxy,

Kyx ≡ Ksyx −Kfyx = Kxy.

(2.16)

The rotation angle α of the elliptical beam can be expressed in terms of second-

order beam moments, and thus need not be specified explicitly. From Eq. (2.4), we have

〈x̃2〉 − 〈ỹ2〉 =
(

〈x2
b〉 − 〈y2

b 〉
)

cos 2α, (2.17)

and

2〈x̃ỹ〉 =
(

〈x2
b〉 − 〈y2

b 〉
)

sin 2α, (2.18)

so that

tan 2α =
2〈x̃ỹ〉

〈x̃2〉 − 〈ỹ2〉 . (2.19)

The formula above is useful when solving for the various second-order beam moments nu-

merically.

Equations (2.14) and (2.15) represent closed systems of first and second-order beam

moments, respectively. The Kf functions depend only on the lattice focusing functions κj

and the lattice misalignment angle θ, all of which are regarded as specified in the lattice

description. Similarly, the Ks functions depend on Q, rj , and α. Q is independent of beam

moments, while rj and α can be expressed in terms of second-order moments. Thus, both

Eqs. (2.14) and (2.15) are closed. This closure results from the assumption of a uniform

density elliptical beam (possibly rotating and with varying ellipticity) for all values of s.
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Although such an assumption is not correct for smooth, non-KV distributions, it is expected

to provide a reasonable approximation at high space-charge intensities.

2.2 KV equations

For simplicity, assume a system in which both the focusing elements and beam

profile are aligned with the lab frame, i.e. θ = α = 0. This implies that xl = x, yl = y,

xb = x̃ and yb = ỹ. In this case, the equations of motion in the centroid-centered frame [see

Eqs. (2.10)–(2.12)] reduce to

x̃′′(s) +
(γbβb)

′

γbβb
x̃′(s) +

{

κx(s) − 2Q

[rx(s) + ry(s)] rx(s)

}

x̃(s) = 0,

ỹ′′(s) +
(γbβb)

′

γbβb
ỹ′(s) +

{

κy(s) −
2Q

[rx(s) + ry(s)] ry(s)

}

ỹ(s) = 0.

(2.20)

In this case, the beam envelope’s semi-axes rx and ry are related simply to second order

centroid moments by [see Eq. (2.9) with α = 0] [3]

rx ≡ 2
√

〈x̃2〉, ry ≡ 2
√

〈ỹ2〉. (2.21)

Other useful quantities related to second order beam moments in each plane are

the rms edge emittances [3]

εx ≡ 4
[

〈x̃2〉〈x̃′2〉 − 〈x̃x̃′〉2
]1/2

,

εy ≡ 4
[

〈ỹ2〉〈ỹ′2〉 − 〈ỹỹ′〉2
]1/2

.

(2.22)

The emittances provide a statistical measure of beam phase-space area in the x̃–x̃′ and

ỹ–ỹ′ planes [21]. The emittances are commonly employed to measure thermal defocusing

forces acting on the beam. In general, the emittances will evolve in s for smooth Vlasov

distributions f .
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Differentiating Eq. (2.21) once with respect to s obtains

〈x̃2〉′ = 2〈x̃x̃′〉 =
rxr

′

x

2
, (2.23)

and twice yields

〈x̃2〉′′ = 2〈x̃′2〉 + 2〈x̃x̃′′〉 =
r′2x
2

+
rxr

′′

x

2
. (2.24)

Combining Eqs. (2.21)–(2.24) reveals that

〈x̃x̃′′〉 =
rxr

′′

x

4
− ε2x

4r2x
. (2.25)

The ỹ-plane equations are analogous.

Equations describing the transverse statistical beam envelope evolution may be

derived from the equations of motion as follows. The upper of Eq. (2.20) is multiplied

by x̃, while the lower is multiplied by ỹ. Taking the transverse statistical average of both

equations, employing Eqs. (2.23) and (2.25), and factoring out common terms yields the

KV envelope equations with acceleration [21]:

r′′j (s) +
(γbβb)

′

γbβb
r′j(s) + κj(s)rj(s) −

2Q(s)

rx(s) + ry(s)
−
ε2j (s)

r3j (s)
= 0. (2.26)

Here, the subscript j denotes either transverse coordinate x or y.

If the beam moves at constant velocity (i.e., βb and γb are constant) the acceleration

term vanishes, yielding the more familiar form of the KV envelope equations [3, 21]:

r′′j (s) + κj(s)rj(s) −
2Q

rx(s) + ry(s)
−

ε2j
r3j (s)

= 0. (2.27)

In this limit, Q is constant (assuming that the beam line charge and current are constant

as well) as are the emittances εj . The fact that constant beam velocity implies constant

emittances follows from the definition of emittance [see Eq. (2.22)] and the equations of
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motion in the centroid-centered frame without acceleration [see Eq. (2.20)]. These results

are consistent with the Vlasov equation only for the KV distribution [22, 23], which is a sin-

gular function of Courant-Snyder invariants. This singular structure can lead to unphysical

instabilities within the Vlasov model [24]. However, if the s-variation of the εj has negligible

effect on the rj, then the KV envelope equations can be applied with εj = const to reliably

model practical machines. This must generally be verified a posteriori with simulations of

the full distribution [25].

Provided that the focusing lattices do not exhibit skew coupling, Eq. (2.27) can be

employed to model a wide range of transport channels, including solenoidal and quadrupole

transport. For solenoidal transport, the equations must be interpreted in a rotating Larmor

frame (see Appendix A of Ref. [5]). In a periodic transport lattice, the κj are periodic with

fundamental lattice period Lp, i.e.,

κj(s+ Lp) = κj(s). (2.28)

If the envelope functions have the same periodicity as the lattice, i.e.,

rj(s+ Lp) = rj(s) (2.29)

the beam is defined as matched. For specified focusing functions κj(s), beam perveance Q,

and emittances εj , the matching condition is equivalent to requiring that rj and r′j satisfy

specific initial conditions at s = si when the envelope equations (2.27) are integrated as an

initial value problem. The required initial conditions generally vary with the phase of si

in the lattice period because the matched solution vaies periodically in s. In conventional

procedures for envelope matching, needed initial conditions are typically found by numerical
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root finding starting from guessed seed values [5]. This numerical matching can be especially

problematic when: applied focusing strengths are large, the focusing lattice is complicated

and devoid of symmetries that can reduce the dimensionality of the root finding, choices

of solution parameters require extra constraints to effect, and where the matched beam

envelope is unstable.

If a single particle is only influenced by external, applied fields, its motion in both

transverse planes is described by Hill’s Equation:

x′′(s) + κx(s)x(s) = 0,

y′′(s) + κy(s)y(s) = 0.

(2.30)

Here, x and y denote the transverse particle coordinates. The solution to Hill’s Equation

can be expressed in matrix form as








x(s)

x′(s)









=









C0x(s|si) S0x(s|si)

C ′

0x(s|si) S′

0x(s|si)

















x(si)

x′(si)









,









y(s)

y′(s)









=









C0y(s|si) S0y(s|si)

C ′

0y(s|si) S′

0y(s|si)

















y(si)

y′(si)









.

(2.31)

The 2 × 2 matrices on the right side of both of the above equations are termed the transfer

matrices in the j-plane from an initial axial coordinate s = si to axial coordinate s. These

matrices are denoted as

M0j(s|si) =









C0j(s|si) S0j(s|si)

C ′

0j(s|si) S′

0j(s|si)









. (2.32)

The terms C0j(s|si) and S0j(s|si) denote cosine-like and sine-like principal orbit functions

satisfying

F ′′

0j(s|si) + κj(s)F0j(s|si) = 0, (2.33)
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with F representing C or S with C0j subject to cosine-like initial (s = si) conditions

C0j(si|si) = 1 and C ′

0j(si|si) = 0, and with S0j subject to sine-like initial conditions

S0j(si|si) = 0 and S′

0j(si|si) = 1.

The undepressed particle phase advance per lattice period σ0j provides a dimen-

sionless measure of the strength of the applied focusing functions κj describing the periodic

lattice [5, 7]. The σ0j can be calculated from [7]

cos σ0j =
1

2
Tr M0j(si + Lp|si) =

1

2
[C0j(si + Lp|si) + S′

0j(si + Lp|si)]. (2.34)

The σ0j are independent of the particular value of si used in the calculation of the principal

functions. For some particular cases such as piecewise constant κj the principal functions

F0j can be calculated analytically. In general, however, the F0j must be calculated numer-

ically. In the absence of space-charge, the particle orbit is stable whenever σ0j < 180◦ and

parametric bands of stability can also be found for σ0j > 180◦ [5, 8]. For a stable orbit,

the scale of the κj (i.e., κj → ακj with α = const setting the scale of the specified κj) can

always be regarded as being set by the σ0j . In this context, Eq. (2.34) is employed to fix the

scale of the κj in terms of σ0j and other parameters defining the κj . Because there appears

to be no advantage in using stronger focusing with σ0j > 180◦ in terms of producing more

radially compact matched envelopes [5, 26], we will assume in all analysis that follows that

the κj are sufficiently weak to satisfy σ0j < 180◦.

The formulation given above for calculating the undepressed principal orbits C0j

and S0j and the undepressed particle phase advances σ0j can also be applied to calculate the

depressed principal orbits Cj and Sj and the depressed phase advances σj in the presence

of uniform beam space-charge density for a particle moving within the matched KV beam
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envelopes. This is done by replacing

κj → κj −
2Q

(rx + ry)rj
(2.35)

in Eq. (2.33) and dropping the subscript 0s in Eqs. (2.31)–(2.34) for notational clarity (i.e.,

C0j → Cj and S0j → Sj). Explicitly, the depressed principal functions satisfy

F ′′

j (s|si) + κj(s)Fj(s|si) −
2QFj(s|si)

[rx(s) + ry(s)]rj(s)
= 0, (2.36)

with F representing C or S with Cj subject to Cj(si|si) = 1 and C ′

j(si|si) = 0, and Sj

subject to Sj(si|si) = 0 and S′

j(si|si) = 1. Analogously to Eq. (2.34), the depressed phase

advances satisfy

cosσj =
1

2
[Cj(si + Lp|si) + S′

j(si + Lp|si)]. (2.37)

For a stable orbit, it can be shown that the σj can also be calculated from the matched

envelope as [5, 7]

σj = εj

∫ si+Lp

si

ds

r2j (s)
. (2.38)

This formula can also be applied to calculate σ0j by using the matched envelope functions

rj calculated with Q = 0.

Phase advances are expressed in units of angle per lattice period. To interpret the

undepressed and depressed phase advances σ0j and σj, consider a particle within a matched

beam envelope subject to Hill’s Equation either with or without space-charge. Assume

the focusing lattice is stable, i.e. 0◦ < σ0j < 180◦. After some number n > 2 of lattice

periods, if the particle returns to its initial conditions, its phase changes by 360◦. The phase

advance of the particle equals 360/n degrees per lattice period. Note from Eq. (2.35) that

the space-charge defocusing term in Hill’s Equation is a strictly positive function subtracted
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from the lattice focusing term, effectively reducing the lattice focusing strength. Thus, the

space-charge lengthens the period of a particle orbit within the beam, i.e. it depresses the

phase advance. Figure 2.2 illustrates the relationship between depressed and undepressed

principal orbits and phase advances for a solenoid focusing lattice with moderate focusing

strength and strong space-charge. All plotted quantities are in the Larmor frame.

−

−

−

−

0 5 10 15 200.020.0150.010.0050
0.0050.01

−rx

rx

κx

Cx

C0x

s/Lp

meters

Figure 2.2: Comparison of depressed and undepressed principal orbits for σ0x = 90◦ and
σx = 18◦. The red and black curves represent rescaled undepressed and depressed x-plane
cosine-like principal orbit functions, respectively. The matched beam envelope is plotted in
green. The x-plane focusing function is plotted (arbitrary scale) in blue.

To solve the KV equations by any method, the lattice focusing functions κj(s) and

three beam parameters must be specified. Other lattice parameters (period length Lp, the

fraction η of the lattice period occupied by focusing elements, etc.) are specified implicitly

through the κj . The undepressed phase advances σ0j are regarded as known from the lattice

focusing functions κj and the particle properties (m, q, βb, etc.).

Formally, specifying Q, εx, and εy is the most natural choice of known beam

parameters, since these appear directly in the KV equations (2.27). However, one may also

eliminate one or more of the perveance and emittances with the depressed phase advances
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σj. Several of these parameterizations are listed in Table 2.1. The expression κj (σ0j)

indicates that lattice focusing functions may specified explicitly in s or implicitly in σ0j if

the overall shapes of the κj are known. It can be convenient, particularly when carrying

out parametric surveys (for example, see Ref. [5]) to specify one or more of the σj because

σj/σ0j is a dimensionless measure of space-charge strength satisfying 0 ≤ σj/σ0j ≤ 1 with

σj/σ0j → 1 representing a warm beam with negligible space-charge (i.e., Q→ 0, or εj → ∞

for finiteQ), and σj/σ0j → 0 representing a cold beam with maximum space-charge intensity

(i.e., εj → 0).

It is assumed that a unique matched envelope solution exists independent of the

parameterization when the κj are fully specified. There is no known proof of this conjecture,

but numerical evidence suggests that it is correct for simple focusing lattices (i.e., simple

κj) when σ0j < 180◦. In typical experimental situations, note that transport lattices are

fixed in geometry and excitations of focusing elements in the lattices can be individually

adjusted. In the language adopted here, such lattices with different excitations in focusing

elements (both overall scale and otherwise) correspond to different lattices described by

distinct κj with corresponding matched envelopes.
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Table 2.1: Common possible parameterizations of matched envelope solutions.

Case Parameters

0 κj (σ0j), Q, εx, εy

1 κj (σ0j), Q, σx, σy

2 κj (σ0j), εx = εy, σx = σy

2a κj (σ0j), εx, εy, σx

2b κj (σ0j), εx, εy, σy

3a κj (σ0j), εx, σx, σy

3b κj (σ0j), εy, σx, σy
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Chapter 3

Matched Envelope Properties

In developing the IM method in Chapter 4, we employ a consistency condition

between depressed particle orbits within the beam and the matched envelope functions

(Sec. 3.1) and use a continuous focusing description of the matched beam (Sec. 3.2) as

part of the formulation to generate a seed iteration. The IM method does not apply to

lattices with skew coupled focusing elements. Acceleration is also neglected because, strictly

speaking, it precludes exact periodicity. However, acceleration effects are often negligible

in one lattice period [i.e., (γbβb)
′ small].

3.1 Consistency Condition

The matching method employs a consistency condition between the matched en-

velope radial function rj and the depressed principal orbit functions Cj and Sj. The consis-

tency condition is derived as follows. First, the transfer matrix Mj of the depressed particle
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orbit in the j-plane is expressed in terms of betatron function-like formulation as [7]

Mj(s|si) =









Cj(s|si) Sj(s|si)

C ′

j(s|si) S′

j(s|si)









(3.1)

with

Cj(s|si) =
rj(s)

rj(si)
cos ∆ψj(s) −

r′j(si)rj(s)

εj
sin ∆ψj(s),

Sj(s|si) =
rj(si)rj(s)

εj
sin ∆ψj(s),

C ′

j(s|si) =

[

r′j(s)

rj(si)
−
r′j(si)

rj(s)

]

cos ∆ψj(s)

−
[

εj
rj(si)rj(s)

+
r′j(si)r

′

j(s)

εj

]

sin ∆ψj(s),

S′

j(s|si) =
rj(si)

rj(s)
cos ∆ψj(s) +

rj(si)r
′

j(s)

εj
sin ∆ψj(s).

(3.2)

Here,

∆ψj(s) = εj

∫ s

si

ds̃

r2j (s̃)
(3.3)

is the change in betatron phase of the particle orbit from s = si to s and the principal

functions Cj and Sj are calculated including the linear space-charge term of the uniform

density elliptical beam from Eq. (2.36). Note that rj ≡
√

εjβj can be used in Eqs. (3.2)

and (3.3) to express the results in terms of the betatron amplitude functions βj describing

linear orbits internal to the beam in the j-plane [7]. These generalized betatron functions are

periodic [i.e., βj(s+Lp) = βj(s)] and include the transverse defocusing effects of uniformly

distributed space-charge within the KV equilibrium envelope.

Isolating cos ∆ψj(s) and sin ∆ψj(s) in Eq. (3.2), invoking the Pythagorean Iden-

tity, and collecting terms yields

βj(s) =
r2j (s)

εj
=

εj
r2j (si)

S2
j (s|si) +

r2j (si)

εj

[

Cj(s|si) +
r′j(si)

rj(si)
Sj(s|si)

]2

. (3.4)
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The periodicity of rj(s) and r′j(s) and the fact that ∆ψj(si +Lp) = σj allows us to express

rj(si) and r′j(si) as

rj(si) =

√

εjSj(si + Lp|si)

sinσj
(3.5)

and

r′j(si) =

√

εj
sinσjSj(si + Lp|si)

[

cos σj − Cj(si + Lp|si)
]

. (3.6)

Substituting Eqs. (3.5) and (3.6) into Eq. (3.4) obtains the following consistency condition

between the matched envelope radii and principal orbits:

βj(s) =
r2j (s)

εj
=

S2
j (s|si)

Sj(si + Lp|si)/ sin σj

+
Sj(si + Lp|si)

sinσj

[

Cj(s|si) +
cos σj −Cj(si + Lp|si)

Sj(si + Lp|si)
Sj(s|si)

]2

.

(3.7)

Equation (3.7) shows that the linear principal functions Cj and Sj need only be calculated

in s from some arbitrary initial point (si) over one lattice period (to si + Lp) to specify

the consistency condition for the matched envelope functions rj(s), or equivalently, the

betatron amplitude functions βj(s) = r2j (s)/εj . Equation (3.7) can also be derived using

Courant-Snyder invariants of particle orbits within the beam.

As the equations above show, the matched radial functions rj can be calculated

from the principal orbits Fj . However, the ODE governing principal orbit evolution depends

on the matched radii. Solving a coupled system of KV and principal orbit equations is

more difficult than the original problem of finding matched solutions to the KV equations.

However, this system can be solved via an iterative approach, as illustrated in Chapter 4,

to obtain a superior numerical matching method.
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3.2 Continuous Limit

In the continuous limit, we treat the lattice focusing functions as constants, i.e.

we make the substitution

κj →
(

σ0j

Lp

)2

. (3.8)

Here, the σ0j are the undepressed phase advances of the actual s-varying lattice focusing

functions. Denote the lattice period average as

ζ ≡
∫ si+Lp

si

ds

Lp
ζ(s). (3.9)

The matched envelope satisfies rj = const (as does the period average of and function of s

alone), and since the matched rj have the same periodicity as the lattice, r′′j = 0.

In the continuous limit, we replace rj → rj , r
′′

j → 0 and Eq. (3.8) into the KV

equations (2.27) to obtain

(

σ0j

Lp

)2

rj −
2Q

rx + ry
−
ε2j
rj3 = 0. (3.10)

In applications, the continuous limit solution described by Eqs. (3.8)–(3.10) must

be solved under the various parameterizations in Sec. 2.2 (see Table 2.1). For example,

if the emittances and depressed phase advances are known, and we replace rj with rj in

Eq. (2.38), then

rj =

√

εj
(σj/Lp)

. (3.11)

If Q and εj are known, the continuous limit radii may be solved directly from

Eq. (3.10). If the the system is plane-symmetric, i.e. σ0x = σ0y = σ0 and εx = εy = ε,

then rx = ry ≡ rb. In this case, the continuous limit envelope equations decouple, yielding
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a quadratic equation in rb
2. This equation is easily solved as

rb =
1

(σ0/Lp)





Q

2
+

1

2

√

Q2 + 4

(

σ0

Lp

)2

ε2





1/2

. (3.12)

If the lattice focusing system is not plane-symmetric, rx and ry can be solved numerically

via Newton root finding, with rb as calculated above as the starting guess.

If the emittances εj are unknown, but the phase advances and perveance are

known, we rewrite Eq. (3.11) as

(

σj

Lp

)2

rj −
ε2j
rj3 = 0 (3.13)

and combine the formula above with Eq. (3.10) to eliminate the emittance terms, yielding

(

σx

Lp

)2

rx =

(

σ0x

Lp

)2

rx − 2Q

rx + ry
,

(

σy

Lp

)2

ry =

(

σ0y

Lp

)2

ry −
2Q

rx + ry
.

(3.14)

Straightforward algebra shows that

ry
rx

=
σ2

0x − σ2
x

σ2
0y − σ2

y

. (3.15)

Substituting this ratio back into Eq. (3.14) yields

rx =

√
2QLp

√

(σ2
0x − σ2

x) +
(σ2

0x−σ2
x)2

(σ2

0y−σ2
y)

,

ry =

√
2QLp

√

(σ2
0y − σ2

y) +
(σ2

0y−σ2
y)2

(σ2

0x−σ2
x)

.

(3.16)

The continuous limit emittances εj can then be defined in terms of the rj by inverting

Eq. (3.11) and taking εj → εj .
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If the perveance Q is unknown, it can be useful to define a continuous limit value

Q by replacing Q→ Q in Eq. (3.14) to obtain

Q =

(

σ2
0x − σ2

x

)

(rx + ry) rx

2L2
p

=

(

σ2
0y − σ2

y

)

(rx + ry) ry

2L2
p

.

(3.17)

Typically, we express Q as the average of the two equations above to improve accuracy in

numerical calculations.

It is sometimes convenient to combine Eq. (3.10) to eliminate the space-charge

defocusing terms proportional to Q to obtain

(

σ0y

Lp

)2

ry −
(

σ0x

Lp

)2

rx −
ε2y
ry3 +

ε2x
rx3 = 0. (3.18)

In some cases, the continuous limit radii must be calculated by different methods.

For example, one of the rj may be given by Eq. (3.11), while the other is then solved from

Eq. (3.18) via Newton root finding, using the known value of rj as a starting guess. In

other cases, the second rj is solved from Eq. (3.15) instead. However, Eqs. (3.10)–(3.18)

are sufficient for finding any unknown continuous limit parameters and radii, regardless of

which parameters are known at the outset.
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Chapter 4

Iterative Matching Method

An iterative matching method is formulated based on calculating principal orbits

in an initial (seed iteration) assumed envelope and then using the consistency condition (3.7)

to update the envelope radii. The process is seeded, using an envelope with space-charge

based on the continuous limit combined with the actual (applied) periodic focusing lattice,

and then iterated until a fractional error tolerance is met. The process is structured as

illustrated in Fig. 4.1
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Figure 4.1: Schematic of matching method

We formulate the method as follows. Denote the iteration order by a superscript

i = 0, 1, 2, ... The betatron consistency condition (3.7) for the ith iteration is expressed as

βi
j(s) =

[ri
j(s)]

2

εij
=

[Si
j(s|si)]

2

Si
j(si + Lp|si)/ sinσi

j

+
Si

j(si + Lp|si)

sinσi
j

[

Ci
j(s|si) +

cos σi
j − Ci

j(si + Lp|si)

Si
j(si + Lp|si)

Si
j(s|si)

]2

.

(4.1)

Here, all quantities associated with the iteration are superscripted. If the emittances and/or

the depressed phase advances are specified, εij ≡ εj and/or σi
j ≡ σj for all iteration orders.

The principal orbits of the ith iteration for i ≥ 1 are calculated from the previous

iteration by solving

F i ′′
j +

[

κj −
2Qi−1

(ri−1
x + ri−1

y )ri−1
j

]

F i
j = 0. (4.2)

Here, F i
j denotes Ci

j(s|si) or Si
j(s|si) subject to the initial (s = si) conditions Ci

j(si|si) = 1,

Ci ′
j (si|si) = 0 and Si

j(si|si) = 0, Si ′
j (si|si) = 1, and Qi−1 and ri−1

j denote the perveance

and envelope radii calculated in the previous iteration cycle. If Q is specified, then Qi ≡ Q
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in all iteration orders.

The seed (i = 0) iteration is formulated as follows. First, the continuous limit

envelope radii rj are calculated using the formulation in Sec. 3.2. The seed principle orbits

are then calculated from the continuous beam envelope radii rj by solving

F 0 ′′
j +

[

κj −
2Q

(rx + ry)rj

]

F 0
j = 0. (4.3)

Here, F 0
j denotes C0

j (s|si) or S0
j (s|si) subject to the initial (s = si) conditions C0

j (si|si) = 1,

C0 ′

j (si|si) = 0 and S0
j (si|si) = 0, S0 ′

j (si|si) = 1, and Q and rj denote the continuous values

of perveance and envelope radii calculated earlier with Q → Q and εj → εj . Recall from

Sec. 3.2 that Q and εj may be calculated in several different ways depending on the beam

parameters specified. Note also that the seed principal orbits F 0
j are calculated with the

actual lattice focusing functions κj and continuous limit approximate space-charge. The

orbits will consequently exhibit the flutter of the matched envelope driven primarily by the

variation in applied focusing forces with the average effect of space-charge acting to increase

the beam size.

Matched envelope angles for the iteration can be obtained either by numerically

differentiating the discretized solutions of the matched radii ri
j or from the betatron consis-

tency condition. Differentiating the relationship between betatron functions and matched

radii, we see that

ri′
j (s) =

√

√

√

√

εij
βi

j(s)

βi′
j (s)

2
. (4.4)

Iterations are terminated at some value of i where the maximum fractional change
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between i and (i− 1) iterations is less than a specified tolerance tol, i.e.

Max

∣

∣

∣

∣

∣

ri
j − ri−1

j

ri
j

∣

∣

∣

∣

∣

≤ tol, (4.5)

where Max denotes the maximum taken over the lattice period Lp and the component index

j = x, y.

Unspecified beam parameters must be calculated from those known, either to

solve for ri
j directly or to compute the principal orbit functions in the subsequent iteration.

For example, when the depressed phase advances σj are known, we exploit the fact that

ri
j(s) =

√

εijβ
i
j(s) to express Eq. (3.10) as follows:

κx

√

βi
x − 2Qi

√

εix

1
√

εixβ
i
x +

√

εiyβ
i
y

− 1

(βi
x)3/2

= 0

κy

√

βi
y −

2Qi

√

εiy

1
√

εixβ
i
x +

√

εiyβ
i
y

− 1
(

βi
y

)3/2
= 0.

(4.6)

Solving for 1√
εi
xβi

x+
√

εi
yβi

y

in both x- and y-plane versions of Eq. (4.6) and setting both

versions equal yields the following ratio of emittances:

√

εiy
εix

=
κx

√

βi
x − (βi

x)−3/2

κy

√

βi
y −

(

βi
y

)

−3/2
. (4.7)

If the perveance Q is unknown, an iterated value Qi in terms of other beam

quantities is obtained by substituting Eq. (4.7) back into Eq. (4.6). This gives the following

formulas for Qi, i.e. the perveance at a given order of iteration:

Qi =
εix
2

(

κx

√

βi
x − (βi

x)−3/2

)









1

√

βi
x +

√

εi
y

εi
x

√

βi
y









−1

=
εiy
2

(

κy

√

βi
y −

(

βi
y

)

−3/2
)









1
√

βi
y +

√

εi
x

εi
y

√

βi
x









−1

.

(4.8)
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Equivalently, one can express Qi as the average of the two equations above. This is typically

done in the program to improve accuracy in numerical calculations.

If the emittances εj are not specified, their iteration values εij can be calculated

as follows using Eq. (4.8):

εix =
2Qi

κx

√

βi
x − (βi

x)−3/2

1

√

βi
x +

√

εi
y

εi
x

√

βi
y

,

εiy =
2Qi

κy

√

βi
y −

(

βi
y

)

−3/2

1
√

βi
y +

√

βi
x/

√

εi
y

εi
x

.

(4.9)

For parameterizations in which both of the σj are known, the general iterative

procedure is straightforward. The iterated radii ri
j are given at each order by ri

j =
√

εijβ
i
j .

The iterated betatron functions are obtained from Eq. (4.1). Other quantities are iterated

as necessary using Eqs. (4.6) – (4.9).

If the one or more of the depressed phase advances σj are not known, taking

cos σi
j =

1

2
[Ci

j(si + Lp|si) + Si ′
j (si + Lp|si)] (4.10)

represents a simple approach to generating iterated approximations. However, this approach

causes the matching method as illustrated earlier in this section to fail if space-charge is

strong. Numerical evidence suggests that if σj/σ0j ≤ 0.5 , the beam space-charge is great

enough for the method to break down. Strong space-charge can result in compressive

over-corrections producing iterated principal orbits that are easily depressed to zero phase

advance (i.e., σi
j = 0). In this situation, σi

j becomes complex and we find that Eq. (3.7) can

fail to generate an iteration closer to the desired matched envelope solution. For a better

understanding of where and why this problem occurs, see Ref. [6].
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The iterative matching method is extended to the entire parameter space for pa-

rameterizations with one or more of the σj unknown by treating one of the known parameters

(one or two of: Q, εx, or εy) as functions of the unspecified σj and employing a root-rinding

algorithm to determine the σj needed to yield a value of Q or εj consistent with that speci-

fied. These so-called Hybrid Cases are labeled similarly to the parameterizations described

in Table 2.1. For example, given a Case 0 parameterization (Q, εx, εy known), a Hybrid

Case 1 parameterization would correspond to holding Q fixed and using the root finding

algorithm to determine both σj such that εj(σj) = εj |specified to within a specified fractional

numerical tolerance. Similarly, Hybrid Case 2 would correspond to holding the εj fixed and

finding σj such that Q(σj) = Q|specified to within a specified fractional numerical tolerance.
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Chapter 5

Implementation and Verification of

Matching Package

5.1 Lattice Setup

Before the matching program is run, the user must first set up the lattice focusing

functions within WARP by setting lattice description variables within the Python interface.

The user must also define beam parameters (charge species, beam current, etc.). This is

usually done with an external lattice setup script written in Python. To load a lattice setup

script contained in (ascii-compatible) file lattice_setup.py, enter

% python -i lattice_setup.py

in a terminal command line (the -i flag keeps Python open after the script is run), or, after

opening Python, enter within the Python interface

>>> execfile(‘lattice_setup.py’)
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5.2 Matching Package

Most of the matching package is written in Python, as are most WARP routines

that do not entail significant amounts of numerical work. All s-varying quantities (e.g.

envelope radii and angles) are represented as discretized arrays. Several SciPy packages

(see Ref. [27]) were imported to augment the standard WARP routines in implementing the

matching program. SciPy routines employed include:

• scipy.integrate to integrate discretized data using Simpson’s Rule. Use: computing

period-averaged quantities.

• scipy.interpolate to generate interpolating functions from discretized data. Use:

interpolating final envelope radii and angles from arrays broken up into subdomains

to desired coordinates.

• scipy.optimize for root finding. Uses: calculating rj in some parameterizations and

determining σj consistent with specified parameters in hybridized parameterizations.

Modifications were made to WARP’s Fortran-based envelope solver, env.F. First,

functions were added that return the value of either the x− or y−plane lattice focusing

functions κj at a single point in the lattice. Subroutines padded on the lattice functions

return κj at an array of points to more efficiently structure Python calls using vector syntax.

These functions and subroutines effectively link the matching package to the focusing lattice

specified by element descriptions set to define the focusing functions within WARP. Second,

a principal orbit equation solver based on the four-stage, fourth-order Runge-Kutta method

(RK4) was added [28]. This step was taken because SciPy’s ODE solver was too slow.
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The Python-based matching package is named envmatch_KVinvariant.py. It can

be loaded from inside a Python interpreter or script via commands such as

>>> import envmatch_KVinvariant

or

>>> from envmatch_KVinvariant import *

The code is well-commented and documented. For information on a function defined within

the scope of envmatch_KVinvariant.py, the user may either examine the source code or,

in a Python interpreter, enter the native Python command

>>> help(‘function_name’)

or the WARP command

>>> doc(‘function_name’)

To be clear, envmatch_KVinvariant.py consists entirely of function definitions, comments,

documentation, and package imports, so the user cannot compute matched solutions to the

KV equations merely by loading the package into Python.

A single overarching function called Match() computes the matched radii and

angles, along with any beam parameters not specified. This function is composed of many

nested functions. The matched radii and angles are calculated by calling Match() in a

Python interpreter or script, via a command of the form

>>> outputs = Match(keyword options)

The command above is significantly abbreviated. The full tuple of output variables contains

over two dozen items. All of the arguments of Match() are keyword specified options with

reasonable default values, so the function can be called without any arguments in typical



40

applications. To run the matching program with a non-default input variable value, enter

variable_name = value between the parentheses in Match(). The optional arguments of

Match() can be set to tune the numerical tolerances or cases of solution parameterization.

The keyword option names, descriptions, and default values are listed below:

• emitx: real [m-rad]

Default: ‘auto’ sets emitx = top.emitx from WARP inputs.

x-plane beam rms edge emittance.

• emity: (y-plane analogue of emitx)

• sigmax: real [rad/period]

Default: ‘auto’ sets as appropriate from parameter specification

x-plane depressed phase advance.

• sigmay: (y-plane analogue of sigmax)

• SolCase: string

Default: ‘0’ (standard case; corresponds to the usual choice of simulation description

in WARP)

Specifies the solution parameterization. Acceptable values are those given in Table

2.1.

• HybridCase: string

Default: ‘1’

Can set to ‘1’ or ‘2’. Specifies the hybrid parameterization. See the last two

paragraphs of Chapter 4.
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• tol: real [1]

Default: 1.e-6

Maximum fractional difference between successive iterated radial functions in either

x- or y-plane to terminate iterations.

• rftol: real [1]

Default: 10*tol

Maximum fractional tolerance between two succesive root finding iterations. Used in

hybridized root finding. See the last two paragraphs of Chapter 4.

• LatGen: logical

Default: True

If True, the matching program extracts all lattice properties needed for the match.

Should only set to False if the same lattice is used in consecutive simulations. This

option exists only for reasons of numerical efficiency if many solutions are calculated.

It is ignorable in standard uses.

• error_stop: logical

Default: True

If True, the matching program stops if any error trap is tripped and prints a message

explaining the problem. If set to False, the program keeps running through the error,

with possibly unreliable results.

Figures 5.1 and 5.2 show matched solutions to the KV equations calculated by

Match(). In Fig. 5.1, the beam is focused by a simple FODO quadrupole doublet lattice
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with piecewise constant focusing functions κj , lattice period length Lp = 0.5 m, and 50%

quadrupole occupancy. In Fig. 5.2, the lattice is again piecewise constant quadrupole fo-

cusing, but considerably more complicated, as illustrated in the figure. Beam parameters

for both lattices are given in Table 5.1. In this table, Lattice 1 refers to the FODO lattice,

while Lattice 2 refers to the more complicated quadrupole lattice. For both lattices, the

period starts at si = 0.

Table 5.2 lists the total number of IM iterations required to achieve a fractional

tolerance between successively iterated radial functions of 10−6 for each parameterization

in Table 2.1 for Lattices 1 and 2. In parameterizations that require hybridized root-finding,

all iterations are counted.
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Table 5.1: Numerical parameters for matched beams

Parameters Lattice 1 Lattice 2

Q 5 × 10−4 5 × 10−4

εx 50 mm-mrad 50 mm-mrad

εy 50 mm-mrad 50 mm-mrad

σ0x 60◦ 70.2307◦

σ0y 60◦ 67.4392◦

σx 11.9849◦ 16.6113◦

σy 11.9849◦ 14.5614◦

rx(s = si) 11.2712 mm 11.9947 mm

ry(s = si) 11.2712 mm 8.1965 mm

r′x(s = si) 28.1276 mrad 14.9040 mrad

r′y(s = si) -28.1276 mrad -12.6578 mrad
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Table 5.2: Total iterations required to achieve a tolerance of 10−6, with 1000 steps per
period.

Parameterization Hybridized Lattice 1 Lattice 2

0 Yes 14 29

1 No 5 9

2 No 5 5

2a Yes 16 32

2b Yes 16 40

3a No 5 9

3b No 5 9
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Figure 5.1: Matched radial solutions to the KV equations for a FODO quadrupole doublet
focusing lattice. A rescaled and shifted κx = −κy is plotted as well for comparison. Lattice
and beam parameters are given in Table 5.1
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Figure 5.2: Matched radial solutions to the KV equations for a complicated quadrupole
focusing lattice. Lattice and beam parameters are given in Table 5.1

5.3 Comparison Between Matching Package and Particle-

In-Cell Simulations

To assess the validity of the IM method for computing matched solutions to the KV

envelope equations, particle beams in initial KV and waterbag distributions (see Ref. [5,

21]) were advanced through WARP’s transverse slice PIC code. The KV distribution,

a singular function of Courant-Snyder invariants, is the only known Vlasov equilibrium

particle distribution fully consistent with the KV equations. The waterbag distribution,

on the other hand, is a smooth function of Courant-Snyder invariants and not an exact
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Vlasov equilibrium. PIC methods simulate the evolution of Vlasov distribution functions

numerically using discretized elements to represent the smooth Vlasov flow. Demonstrating

good agreement between macro-particle envelope radii statistically calculated in a PIC

simulation with an initial envelope-matched KV distribution and matched envelope radii

calculated from the same initial conditions from the KV equations with the IM method thus

shows a measure of consistency. However, numerical parameters of the simulation must be

chosen for convergence in resolution and statistics for precise agreement.

Figures 5.3 and 5.4 each consist of two plots, depicting fractional differences be-

tween envelope radii calculated using the IM method and PIC simulations. In all cases,

the beams advanced through the PIC code have initial moments corresponding to the rms-

equivalent radii calculated from the KV equations. The PIC envelope deviations plotted in

the left half and right of each figure are for initial KV and waterbag distributions, respec-

tively. Numerical parameters for all PIC simulations are given in Table 5.3.

Several factors account for the differences between the envelopes from the KV

envelope equations and the PIC simulations illustrated in Figs. 5.3 and 5.4. For example,

the KV equations neglect image charge effects, which are included in the PIC simulations.

However, the radius of the simulated conducting pipe was set to 100 mm, roughly 10

times that of the envelope radii, to minimize the influence of image charges PIC envelopes.

Since the KV distribution is an exact Vlasov equilibrium and fully consistent with the KV

envelope equations, one expects arbitrarily good agreement between the KV-matched and

simulated envelope radii. However, achieving such converged agreement requires extremely

fine numerical parameters in the PIC advance due to the sharp spatial boundaries of the



47

KV distribution and the need for simultaneous high statistics to limit simulation noise. The

more simulation particles and the finer the gridding, the greater the agreement between the

KV-matched and PIC envelopes.

Another source of differences between the matched envelopes of the IM method

and the PIC simulations lies in the numerical methods employed to advance the ODEs in

the IM method and to advance macro-particles in the PIC simulations. The principal orbits

in the IM method are calculated numerically by the RK4 method, while the macro-particles

in the PIC runs are advanced by a second-order synchronized leapfrog scheme.

The fact that the initial waterbag distribution is not a Vlasov equilibrium and is

not fully consistent with the KV envelope equations results in some disagreement between

KV-matched envelope radii and the simulated envelope radii. However, the initial beam

distribution appears to have a much weaker effect on the fractional deviations between

KV-matched and PIC-simulated envelopes than the gridding and statistics. As such, the

deviations are not much greater for an initial waterbag distribution than for an initial KV

distribution. The relatively weak dependence on the initial beam distribution helps explain

why the KV equations are so useful in modeling transverse beam evolution.
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Table 5.3: Numerical parameters for PIC runs

Parameters Values

Pipe radius 100 mm

Number of simulation particles 106

Time steps per period 103

x-plane grid points 512

y-plane grid points 512

Number of cells across beam ∼ 50

Number of particles per grid cell ∼ 500

Ratio of pipe radius to envelope radius ∼ 10
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Figure 5.3: Fractional differences between radial solutions to the KV equations for a FODO
quadrupole doublet focusing lattice (Lattice 1) and envelopes calculated from transverse
slice PIC runs with the same initial conditions as the matched beam. The PIC code advances
particle beams initially in the KV distribution (left) and waterbag distribution (right).
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Figure 5.4: Fractional differences between radial solutions to the KV equations for a com-
plicated quadrupole focusing lattice (Lattice 2) and envelopes calculated from transverse
slice PIC runs with the same initial conditions as the matched beam. The presentation is
analogous to Fig. 5.3.
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Chapter 6

Focusing Strength Iterator

For many applications, the undpressed phase advances σ0j are calculated from the

lattice focusing functions κj to provide a measure of the overall lattice focusing strength.

In the matching program discussed in Chapter 5, the σ0j are calculated as follows. When

the lattice is read into WARP and Match() is called, the matching program scans the

lattice focusing functions for any jump discontinuities. If any discontinuities exist, the

lattice is then broken up into subdomains between the discontinuities to ensure accurate

numerical integration. The matching program then solves Eq. (2.33) for the undepressed

principal orbits. This is accomplished via a fixed-step RK4 scheme on each subdomain. In

other words, the scheme solves Hill’s Equation on the first subdomain, then uses the final

condition of the first subdomain as the initial condition on the second subdomain, then

solves Hill’s Equation there, etc. Once the principal orbits are obtained, the undepressed

phase advances are calculated from Eq. (2.34).

Conversely, if the overall shapes of the κj functions are known, the lattice focusing
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strengths can be specified from the σ0j given σ0j < 180◦. A function was written to

determine the scale factor α by which to multiply the focusing strengths input into WARP

to yield a target undepressed phase advance σt
0j . Because the focusing strengths in both

transverse planes are linked, the user must specify whether the target undepressed phase

advance is an x- or y-plane quantity.

The focusing strength iterator first reads in a lattice that the user has set up.

The program then calculates the corresponding undepressed phase advances and computes

σ0j − σt
0j . Since we assume that both σ0j and σt

0j are strictly positive and less than 180◦

for single-particle stability, a positive difference implies that 0 < α < 1, while a negative

difference implies that α > 1. In the first case, the program evaluates σ0j−σt
0j for decreasing

values of α (starting with α = 1) with a user-specificed step size dα (called da in the

program) until reaching a value α = αs where σ0j − σt
0j < 0. The desired α is then found

by bisection root finding, with αs and αs + dα as lower and upper bounds, respectively. In

the second case, α is increased from 1 by a uniform step size until the program finds some

α = αs where σ0j − σt
0j > 0. The desired α is then found by bisection root finding, with αs

and αs − dα as upper and lower bounds, respectively.

The focusing strength iterator is contained in a script named lattice_rescale.py.

After the lattice functions are loaded into Python (see Sec. 5.1), the focusing strength iter-

ator may be read in with Python’s import or execfile commands. A single over-arching

function called rescalefunc() rescales the lattice focusing strength to achieve the target

phase advance. This function contains the following arguments:

• sigma0target: real [deg/period]
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Target value of depressed phase advance.

• plane: string

Set to either ‘x’ or ‘y’. Specifies sigma0target as an x- or y-plane quantity.

• da: real [1]

Default: 0.1

Size by which to increase or decrease the lattice strength scale from the value associ-

ated with the specified lattice to establish a bracket for root finding.

• rftol: real [1]

Default: 1.e-16

Maximum root finding tolerance in lattice strength rescaling.

• steps: integer [1]

Default: 1000

Number of evenly spaced intervals per lattice period to calculate particle phase ad-

vances.

• error_stop: logical

Default: True

If True, the matching program stops if any error trap is tripped and prints a message

explaining the problem. If set to False, the program keeps running through the error,

with possibly unreliable results.

The function rescalefunc() has no output variables, so it is called with a com-

mand of the form
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rescalefunc(sigma0target,plane,other inputs).

The variables sigma0target and plane must be specified whenever rescalefunc() is

called, but the other input variables have default values, and thus need not be specified.

Table 6.1 lists the scale factors as calculated by rescalefunc() necessary to

achieve the specified target phase advances for the lattices depicted in Figs. 5.3 and 5.4.

Lattice 1 refers to the simple FODO lattice (Fig. 5.3), while Lattice 2 refers to the more

complicated quadrupole lattice (Fig. 5.4).

Table 6.1: Scale factors necessary to achieve target phase advances

Lattice 1 Lattice 2

Specified σ0x 60◦ 70.2307◦

Target σ0x α α

20◦ 0.3469 0.3034

40◦ 0.6836 0.5957

60◦ 1 0.8695

80◦ 1.2867 1.1173

100◦ 1.5348 1.3321

120◦ 1.7366 1.5072

140◦ 1.8856 1.6369

160◦ 1.9770 1.7166

170◦ 2.0001 1.7368

175◦ 2.0059 1.7419

179◦ 2.0078 1.7435
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Figure 6.1 offers a different depiction of the use of the focusing strength iterator.

Given the x-plane focusing function κx associated with Lattice 1, we find the principal orbit

C0x plotted in red. A rescaled and shifted κx is plotted as well for comparison. C0x returns

to its initial conditions after 6 lattice periods, implying that the undepressed phase advance

σ0x = 60◦. Now suppose we wish to keep the lattice elements at their same positions and

relative strengths, but multiply their total strengths by some factor α to achieve a target

undepressed phase advance σt
0x = 120◦. The associated principal orbit Ct

0x and focusing

function ακx are plotted in blue.

0 1 2 3
s/Lp

ακx

κx

Ct
0x

meters
C0x

4 5 6
- 4- 2
02

Figure 6.1: Comparison between two FODO quadrupole lattices and associated principal
orbits. The initial lattice focusing function κx has an undepressed phase advance σ0x = 60◦.
κx is multiplied by a scale factor α = 1.7366 to achieve a target phase advance σt

0x = 120◦.
Associated principal orbits C0x (red) and Ct

0x (blue) are plotted.
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Chapter 7

Conclusion

In Ref. [6], a new iterative method for computing matched solutions to the KV

envelope equations was developed. For this master’s project, this iterative matching method

is generalized and fully implemented in WARP, a powerful PIC code. This new incarnation

of the iterative matching method can accommodate any user-specified linear applied lattice

focusing function that do not exhibit skew coupling, and offers a broader set of beam

parameter specification options than its predecessor. Because matched solutions to the KB

envelope equations are used extensively in setting up detailed WARP simulations, the fail-

safe structure and highly flexible setup of the WARP implementation should save code users

considerable effort. To further enhance WARP’s modeling capabilities, a Python script was

added to vary the strength of a specified applied focusing lattice to achieve a target x- or

y-plane undepressed phase advance.
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