Problem 6

Let the equation of motion for a test particle oscillating in a mismatched beam be modeled by:

\[x'' + \frac{k_B}{V_{bo}^2} x' = -\frac{Q}{V_{bo}^6} x^5 + \frac{2\varepsilon Q}{V_{bo}^2} x \cos k_B s \]

Let \(x = A \sin \psi \) and \(x' = k_B A \cos \psi \)

where \(\psi = k_B s + \alpha \)

a) Calculate \(A' \) and \(\alpha' \) in terms of \(A, \psi, k_B, s \)

(b) and parameters.

Let \(\Phi'_r = 2k_B - k_B + 2\alpha' \)

b) Average over rapid variations to obtain equations for the amplitude and phase of the near resonant particles, i.e., find \(A'_r(\Phi_r, A_n) \) and \(\Phi'_r(\Phi_r, A_n) \).

c) Define \(\omega = A_r^2 \). Find \(\omega'(\Phi_r, \omega) \) and \(\Phi'_r(\Phi_r, \omega) \).

d) Find the Hamiltonian \(H \), such that

\[\omega' = \frac{\partial H(\omega, \Phi_r)}{\partial \Phi_r} \quad \text{and} \quad \Phi'_r = -\frac{\partial H(\omega, \Phi_r)}{\partial \omega} \]

e) Verify that \(H(\omega, \Phi_r) \) is a constant.

Hint for part (c): \(\sin^6 x = \frac{1}{32} (10 - 15 \cos 2x + 6 \cos 4x - \cos 6x) \)

\(\cos x \sin^5 x = \frac{1}{5} (5 \sin 3x - 4 \sin 4x + \sin 6x) \)
PROBLEM 2

1. Suppose the space charge electric field exterior to the beam, used as

\[E_r \sim \frac{\lambda}{4\pi \epsilon_0} \frac{V_0}{r^3} \]

instead of \[E_r \sim \frac{\lambda}{4\pi \epsilon_0} \frac{1}{r} \]

Would you expect the radial extent of a beam halo due to mismatch to be larger or smaller than the one obeying the \(1/r \) dependence?

HINT: Consider the location of the radius where the particle - envelope radius is strongest. (Assume halo extent is proportional to this radius).
Problem 3

TCE Problem 1

1. Envelope Radius

A. Envelope Radius of a Nonuniform Density Beam

For a uniform density elliptical beam with envelope radii r_x and r_y,

$$ n(x, y) = \begin{cases} \frac{\lambda}{2\pi r_x r_y} & \frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} \leq 1 \\ 0 & \text{otherwise} \end{cases} $$

λ = line-charge density = const.

And we showed in previous problems that,

$$ r_x = 2 \langle x^2 \rangle^{\frac{1}{2}} $$
$$ r_y = 2 \langle y^2 \rangle^{\frac{1}{2}} $$

where

$$ \langle x^2 \rangle = \frac{\int d^2 x \, x^2 \, n(x, y)}{\int d^2 x \, n(x, y)} $$

If the density profile is elliptical with

$$ n(x, y) = n(\xi) \quad \xi^2 = \frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} \quad \text{for } x_e = \text{const.} \quad \text{for } y_e = \text{const.} $$

such that $n(\xi)$ is monotonically decreasing in ξ with a sharp cutoff at $\xi = 1$.

![Graph of n(\xi) with beam edge]

Show that

$$ x_e > \langle x \rangle = 2 \langle x^2 \rangle^{\frac{1}{2}} $$
$$ y_e > \langle y \rangle = 2 \langle y^2 \rangle^{\frac{1}{2}} $$

where $\langle x^2 \rangle$ and $\langle y^2 \rangle$ are defined from the nonuniform density beam. You may use steps/transforms from previous problems.
B. Edge Radius Factor in a 1D Beam

For a 1D sheet beam with uniform density,

\[n(x) = \begin{cases} \frac{N}{2x_b^2} & -x_b \leq x \leq x_b \\ 0 & \text{otherwise} \end{cases} \quad N = \text{const} \]

\[x_b = \text{edge radius} \]

Find an edge radius coefficient \(F \) such that

\[x_b = F \langle x^2 \rangle \]

where, in 1D phase-space,

\[\langle x^2 \rangle = \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} dx' f \quad f = f(x,x',s) \]

1D distribution

Compare \(F \) to the corresponding results for a centered 2D elliptical beam

\[f_x = 2 \langle x^2 \rangle \nu \]
\[f_y = 2 \langle y^2 \rangle \nu \]

Should you expect \(F = 2 \)? Why?
Problem 4

TCE Problem 2

21) Image Charges on a Cylindrical Pipe

Consider a perfectly conducting pipe of radius \(r_p \):

\[
\frac{\partial^2 \phi}{\partial x^2} = 0
\]

\[
\phi(r = r_p) = \text{const}
\]

A) Show that the formula for a line-charge \(\lambda \) at the origin in free-space is:

\[
\phi(r) = -\frac{\lambda}{2\pi\epsilon_0} \ln r + \text{const}
\]

B) Use the formula in part A) to show that a solution to the interior problem \(|x| < r_p \) can be found for a line charge \(\lambda \) at coordinate \(x = x_0 \) by superimposing the direct charge and an image charge at \(x = -C x_0 \). Calculate \(C \) for cylindrical geometry.

Images can be superimposed to obtain the Green's function for the 2D calculation of \(\phi \) within the cylinder.
Problem 5,
TCE Problem 8

Free Expansion of a Beam Envelope.

In the absence of applied focusing forces:

\[\frac{f_x'' - 2Q - \varepsilon_x^2}{f_x + f_y} = 0 \]

\[\frac{f_y'' - 2Q - \varepsilon_y^2}{f_x + f_y} = 0 \]

Initial conditions:

\[(s = s_1): \]

\[f_x(s = s_1) = f_{x_1}; \]

\[f_y(s = s_1) = f_{y_1}; \]

\[f_x'(s = s_1) = f_{x_1}'; \]

\[f_y'(s = s_1) = f_{y_1}'; \]

Part I: \(Q = 0, \varepsilon_x \neq 0, \) free expansion without space charge.

9) Show that the envelope Hamiltonian satisfies:

\[\frac{f_x'}{2} + \frac{\varepsilon_x^2}{2f_x} = \text{const.} \]

\[f_y' \text{ same.} \]

b) Show that the equation in 9) can be written as an integral from the initial condition to solve for the free expansion as a function of \(s. \) You do not need to carry out the integration explicitly.

Part II: \(\varepsilon_x = 0, Q \neq 0, \) free expansion without emittance.

9) Show using \(f_\pm = (f_x \pm f_y)/2 \) that the coupled envelope equations reduce to:

\[f_\pm'' - \frac{Q}{f_\pm} = 0, \quad f_-'' = 0 \]

and satisfy

\[\frac{f_\pm'}{2} - Q \ln f_\pm = \text{const.} \]

\[f_- = C_1 s + C_2 \]

\(C_1, C_2 \) constants.
d) Argue that for finite $Q \neq 0$ that the free expansion without emittance will be more rapid than the free expansion without space charge ($Q=0$, $E_0 \neq 0$) when the beam expands sufficiently.