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Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations
for periodic focusing lattices
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A new iterative method is developed to numerically calculate the periodic, matched beam envelope
solution of the coupled Kapchinskij-Vladimirskij equations describing the transverse edge trajectory of a
beam in a periodic, linear focusing lattice of arbitrary complexity. Implementation of the method is
straightforward. It is highly convergent and can be applied to all usual parametrizations of the matched
envelope solutions. The method is applicable to all classes of linear focusing lattices without skew
couplings, and also applies to all physically achievable system parameters—including cases where the
matched beam envelope is strongly unstable. Example applications are presented for periodic solenoidal
and quadrupole focusing lattices. Convergence properties are summarized over a wide range of system
parameters.
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I. INTRODUCTION

The Kapchinskij-Vladimirskij (KV) envelope equations
[1–3] are often employed as a simple model of the trans-
verse evolution of intense ion beams. The equations are
coupled ordinary differential equations that describe the
evolution of the beam edge (or rms radii) in response to
applied linear focusing forces of the lattice and defocusing
forces resulting from beam space-charge and transverse
phase-space area (emittances). Although the KV envelope
equations are only fully Vlasov consistent with the singular
KV distribution, the equations can be applied to describe
the low-order evolution of a real distribution of beam
particles when the variation of the statistical beam emit-
tances is negligible or sufficiently slow [2]. Nonlinear
fields that can be produced by nonideal applied focusing
elements, nonuniform beam space-charge, and species
contamination (electron cloud effects, etc.) drive devia-
tions from the KV model. Such effects are suppressed to
the extent possible in most practical designs, rendering the
KV model widely applicable.

The matched solution of the KV envelope equations is
the solution with the same periodicity as the focusing
lattice [1–3]. The matched beam envelope is important
because it is believed to be the most radially compact
solution supported by a periodic linear focusing channel
[3]. Matched envelopes are typically calculated as a first
step in the design of practical transport lattices and for use
in initializing more detailed beam simulations to evaluate
machine performance [2]. The matched envelope solution
is typically calculated by numerically integrating trial so-
lutions of the KV equations from assumed initial condi-
address: smlund@llnl.gov
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tions over one lattice period and searching for the four
initial envelope coordinates and angles that generate the
solution with the periodicity of the lattice [2–4]. An ele-
gant formulation of the conventional root finding proce-
dure for envelope matching has been presented by Ryne
[4]. Conventional root finding procedures for matching can
be surprisingly problematic even for relatively simple fo-
cusing lattices. Variations in initial conditions can lead to
many inflection points in the envelope functions at the end
of the lattice period. Thus initial guesses close to the actual
values corresponding to the periodic solution are often
necessary to employ standard root finding techniques.
This is especially true for complicated focusing lattices
with low degrees of symmetry and where the focusing
strength (or equivalently, the undepressed single particle
phase advance) is large. For large focusing strength and
strong space-charge intensity, the matched envelope solu-
tion can be unstable over a wide range of system parame-
ters [2,3]. Such instabilities can restrict the basin of
attraction when standard numerical root finding methods
are used to calculate the needed matching conditions.

In this article we present a new iterative procedure to
numerically calculate matched envelope solutions of the
KV equations. The basis of this procedure is the observa-
tion that the particle orbits interior to the KV beam must be
consistent with the trajectory of the periodic matched beam
edge (envelope solution). In the absence of beam space
charge, betatron amplitudes calculated from the sinelike
and cosinelike principal orbits describing particles moving
in the applied focusing fields of the lattice directly specify
the matched beam envelope [5]. For finite beam space
charge, the principal orbits describing the betatron ampli-
tudes and matched beam envelope cannot be calculated a
priori because the defocusing forces from beam space
1-1 © 2006 The American Physical Society
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charge uniformly distributed within the (undetermined)
beam envelope are unknown. In the iterative matching
(IM) method, the relations between the betatron ampli-
tudes and the particle orbits are viewed as consistency
equations. Starting from a simple trial envelope solution
that accounts for both space charge and applied focusing
forces in a general manner, the consistency conditions are
used to iteratively correct the envelope functions until
converged matched envelope solutions are obtained that
are consistent with particle orbits internal to the beam.

The IM method offers superior performance and relia-
bility in constructing matched envelopes over conventional
root finding because the IM iterations are structured to
reflect the periodicity of the actual matched solution rather
than searching for parameters that lead to periodicity. The
IM method works for all physically achievable system
parameters (even in cases of envelope instability) and is
most naturally expressed and rapidly convergent when
relative beam space-charge strength is expressed in terms
of the depressed particle phase advance. All other parame-
trizations of solutions (specified perveances and emittan-
ces, etc.) can also be carried out by simple extensions of the
IM method rendering the approach completely general.
The natural depressed phase advance parametrization is
also useful when carrying out parametric studies because
phase advances are the most relevant parameters for analy-
sis of resonancelike effects central to charged particle
dynamics in accelerators. The IM method provides a com-
plement to recent analytical perturbation theories devel-
oped to construct matched beam envelopes in lattices with
certain classes of symmetries [6–9]. In contrast to these
analytical theories, the IM method can be applied to arbi-
trary linear focusing lattices without skew couplings. The
highly convergent iterative corrections of the IM method
have the same form for all order iterations after seeding,
rendering the method straightforward to code and apply to
numerically generate accurate matched envelope solutions.

The organization of this paper is the following. After a
review of the KV envelope equations in Sec. II, various
properties of matched envelope solutions and the continu-
ous focusing limit are analyzed in Sec. III. These results
are used in Sec. IV to formulate the IM method for calcu-
lation of matched solutions to the KV envelope equations.
Example applications of the IM method are presented in
Sec. V to illustrate application and convergence properties
of the method over a wide range of system parameters for a
variety of systems. Concluding comments in Sec. VI sum-
marize the advantages of the IM method over conventional
techniques.
II. THEORETICAL MODEL

We consider an unbunched beam of particles of charge q
and mass m coasting with axial relativistic factors �b �

const and �b � 1=
���������������
1� �2

b

q
. In the KV model, the beam is
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propagating in a linear focusing lattice without skew cou-
plings and has uniform charge density within an elliptical
cross section with principal radii rx and ry along the
transverse x- and y-coordinate axes. When self-fields are
included and image effects are neglected, the envelope
radii consistent with the KV distribution evolve according
to the so-called KV envelope equations [1–3]

 r00j �s� � �j�s�rj�s� �
2Q

rx�s� � ry�s�
�

"2
j

r3
j �s�
� 0: (1)

Here, primes denote derivatives with respect to the axial
machine coordinate s, the subscript j ranges over both
transverse coordinates x and y, the functions �j�s� repre-
sent linear applied focusing forces of the transport lattice,
Q � const is the dimensionless perveance, and "j � const
are the rms edge emittances. Equations relating the func-
tions �j to magnetic and/or electric fields of practical
focusing elements are presented in Ref. [3]. The perveance
provides a dimensionless measure of self-field defocusing
forces internal to the beam [2] and is defined as

 Q �
qI

2��0mc
3�3

b�
3
b

: (2)

Here, I is the constant beam current, c is the speed of light
in vacuo, and �0 is the permittivity of free space. The
perveance Q can be thought of as a scaled measure of
space-charge strength [2]. The rms edge emittances "j
provide a statistical measure of beam phase-space area
projections in x-x0 and y-y0 phase-space [2].

When the emittances are constant ("j � const), the KV
envelope equations (1) are consistent with the Vlasov
equation only for the KV distribution [1,10], which is a
singular function of Courant-Snyder invariants. This sin-
gular structure can lead to unphysical instabilities within
the Vlasov model [11]. However, the KV envelope equa-
tions can be applied to physical (smooth) distributions in
an rms equivalent beam sense [2], with the envelope radii
and the emittances defined by statistical averages of the
physical distribution as

 rx � 2
��������
hx2i

q
; ry � 2

��������
hy2i

q
; (3)

and

 "x � 4�hx2ihx02i � hxx0i2�1=2;

"j � 4�hy2ihy02i � hyy0i2�1=2:
(4)

Here, h� � �i denotes a transverse statistical average over the
beam distribution function. For notational simplicity, we
have assumed zero centroid offset (e.g., hxi � 0). In this
rms equivalent sense, the emittances "j will generally
evolve in s. If this variation has negligible effect on the
rj, then the KV envelope equations can be applied with
"j � const to reliably model practical machines. This must
1-2
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generally be verified a posteriori with simulations of the
full distribution.

For appropriate choices of the lattice focusing functions
�j�s�, Eq. (1) can be employed to model a wide range of
transport channels, including solenoidal and quadrupole
transport. For solenoidal transport, the equations must be
interpreted in a rotating Larmor frame (see Appendix A of
Ref. [3]). In a periodic transport lattice, the �j are periodic
with lattice period Lp, i.e.,

 �j�s� Lp� � �j�s�: (5)

The beam envelope is said to be matched to the transport
lattice when the envelope functions have the same period-
icity as the lattice:

 rj�s� Lp� � rj�s�: (6)

For specified focusing functions �j�s�, beam perveance Q,
and emittances "j, the matching condition is equivalent to
requiring that rj and r0j satisfy specific initial conditions at
s � si when the envelope equations (1) are integrated as an
initial value problem. The required initial conditions gen-
erally vary with the phase of si in the lattice period (be-
cause the conditions vary with the local matched solution).
In conventional procedures for envelope matching, needed
initial conditions are typically found by numerical root
finding starting from guessed seed values [3]. This numeri-
cal matching can be especially problematic when: applied
focusing strengths are large, the focusing lattice is compli-
cated and devoid of symmetries that can reduce the dimen-
sionality of the root finding, choices of solution parameters
require extra constraints to effect, and where the matched
beam envelope is unstable.

The undepressed particle phase advance per lattice pe-
riod �0j provides a dimensionless measure of the strength
of the applied focusing functions �j describing the periodic
lattice [3,5]. The �0j can be calculated from [5]

 cos�0j �
1
2 Tr M0j�si � Lpjsi�; (7)

where M0j�sjsi� denotes the 2	 2 single particle transfer
matrix in the j-plane from axial coordinate si to s.
Explicitly, we have

 M 0j�sjsi� �
C0j�sjsi� S0j�sjsi�
C00j�sjsi� S00j�sjsi�

 !
; (8)

where the C0j�sjsi� and S0j�sjsi� denote cosinelike and
sinelike principal orbit functions satisfying

 F000j�sjsi� � �j�s�F0j�sjsi� � 0; (9)

with F representing C or S with C0j subject to cosinelike
initial (s � si) conditions C0j�sijsi� � 1 and C00j�sijsi� �
0, and with S0j subject to sinelike initial conditions
S0j�sijsi� � 0 and S00j�sijsi� � 1. Equation (7) can be ex-
pressed in terms of C0j and S00j as
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 cos�0j �
1
2�C0j�si � Lpjsi� � S

0
0j�si � Lpjsi��: (10)

The �0j are independent of the particular value of si used
in the calculation of the principal functions. For some
particular cases such as piecewise constant �j, the princi-
pal functions F0j can be calculated analytically. But, in
general, the F0j must be calculated numerically. In the
absence of space charge, the particle orbit is stable when-
ever �0j < 180
 and parametric bands of stability can also
usually be found for �0j > 180
 [2,3,12]. For a stable
orbit, the scale of the �j (i.e., �j ! ��j with � � const
setting the scale of the specified �j) can always be regarded
as being set by the �0j. In this context, Eq. (10) is em-
ployed to fix the scale of the �j in terms of �0j and other
parameters defining the �j. Because there appears to be no
advantage in using stronger focusing with �0j > 180
 in
terms of producing more radially compact matched enve-
lopes [3,13], we will assume in all analysis that follows that
the �j are sufficiently weak to satisfy �0 < 180
.

The formulation given above for calculation of the unde-
pressed principal orbits C0j and S0j and the undepressed
particle phase advances�0j can also be applied to calculate
the depressed principal orbits Cj and Sj and the depressed
phase advances �j in the presence of uniform beam space-
charge density for a particle moving within the matched
KV beam envelopes. This is done by replacing

 �j ! �j �
2Q

�rx � ry�rj
(11)

in Eq. (9) and dropping the subscript 0s in Eqs. (7)–(10) for
notational clarity (i.e., C0j ! Cj and S0j ! Sj). Explicitly,
the depressed principal functions satisfy

 F00j �sjsi� � �j�s�Fj�sjsi� �
2QFj�sjsi�

�rx�s� � ry�s��rj�s�
� 0;

(12)

with F representing C or S with Cj subject to Cj�sijsi� � 1
and C0j�sijsi� � 0, and Sj subject to Sj�sijsi� � 0 and
S0j�sijsi� � 1, and the depressed phase advances satisfy

 cos�j �
1
2�Cj�si � Lpjsi� � S

0
j�si � Lpjsi��: (13)

For a stable orbit, it can be shown that the �j can also be
calculated from the matched envelope as [3,5]

 �j � "j
Z si�Lp

si

ds

r2
j �s�

: (14)

This formula can also be applied to calculate �0j by using
the matched envelope functions rj calculated with Q � 0.

Matched envelope solutions of Eq. (1) can be regarded
as being determined by the focusing functions �j, the
perveance Q, and the emittances "j. The lattice period
Lp is implicitly specified through the �j. We will always
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TABLE I. Possible parametrizations of matched envelope so-
lutions.

Case Parameters

0 �j (�0j), Q, "j
1 �j (�0j), Q, �j
2 �j (�0j), "j, and one of �j
3 �j (�0j), �j, and one of "j
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regard the scale of the �j as being set by the undepressed
phase advances �0j through Eq. (10). For�0j < 180
 there
is no ambiguity in scale choice and the use of the �0j as
parameters enables disparate classes of lattices to be com-
pared in a common framework [3]. The depressed phase
advances �x and �y can be employed to replace up to two
of the three parameters Q, "x, and "y. Such replacements
can be convenient, particularly when carrying out para-
metric surveys (for example, see Ref. [3]) because �j=�0j

is a dimensionless measure of space-charge strength sat-
isfying 0 � �j=�0j � 1 with �j=�0j ! 1 representing a
warm beam with negligible space charge (i.e., Q! 0, or
"j ! 1 for finite Q), and �j=�0j ! 0 representing a cold
beam with maximum space-charge intensity (i.e., "j !
1). We will discuss calculation of matched beam enve-
lopes for the useful parametrization cases listed in Table I.
In cases typical of linear accelerators the focusing func-
tions have equal strength in the x- and y-planes giving
�0x � �0y. In such plane-symmetric cases we denote
�0j � �0. In practical situations where the focusing lattice
and emittances are both plane symmetric with �0j � �0

and "j � ", then the depressed phase advance is also plane
symmetric with �j � � and parametrization cases 2 and 3
are identical. It is assumed that a unique matched envelope
solution exists independent of the parametrization when
the �j are fully specified. There is no known proof of this
conjecture, but numerical evidence suggests that it is cor-
rect for simple focusing lattices (i.e., simple �j) when
�0j < 180
. In typical experimental situations, note that
transport lattices are fixed in geometry and excitations of
focusing elements in the lattices can be individually ad-
justed. In the language adopted here, such lattices with
different excitations in focusing elements (both overall
scale and otherwise) correspond to different lattices de-
scribed by different �j with different matched envelopes.
III. MATCHED ENVELOPE PROPERTIES

In development of the IM method in Sec. IV, we employ
a consistency equation between depressed particle orbits
within the beam and the matched envelope functions
(III A) and use a continuous focusing description of the
matched beam (III B) to model space-charge forces in
construction of a seed iteration. Henceforth, we denote
06420
lattice period averages with overbars, i.e., for some quan-
tity ��s�,

 � �
Z si�Lp

si

ds
Lp
��s�: (15)
A. Consistency condition between particle orbits
and the matched envelope

We calculate nonlinear consistency conditions for the
matched envelope functions rj and the depressed principal
orbit functions Cj and Sj as follows. First, the transfer
matrix Mj of the depressed particle orbit in the j-plane is
expressed in terms of betatron function like formulation as
[5]

 M j�sjsi� �
Cj�sjsi� Sj�sjsi�
C0j�sjsi� S0j�sjsi�

 !
(16)

with

 

Cj�sjsi� �
rj�s�

rj�si�
cos� j�s� �

r0j�si�rj�s�

"j
sin� j�s�;

Sj�sjsi� �
rj�si�rj�s�

"j
sin� j�s�;

C0j�sjsi� �
� r0j�s�
rj�si�

�
r0j�si�

rj�s�

�
cos� j�s�

�

� "j
rj�si�rj�s�

�
r0j�si�r

0
j�s�

"j

�
sin� j�s�;

S0j�sjsi� �
rj�si�

rj�s�
cos� j�s� �

rj�si�r0j�s�

"j
sin� j�s�: (17)

Here,

 � j�s� � "j
Z s

si

d~s

r2
j �~s�

(18)

is the change in betatron phase of the particle orbit from
s � si to s and the principal functions Cj and Sj are
calculated including the linear space-charge term of the
uniform density elliptical beam from Eq. (12) . Note that
rj �

����������
"j�j

p
can be used in Eqs. (17) and (18) to express the

results more conventionally in terms of the betatron am-
plitude functions �j describing linear orbits internal to the
beam in the j-plane [5]. These generalized betatron func-
tions are periodic [i.e., �j�s� Lp� � �j�s�] and include
the transverse defocusing effects of uniformly distributed
space charge within the KV equilibrium envelope.
Recognizing that � j�si � Lp� � �j [see Eq. (14)] and
that the matched envelope functions rj have period Lp
gives
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 �j�s� �
r2
j �s�

"j
�
�Mj�12�s� Lpjs�

sin�j
�
Sj�s� Lpjs�

sin�j
:

(19)

Here, �Mj�12 denotes the 1; 2 component of the 2	 2
matrix Mj and �j can be equivalently calculated from
either Eq. (13) or Eq. (14).

Equation (19) can be applied to numerically calculate
the consistency conditions for the matched envelope func-
tions rj on a discretized axial grid of s locations. As
written, the principal orbit functions employed (i.e., the
Cj and Sj) need to be independently calculated at
each s-location on the grid through one lattice period.
The fact that every period is the same can be applied
to simplify the calculation. For any initial axial coordinate
si we have Mj�s� Lpjs� �Mj�s� Lpjsi � Lp� �
Mj�si � Lpjs�. Multiplying this equation from the right
side by the identity matrix I �Mj�sjsi� �M�1

j �sjsi�where
M�1

j is the inverse matrix and using Mj�si � Lpjs� �
Mj�sjsi� �Mj�si � Lpjsi� gives

 M j�s� Lpjs� �Mj�sjsi� �Mj�si � Lpjsi� �M�1
j �sjsi�:

(20)

Some straightforward algebra employing Eqs. (16), (19),
and (20), and the Wronskian (or symplectic) condition on
Mj [5]

 Cj�sjsi�S
0
j�sjsi� � Sj�sjsi�C

0
j�sjsi� � 1 (21)

yields
 

�j�s� �
r2
j �s�

"j

�
S2
j �sjsi�

Sj�si � Lpjsi�= sin�j
�
Sj�si � Lpjsi�

sin�j

	

�
Cj�sjsi� �

cos�j � Cj�si � Lpjsi�

Sj�si � Lpjsi�
Sj�sjsi�

�
2
:

(22)

Equation (22) explicitly shows that the linear principal
functions Cj and Sj need only be calculated in s from
some arbitrary initial point (si) over one lattice period
(to si � Lp) to calculate the consistency condition for
the matched envelope functions rj�s�, or equivalently, the
betatron amplitude functions �j�s� � r2

j �s�="j. Equa-
tion (22) can also be derived using Courant-Snyder invar-
iants of particle orbits within the beam.

Equations (13) and (22) form the foundation of an
iterative numerical method developed in Sec. IV to calcu-
late the matched beam envelope for any lattice. These
equations express the intricate connection between the
bundle of depressed particle orbits within the uniform
density KV beam and the locus of maximum particle
excursions defining the envelope functions rj. The method
06420
will be iterative because the consistent matched envelope
functions rj are necessary to integrate the linear differen-
tial equations for the depressed orbit principal functions Cj
and Sj. However, in the limit Q! 0, the principal func-
tions do not depend on the rj and the matched envelope can
be immediately calculated from the equations. Thus, the
periodic zero-current matched beam envelope can be di-
rectly calculated using Eq. (22) in terms of the two inde-
pendent, aperiodic linear orbits (i.e., C0j and S0j)
integrated over one lattice period.

Additional constraints on the matched envelope func-
tions rj and/or betatron functions �j are necessary to
formulate the IM method for parametrizations where one
or more of the parameters Q and "j need to be eliminated
(see Table I). Appropriate constraints can be derived by
taking the period average of Eq. (1) for a matched enve-
lope, giving

 �jrj � 2Q
1

rx � ry
� "2

j
1

r3
j

� 0: (23)
B. Continuous limit

In the continuous focusing approximation, we take the
lattice focusing functions �j as constants set according to

 �j !
��0j

Lp

�
2

(24)

with the �0j calculated from Eq. (10) consistent with the
actual s-varying periodic focusing functions �j. Then we
replace rj ! rj in the KV envelope equations (1) and take
rj � const to obtain the continuous limit envelope equa-
tion

 

��0j

Lp

�
2
rj �

2Q
rx � ry

�
"2
j

rj
3 � 0: (25)

Equation (25) provides an estimate of the lattice period
average envelope radii rj in response to the applied focus-
ing and defocusing forces from beam space-charge and
thermal (emittance) effects. Solutions for rj will be em-
ployed to seed the IM method of constructing matched
envelope solutions. In general, the continuous limit ap-
proximations tend to be more accurate for weaker applied
focusing strengths with �0j & 80
. However, even for
higher values of �0j < 180
, the formulas can still be
applied to seed iterative numerical matching methods if
the methods have a sufficiently large ‘‘basin of attraction’’
to the desired solution.

For case 0 parametrizations (specified �0j, Q, and "j),
the solutions of Eq. (25) will, in general, need to be
calculated numerically from a trial guess. Certain limits
are analytically accessible and often relevant. If the beam
perveance Q is zero, or equivalently if �j � �0j, then the
solutions of Eq. (25) are decoupled and are trivially ex-
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pressed as

 rj �

�������������������
"j

��0j=Lp�

s
: (26)

Alternatively, this result can be obtained using rj � rj in
Eq. (14) with �j ! �0j. In the case of a symmetric system
with �0x � �0y � �0 and "x � "y � ", then rx � ry �
rb and the solutions of Eq. (25) decouple and the resulting
quadratic equation in rb2 is solved as

 rb �
1

��0=Lp�

�
Q
2
�

1

2

���������������������������������
Q2 � 4

�
�0

Lp

�
2
"2

s �
1=2
: (27)

In parametrization cases 1–3, the continuous limit so-
lutions rj must be expressed using the depressed phase
advances �j to eliminate one or more of the parameters Q
and "j. In these cases, if the emittances "j are known, then
Eq. (14) can be employed to estimate

 rj �

�����������������
"j

��j=Lp�

s
: (28)

Alternatively, if the perveance Q is known but one or more
of the emittances "j is unknown, we can use Eq. (28) to
eliminate the emittance term(s) in Eq. (25) obtaining
��2

0j � �
2
j �rj � 2QL2

p=�rx � ry�. Taking the ratio of the
x- and y-equations yields

 

ry
rx
�
�2

0x � �
2
x

�2
0y � �

2
y
: (29)

Back-substitution of this result in ��2
0j � �

2
j �rj �

2QL2
p=�rx � ry� then gives

 rx �

�������
2Q
p

Lp����������������������������������������������
��2

0x � �
2
x� �

��2
0x��

2
x�

2

��2
0y��

2
y�

r ;

ry �

�������
2Q
p

Lp����������������������������������������������
��2

0y � �
2
y� �

��2
0y��

2
y�

2

��2
0x��

2
x�

r :

(30)

Smooth-limit formulations in Refs. [14,15] can also be
employed to estimate the rj for systems with high degrees
of symmetry.
IV. NUMERICAL ITERATIVE METHOD FOR
MATCHED ENVELOPE CALCULATION

We formulate a numerical iterative matching (IM)
method to construct the matched beam envelope functions
rj�s� over one lattice period Lp using the developments in
Sec. III. The IM method is formulated for arbitrary peri-
odic focusing functions �j. Constraints necessary to apply
the IM formalism to all cases of envelope parametrizations
listed in Table I are derived.
06420
Label all quantities varying with the iteration number
with a superscript i (i � 0, 1, 2, . . . ) denoting the iteration
order. For example, the ith order envelope functions are
labeled rij. The iteration label should not be confused with
the initial coordinate si and the initial ‘‘seed’’ iteration
corresponds to i � 0. Parameters such as the perveance
Q or emittances "j will also be superscripted to cover
parametrization cases where the quantities are unspecified
and are calculated from the envelope functions and other
parameters (see Table I). For example, "ij denotes the
j-plane emittance at the ith iteration. For parametrization
cases where the value of "j is specified, then "ij � "j �
const.

For iterations i 
 1, we calculate refinements of the
principal orbit functions [see Eq. (12)] in terms of the
envelope calculated at the previous, i� 1 iteration from

 Fi00j � �jF
i
j �

2Qi�1Fij
�ri�1
x � ri�1

y �ri�1
j

� 0: (31)

Here, Fij denotes Cij�sjsi� or Sij�sjsi� which are subject to
the initial (s � si) conditions Cij�sijsi� � 1, Ci0j �sijsi� � 0

and Sij�sijsi� � 0, Si0j �sijsi� � 1. Note that the Fij depend
on the envelope functions ri�1

j and perveance Qi�1 of the
prior, i� 1, iteration. Updated envelope functions rij and/
or betatron functions �ij are calculated [see Eq. (22)] from
the Fij for all i from
 

�ij�s� �
�rij�s��

2

"ij

�
�Sij�sjsi��

2

Sij�si � Lpjsi�= sin�ij
�
Sij�si � Lpjsi�

sin�ij

	

�
Cij�sjsi� �

cos�ij � C
i
j�si � Lpjsi�

Sij�si � Lpjsi�
Sij�sjsi�

�
2
:

(32)

Here, if the parametrization does not specify the depressed
phase advances as �ij � �j, then they are calculated [see
Eq. (13)] for all i from

 cos�ij �
1
2�C

i
j�si � Lpjsi� � S

i0
j �si � Lpjsi��: (33)

In parametrization cases 0 to 3 (see Table I), one or more
of the needed quantities among Qi, "ij, and �ij are not
specified (e.g., for case 1 "ij is undetermined: "ij � "j)
and must be calculated to apply Eq. (32) and/or to calculate
the next (i� 1) iteration principal functions from Eq. (31).
Equations (33) and/or the constraint equations (23) with

Q! Qi, "j ! "ij, and rj ! rij (or in some cases rj !����������
"ij�

i
j

q
) can be employed to calculate parameter elimina-

tions necessary to fully realize each iteration for each case
as follows:

Case 0 (�j, Q, "j specified). The �ij can be calculated
from Eq. (33).
1-6
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Case 1 (�j, Q, and �j specified). The "ij can be calcu-
lated using Eq. (23) expressed in betatron form to obtain

 

"ix
2Qi

�

1����
�ix
p

�
���������
"iy="

i
x

p ����
�iy
p

�x
������
�ix

p
� 1=��ix�3=2

;

"iy
2Qi �

1���������
"ix="iy
p ����

�ix
p

�
����
�iy
p

�y
������
�iy

q
� 1=��iy�3=2

;

(34)

with the ratio "iy="ix on the right-hand side of the equations
determined by

 

�����
"iy
"ix

s
�
�x

������
�ix

p
� 1=��ix�3=2

�y
������
�iy

q
� 1=��iy�3=2

: (35)

Note that expressing the constraints in terms of betatron
functions �ij is necessary in this case because the envelope
functions rij cannot be calculated from Eq. (32) until the "ij
are known, whereas, because of the structure of the enve-
lope equations, the �ij � �r

i
j�

2="ij can be calculated from
Eq. (32) without a priori knowledge of the values of "ij.

Case 2 (�j, "j, and �x specified; or �j, "j, and �y
specified). If necessary, either �ix or �iy can be calculated
from Eq. (33) to enable full specification of the functions
�ij or rij. Then, Qi can be calculated using Eq. (34) and the
�ij, or alternatively, using

 2Qi �
�jrij � �"

i
j�

2=�rij�
3

1=�rix � riy�
(36)

with "ij � "j.
Case 3 (�j, �j, and "x specified; or �j, �j, and "y

specified). First, Eq. (35) and the �ij functions can be
applied to calculate "iy from specified "x, or "ix from
specified "y. Then, Qi can be calculated from the "ij (if
specified, "ij � "j) using Eq. (34) and the �ij, or alterna-
tively, with Eq. (36) and the rij. �

The seed i � 0 iteration is treated as a special case
where the continuous limit formulas derived in Sec. III B
are applied to estimate the leading-order defocusing effect
of space charge on the beam. In this case the principal
functions are calculated from

 F000
j � �jF

0
j �

2QF0
j

�rx � ry�rj
� 0: (37)

Here, F0
j denotes C0

j �sjsi� or S0
j �sjsi� subject to the initial

(s � si) conditions C0
j �sijsi� � 1, C00

j �sijsi� � 0 and
S0
j �sijsi� � 0, S00

j �sijsi� � 1, and Q and rj denote the con-
tinuous focusing approximation perveance and envelopes
calculated from the formulation in Sec. III B with Q! Q
and "j ! "j. The continuous focusing values of Q and "j
06420
used in calculating the rj are set by the parametrization
values in cases where they are specified (e.g.,Q � Q forQ
specified). Otherwise, Q and/or the "j are calculated in
terms of other parameters using the appropriate constraint
equations from Eqs. (26)–(30) applied with Q! Q and
"j ! "j.

Note that the seed envelope functions r0
j calculated

under this procedure are not the continuous limit functions
(i.e., r0

j � rj). Likewise, in parametrizations where they
are not held fixed, the seed perveance and emittances will
not equal the continuous focusing values (i.e., Q0 � Q
and/or "0

j � "j). Because of Eq. (32), the seed envelope
functions r0

j will have a (dominant) contribution to the
envelope flutter from the applied focusing fields of the
lattice with a correction due to space-charge defocusing
forces derived from the continuous limit formulas. This
approximation should produce seed envelope functions r0

j

that are significantly closer to the actual periodic envelope
functions rj than would be obtained by simply applying
continuous limit formulas (i.e., taking r0

j � rj) or by ne-
glecting the effects of space charge altogether [i.e., by
calculating r0

j using Eq. (22) with Q � 0]. Generally
speaking, a seed iteration closer to the desired solution
can reduce the number of iterations required to achieve
tolerance, and more importantly, can help ensure a starting
point within the basin of attraction of the method, thereby
reducing the likelihood of algorithm failure. At the expense
of greater complexity and less lattice generality, alternative
seed iterations can be generated using low-order terms
from analytical perturbation theories for matched envelope
solutions [6–9]. In certain cases, these formulations may
generate seed iterations closer to the matched solution.

Iterations can be terminated at some value of iwhere the
maximum fractional change between the i and �i� 1�
iterations is less than a specified tolerance tol, i.e.,

 Max

��������r
i
j � r

i�1
j

rij

��������� tol; (38)

where Max denotes the maximum taken over the lattice
period Lp and the component index j � x, y. Many nu-
merical methods will be adequate for solving the linear
ordinary differential equations for the principal functions
Cij and Sij of the iteration because they are only required
over one lattice period. Generally, the principal functions
will be solved at (uniformly spaced) discrete points in s
over the lattice period. These discretized solutions can then
be employed with quadrature formulas to calculate any
needed integral constraints to affect the envelope parame-
trizations given in Table I. Finally, the convergence crite-
rion (38) can be evaluated at the discrete s-values of the
numerical solution for rij at the ith iteration using saved
previous iteration values for ri�1

j that are needed for cal-
culation of the ith iteration. It is usually sufficient to
1-7
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evaluate the convergence criterion at some limited, ran-
domly distributed sample of s-values within the lattice
period. Issues of convergence rate and the basin of attrac-
tion of the method are parametrically analyzed for ex-
amples corresponding to typical classes of transport
lattices in Sec. V.

V. EXAMPLE APPLICATIONS

In this section we present examples of the IM method
developed in Sec. IV to construct matched envelope solu-
tions and explore parametric convergence properties for
example solenoidal and quadrupole periodic focusing lat-
tices. For simplicity, examples are restricted to plane-
symmetric focusing lattices with equal undepressed parti-
cle phase advances in the x- and y-planes (i.e., �0j � �0)
and a symmetric beam with equal emittances in both
planes ("j � "). Under these assumptions, the depressed
phase advances �j are also equal in both planes (�j � �)
and parametrization cases 2 and 3 of Table I are identical.
First, parametrization cases 1 (specified �j,Q and �) and 2
(specified �j, ", and �) are examined in Sec. VA. Both of
these cases have specified depressed phase advance � and
represent the most ‘‘natural’’ parametrization of the IM
method. Then results in Sec. VA are extended in Sec. V B
to illustrate how the IM method can be applied to parame-
trization case 0 (specified �j, Q, and ") with unspecified �
while circumventing practical implementation difficulties.

For simplicity, we further restrict our examples to peri-
odic solenoidal and quadrupole doublet focusing lattices
with piecewise constant focusing functions �j�s� as illus-
trated in Fig. 1. Solenoidal focusing has �x�s� � �y�s�, and
alternating gradient quadrupole focusing has �x�s� �
��y�s�. For both the solenoid and quadrupole lattices
illustrated, 	 2 �0; 1� is the fractional occupancy of the
focusing elements in the lattice period Lp. The focusing
strength of the elements is taken to be j�jj � �̂ � const
within the axial extent of the optics and zero outside. For
solenoids, �j � �̂ > 0 in the focusing element; and for
quadrupoles, �x � ��y � �̂ > 0 in the focusing-in-x ele-
ment of the doublet, and �x � ��y � ��̂ < 0 in the
defocusing-in-x element. The free drift between solenoids
has axial length d � �1� 	�Lp. For quadrupole doublet
06420
focusing, the two drift distances d1 � ��1� 	�Lp and
d2 � �1� ���1� 	�Lp separating focusing and defocus-
ing quadrupoles can be unequal (i.e., d1 � d2). A synco-
pation parameter � 2 �0; 1� provides a measure of this
asymmetry. Without loss of generality, the lattice can al-
ways be relabeled to take � 2 �0; 1=2�, with � � 0 corre-
sponding to the focusing and defocusing lenses touching
each other [d1 � 0 and d2 � �1� 	�Lp]. The special case
of � � 1=2 corresponding to equally spaced drifts [d1 �

d2 � �1� 	�Lp=2] is defined as a ‘‘FODO’’ lattice. These
focusing lattices are discussed in more detail in Ref. [3],
including a description of how the focusing strength pa-
rameter �̂ is related to magnetic and/or electric fields of
physical realizations of the focusing elements.

As discussed in Sec. II, for general lattices the scale of
the focusing functions �j can be set by the undepressed
phase advances �0j using Eq. (10). For the piecewise
constant �j defined in Fig. 1, explicit calculations [3]
show that the focusing strength j�̂j is related to �0 by the
constraint equations:
 cos�0 �

8>>>><>>>>:
cos�2�� � 1�	

	 � sin�2��; solenoidal focusing;
cos� cosh� quadrupole focusing:
� 1�	

	 ��cos� sinh�� sin� cosh��

� 2��1� �� �1�	�
2

	2 �2 sin� sinh�;

(39)
Here, for both solenoidal and quadrupole focusing lattices,
� �

������
j�̂j

p
	Lp=2. In the analysis that follows, Eq. (39) is

employed to numerically calculate � for a specified value
of �0, and then �̂ is calculated in terms of other specified
lattice parameters as j�̂j � 4�2=�	Lp�2. The undepressed
phase advance �0 is measured in degrees per lattice period.
Integrations of needed principal orbits to implement the IM
method are carried out with the initial conditions (s � si)
corresponding to the axial midpoint of drifts separating
focusing elements.
1-8
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FIG. 2. (Color) Example matched envelope solutions for (a)
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(� � 0:1) quadrupole focusing lattice. Parameters for all cases
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50 mm mrad. These parameters yield �=�0 � 0:3144, 0:3093,
and 0:3099 for (a), (b), and (c).
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Typical matched envelope solutions rj are shown for one
lattice period in Fig. 2 for solenoid, FODO (� � 1=2)
quadrupole, and syncopated (� � 1=2) quadrupole focus-
ing lattices. Scaled x-plane lattice focusing functions �x
are shown superimposed. Excursions of the matched enve-
lope functions are in-phase for solenoidal focusing (rx �
ry) because the applied focusing is plane symmetric (�x �
�y). In contrast, for quadrupole focusing, the antisymmet-
ric plane focusing (�x � ��y) results in out of phase
envelope flutter in each plane (focus-defocus) leading to
net focusing over the full lattice period in both planes.
06420
Expected symmetries of the matched solutions are present
for both the solenoidal and quadrupole focusing lattices
(see Appendix A). For the quadrupole solutions, note that
the FODO case exhibits a higher degree of subperiod
symmetry than the syncopated case. Leading-order terms
of an analytical perturbation theory for the matched beam
envelope solution [7] can be applied in the limit �! 0 to
show that the envelope excursions (flutter) scale as
 

Max�rx�
rx

� 1

’

8><
>:
�1�cos�0��1�	��1�	=2�

6 ; solenoidal focusing;

�1�cos�0�
1=2�1�	=2�

23=2�1�2	=3�1=2 ; FODO quadrupole focusing:

(40)

Equation (40) shows that for solenoidal focusing the
matched envelope flutter increases with decreasing lattice
occupancy 	 and increasing focusing strength �0. In con-
trast, for FODO quadrupole focusing the flutter depends
weakly on 	 (the variation of Max�rx�=rx � 1 in 	 has a
maximum range of 0:07) and more strongly on �0 (varia-
tion of 0:5). Envelope flutter changes only weakly when
space-charge strength is reduced (i.e., �=�0 increased).

Although the system symmetries assumed simplify in-
terpretation of the matched envelope solutions obtained in
the examples, we note that the numerical methods em-
ployed in calculation of the principal orbits functions and
any necessary constraint equations are not structured to
take advantage of the symmetries of the matched solutions.
Because of this, the examples provide a better guide on the
performance of the IM method in situations where there are
lesser degrees of system symmetry. MATHEMATICA [16]
based programs used in the examples have been archived
[17,18]. These programs can be easily adapted to more
complicated lattices.

A. Case 1 and 2 parametrizations

The IM method described in Sec. IV is applied with
�i � � specified and the unknown parameters of the ith
iteration "i (case 1:Q and � specified) orQi (case 2: " and
� specified) calculated from the constraint equations (34)
and (35). The continuous focusing approximation envelope
radii rj used in the seed (i � 0) iterations are calculated
from Eq. (30) (case 1) and Eq. (28) (case 2). The number of
iterations needed to achieve a 10�6 fractional envelope
tolerance [see Eq. (38)] are presented in Fig. 3 as a function
of �0 and �=�0 for solenoidal, FODO quadrupole, and
syncopated quadrupole focusing lattices employing both
case 1 and case 2 parametrization methods. In Fig. 4,
iterations corresponding to one data point in Fig. 3 (case
2 solenoidal focusing) are shown. This example shows a
result typical for lower to intermediate values of �0, where
the seed iteration r0

j is fairly close to the matched solution
and the first iteration correction r1

j closely tracks the
1-9
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matched solution to within a percent local fractional error.
Higher values of�0 and more complicated lattices result in
both seed iterations farther from the matched solution and
less rapid convergence with iteration number.

The data in Fig. 3 show that the IM method converges
rapidly to small tolerances over a broad range of applied
064201
focusing (�0) and space-charge (�=�0) strength. Not sur-
prisingly, stronger focusing strength (i.e., increasing �0)
requires more iterations for both solenoidal and quadrupole
focusing at the fixed value of lattice occupancy 	 em-
ployed. Also, lesser degrees of lattice symmetry result in
more iterations being necessary for convergence (e.g.,
-10
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lattice convergence rate order: solenoidal, FODO quadru-
pole, syncopated quadrupole). Iterations required appear to
depend only weakly on space-charge strength (�=�0)—
except for solenoidal focusing lattices with very high �0

where required iterations become abruptly larger for weak
space charge with �=�0 close to unity. Even parameters
deep within the regime of strong envelope instability [3]
converge rapidly. Points for �=�0 � 1 are eliminated in
the case 1 examples because the perveance Q is held to a
fixed, finite value and this limit would correspond to a
matched beam envelope with infinite cross-sectional area.
Conversely, for the limit �=�0 � 1 in the case 2 examples,
only one iteration is required for convergence to a finite
solution because for zero space-charge strength the trial
seed iteration generated by Eq. (32) for i � 0 corresponds
to the exact matched envelope to numerical error (i.e.,
when Q0 � 0 the C0

j and S0
j are the principal undepressed

particle orbits which generate the matched envelope of the
undepressed beam). The IM method applies for extremely
strong space charge with �=�0 � 0:1, but probing the
limit �! 0 requires careful analysis of various terms in
the formulation presented in Sec. IV.

Complementary to Fig. 3, the decrease in the log of the
fractional tolerance [see Eq. (38)] achieved with iteration
number is plotted in Fig. 5 for solenoidal and FODO
quadrupole focusing lattices for one set of system parame-
ters. The matched envelopes are calculated using the case 2
methods. Case 1 methods and other system parameters
yield similar results to those presented. We find that the
IM method converges rapidly, with the fractional tolerance
achieved increasing by 1 to 2 orders of magnitude per
iteration till saturating at a value reflecting the precision
of numerical calculations carried out (� 10�15 fractional
accuracy for the examples in Fig. 5).

B. Case 0 parametrization

In parametrization case 0, the matched envelope func-
tions rj are specified by �j, Q, and "j. For the ith iteration,
the depressed phase advances �ij needed to calculate the
iteration envelope functions rij are most simply calculated
using Eq. (33). Unfortunately, this simple method can fail
if space charge is strong and iterations produce envelope
corrections where the radial cross section of the beam is
compressed sufficiently relative to the actual matched
envelope solution over the lattice period. Compressive
overcorrections can produce iteration principal orbits that
are depressed below zero phase advance (i.e., �ij � 0). In
this situation, �ij becomes complex and we find that
Eq. (32) can fail to generate an iteration closer to the
desired matched envelope solution.

To better understand where the problem described above
can occur, a simple continuous focusing estimate (see
Sec. III B) is applied. Taking �j � ��0=Lp�2 and "j � ",
we estimate the envelope compression factor f needed to
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fully depress particle orbits within the matched envelope.
A particle moving within the continuous matched envelope
rj � rb has depressed phase advance ��=Lp�2 �
��0=Lp�

2 �Q=rb
2. Replacing rb ! frb and �! 0 in

this phase advance formula gives

 f �

���
2
p

������������������������������������������������������
1�

�����������������������������������������
1� 4��0"=�QLp��

2
qr : (41)

But for continuous focusing, we have [3]

 

�0"
QLp

�
��=�0�

1� ��=�0�
2 : (42)

Together, Eqs. (41) and (42) show that f � 0:99, 0:95, and
0:90 (corresponding to �1%, 5%, and 10% compressive
overcorrections) will produce fully depressed particle or-
bits for �=�0 < 0:14, 0:31, and 0:44. Numerically ana-
lyzed examples below indicate that this problem can occur
in periodic focusing lattices for more moderate space
charge and compression factors than these continuous
focusing estimates suggest.

The parameter region where the IM method can be
applied using the ‘‘conventional’’ case 0 procedure for
example periodic solenoid and FODO quadrupole lattices
is illustrated in Fig. 6. The region of applicability corre-
sponds to parameters where Eq. (33) can be employed to
calculate the iteration depressed phases advances �ij with-
out obtaining complex values. Iterations necessary to
achieve tolerance are plotted as a function of �0 and
�=�0. Rather than plotting results in terms of the per-
veance Q, Eq. (14) was used to calculate �=�0 from the
matched envelope functions and system parameters to
better quantify the relative space-charge strength where
the method fails. Values of Q were chosen to uniformly
distribute points in �=�0. Note that the IM method works
with the simple initial seed iteration when space charge is
moderate to weak (0:6<�=�0 � 1) but abruptly fails
with increasing space charge (�=�0 < 0:6). Near the point
of failure, convergence becomes slow (iteration counts for
the examples in Fig. 6 can become thousands if points are
chosen sufficiently close to the failure region).

Several alternative methods were attempted to render the
IM method applicable to all case 0 parameters with arbi-
trary space-charge strength. We formulate these methods
without reference to a specific lattice or taking �0x � �0y

and "x � "y to better reflect general case 0 applications.
First, rather than employing Eq. (33) to calculate the de-
pressed phase advance �ij of the iteration, the integral
formula (14) is applied with the envelope functions of
the previous i� 1 iteration with

 �ij � "j
Z si�Lp

si

ds

�ri�1
j �s��

2 : (43)

The anticipation is that �ij calculated from Eq. (43) should
064201
be sufficiently close to the actual depressed phase advance
�j of the converged solution to correct the problem.
Unfortunately, this method, when applied to the example
solenoid and quadrupole lattices, results in systematic
convergence to unphysical solutions. Replacing Eq. (43)
with an ‘‘under-relaxed’’ average over previous iterations
might address this problem. In cases where complex phase
advances resulted, various other simple replacements of
Eq. (33) have been attempted without obtaining satisfac-
tory results.

Several alternative procedures extend applicability to
general case 0 parameters. First, slowly increasing the
perveance Q from some sufficiently small (or zero) value
while implementing the conventional case 0 iteration
method using Eq. (33) proves workable in our tests. In
this scheme, if Eq. (33) fails (i.e., produces unphysical
complex values for �ij), then Q is adaptively decreased
while iterating until the formula becomes valid before
-12
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increasing Q again toward the target value. For strong
space charge this procedure can result in many iterations
being necessary for convergence because small increases
inQwere required in various test cases examined. It is also
difficult to determine optimal increments to increase the
perveance—which complicates practical code develop-
ment and can limit the range of method applicability.

Another, simpler to implement, alternative procedure is
formulated by combining the Sec. VA method for solving
case 1 parametrizations with numerical root finding. In this
‘‘hybrid’’ procedure, the emittances "j calculated from the
x- and y-plane constraint equations (23) are regarded as an
undetermined function of the �j [i.e., "jjspecified �

"j��x; �y�] and trial matched envelope solutions rj are
rapidly calculated to tolerance using matched envelopes
obtained with case 1 methods for specified (guessed) val-
ues of the �j. Numerical root finding can be employed to
refine the guessed values for the �j to obtain the values of
�j consistent with the target values of "j. Because the
"j��x; �y� are smooth, monotonic functions of the �j for
0<�j < �0j, the consistent values of the �j can be found
with relatively small numbers of root finding iterations.
This is particularly true for plane-symmetric systems
(�0j � �0 and "j � ") because one-dimensional root find-
ing can be employed.

The total number of two-dimensional (i.e., the calcula-
tions do not assume plane symmetry) iterations needed to
implement this hybrid method for case 0 is shown in Fig. 7
for example periodic solenoid and FODO quadrupole lat-
tices. Here, the total iteration number represents the sum of
all iterations needed to calculate the emittances to a speci-
fied fractional tolerance while calculating all trial matched
envelope solutions to a separate specified tolerance over all
two-dimensional root finding steps. The same lattices and
presentation methods used in Fig. 6 are employed to aid
comparisons. Note that the full case 0 parameter space is
accessible in this procedure with only relatively modest
total iteration counts in spite of the additional numerical
work resulting from the root finding. A secantlike multi-
dimensional root finding method is employed [16]. Note
that only two-dimensional root finding is necessary in
contrast to four-dimensional root finding associated with
conventional procedures for constructing matched enve-
lope solutions by finding appropriate initial envelope co-
ordinates and angles. Initial root finding iterations are
seeded using continuous focusing model estimates for �j
calculated from Eq. (28) using the seed values of rj.
Subsequent root finding steps in �j employ the previous
step matched envelopes as a seed envelope in the case 1
iterations. For small root finding steps in �j this previous
step seeding saves considerable numerical work. Only one
iteration is necessary for the limit points with �=�0 � 1
because for zero space-charge strength the trial seed itera-
tion is exact to numerical error. Iteration counts at fixed �0
064201
likely increase and decrease in �=�0 due to approximate
iteration seed guesses being (accidentally) farther and
nearer to the actual root than in other cases. If the plane
symmetries are employed (i.e., using "x � "y and �x �
�y), then total iterations required can be further reduced.
Matched envelopes for general case 0 parameters can also
be calculated in similar values of total iterations by anal-
ogously combining case 2 methods with numerical root
finding. In this case 2 hybrid method, values of �j con-
sistent with specified values of Q are calculated using the
two components of Eq. (23) [i.e., set Q! Qj in the j � x
and y components of Eq. (23) and then root solve for �j
consistent with Q � Qj��x; �y�].

VI. CONCLUSIONS

An iterative matching (IM) method for numerical cal-
culation of the matched beam envelope solutions to the KV
-13
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equations has been developed. The method is based on
orbit consistency conditions between depressed particle
orbits within a KV beam distribution and the envelope of
orbits making up the distribution. Application of the IM
method in simplest form requires numerical solution of
linear ordinary differential equations describing principal
particle orbits over one lattice period and the calculation of
a few axillary integrals over the lattice period. A large
basin of convergence enables seeding of the iterations
with a simple trial solution that takes into account both
the envelope flutter driven by the applied focusing lattice
and leading-order space-charge defocusing forces. All
cases of envelope parametrizations can be employed, but
the method is most naturally expressed, and highly con-
vergent, when employing the depressed particle phase
advances �j as parameters—which also corresponds to a
natural choice of parameters to employ for enhanced phys-
ics understanding. Virtues of the IM method are: it is
straightforward to code and applicable to periodic focusing
lattices of arbitrary complexity; it is efficient for arbitrary
space-charge intensity; and it works for all physically
achievable system parameters—even in bands of paramet-
ric envelope instability where conventional matching pro-
cedures can fail.
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APPENDIX: MATCHED ENVELOPE
SYMMETRIES FOR QUADRUPOLE DOUBLET

AND SOLENOIDAL FOCUSING

Consider a periodic quadrupole doublet lattice [3] focus-
ing a beam with equal x- and y-plane emittances (i.e., "x �
"y). To concretely define doublet focusing, we assume that
an s-coordinate origin can be chosen such that the lattice
focusing functions �j�s� satisfy

 �j�s� � ��j��s�; (A1)

in addition to the general quadrupole lattice symmetry
�x � ��y. This doublet focusing symmetry is consistent
with focusing/defocusing elements with axial structure
(i.e., including fringe fields) if both the focusing and
defocusing elements are realized by identical hardware
assemblies with equal field excitations appropriately ar-
ranged in a regular lattice via symmetry operations (i.e.,
translations and rotations). Note that s � 0 corresponds to
the axial location of the drift between two successive
quadrupoles in the periodic lattice (for cases where a finite
fringe field extends into the drifts, this location will be
064201
where �j � 0). Assume that the matched envelope func-
tions satisfying the KV equation (1) are symmetric about
the mid-drift with

 rj�s� � r~j��s�: (A2)

Here, if j � x; y, then ~j � y; x. Take the j � x KV equa-
tion [see Eq. (1)], substitute s! �s. Then employing the
focusing and envelope symmetries in Eqs. (A1) and (A2)
together with �y � ��x obtains the complementary j � y
KV equation, thereby showing that the assumed symmetry
in Eq. (A2) is consistent. An immediate corollary of
Eq. (A2) is that at any mid-drift between quadrupoles,
the envelope is round (i.e., rx � ry) with opposite conver-
gence angles (i.e., r0x � �r0y).

Restrict the situation described above to a symmetric
FODO system where the focusing and defocusing quadru-
poles of the doublet are separated by equal length axial
drifts [3] and the focusing and defocusing elements are
each reflection symmetric about their axial midpoint [i.e.,
within one element, �x�s� ~s� � �x��s� ~s� where s � ~s
is the geometric field center of the element]. These further
assumptions lead to the additional FODO focusing sym-
metry

 �j�s� � �~j�Lp=2� s�: (A3)

With the choice of s � 0 made as above, the focusing and
defocusing optical elements are centered at s � Lp=4 and
s � 3Lp=4 within the period s 2 �0; Lp�. Using steps
analogous to those outlined above, it can be shown that
the matched envelope functions also have the FODO sym-
metry:

 rj�s� � r~j�Lp=2� s�: (A4)

Another FODO symmetry can be obtained by replacing
s! �s in Eq. (A4), applying Eq. (A2), and differentiating
to yield

 r0j�s� � �r
0
j�Lp=2� s�: (A5)

Evaluating this expression at the focusing element centers
at s � Lp=4 and s � 3Lp=4 and invoking periodicity of
the rj with r0j�s� Lp� � r0j�s� shows that the matched
envelope functions are extremized (i.e., r0j � 0) at the
focusing element centers in a symmetric FODO lattice.
The envelope equation (1) then shows that the j-plane
extrema of rj with �j < 0 (defocusing plane) satisfies r00j >
0 and therefore must be a minimum value. Period symme-
tries then require that the other focusing plane extrema
(~j-plane with �~j > 0) corresponds to a maximum value.

Analogous steps to those employed in the analysis of
quadrupole doublet focusing can be applied to solenoidal
focusing (�x � �y) systems with "x � "y to show that
-14
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rx � ry. Consider a periodic solenoidal focusing function
with only a single element in the period that is also reflec-
tion symmetric about the axial midplane (with reflection
symmetry defined as for the FODO quadrupole case
above). Then procedures used above are readily employed
to show that the matched envelope function rj is maximum
at the axial center of the focusing element and is minimum
at the axial center of the drift.
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