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How do we describe and calculate the evolution of a collection
of particles under the EM forces in an accelerator?

Beam ——>
- -\-/- \w B
Electric or magnetic
elements that confine Electric fields typically
or focus the beam in gaps for longitudinal
transversely acceleration and

focusing

This array or "lattice" of focusing elements may be arranged in
a linac or circular accelerator

or



Particle equations of motion and dimensionless quantities

Consider the Lorentz force on a particle (mass m, charge g,
momentum p, velocity v =cf, Lorentz factor y) under the influence of
an electric (E) and magnetic field (B):

71—) =q(E +vxB) (Sl units employed throughout)
4
1
p=ymy y* = 5 B=v/c
1-p
y ycomoving
X Xcomovin
't Z 1; g Sy
{ Z . —
< - comoving 5§

Beam center

Consider the x-component of the motion (transverse to the
streaming direction). s is the coordinate of the "design" (ideal) orbit
(equivalent to z for a linear accelerator) and subscripts "comoving"
indicate coordinates comoving with the design particle.

We may transform to s as the independent variable:

ds dx - ,_4d
dt = —; VvV, =—=VX where prime ' =
v, 7/ ds
d :
v,—(ymv x)=q(E +vxB),
ds
2.1 d(wZ)

!/
ymv.x' +xmy,

=qg(E +vxB
s q(E+vxB),

_ x,,+[1 d(wz)]x,= 4 (E+vxB)

y, ds ymy ZZ
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Now consider an unbunched beam of uniform charge density p and
circular cross section, with radius r, y

Line charge density A =ar,*p

First calculate electric field:

Ve E = ﬁ p X
80
2mrE, = mr’ L4 (Gauss theorem) E,
80
A A
= E = 'Or= Lz Ex=Ercos¢9=Er£= iz
2e,  2me, 1, roo2meyr,y

Similarly, calculate the magnetic field:

VxB=u,J @‘]

27rB, = Uy’ pv. (Stokes theorem)
AV, r X AV x
= By =u,——— B, =B,cos0 =B, —=u,——
2me, 1, r 2m 1,
(B, =0)
Let (E+vxB), =(E,-v.B)" +(E +v B -v.B)"
1 d A
= X'+ ) x=—1 2 %[l_ﬂogovf]-FLz(Ex +v,B.-v.B )™
Wz dS )/i’i’lvz 2‘7-’;80 rb v Vm"z T ’

1 . 1 1 . . .
Now u.e, = =x Assuming 5 + B} << — = 7 =T (Paraxial approximation)

(y* =1/(1-v?/c?) equivalent to assuming """, ;""" << 1).

q A x

X' = P -(E,+v,B.-v.B)"

) 2
y'mv? 2me, r,  ymv, 4

1 d
:>x”+[—(LZ)
yw, ds
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First consider the self-field.

1 d A
X"+ 1 o) X' = 3q > 12+ 1 ~(E_ +v B -v B )™
y, ds y'mv. 2me, 1, ymv, ' '

x q ex
- QF + (E,+v,B,-v.B)) !
b

2
Z

A
yp— for )/zvz2 <<c’
TTE
A . 0
= 3q 5 = Generalized Perveance —- A 2.2 2
y'mv; 2me, Ve for yv.>>c
ZnEOV(q 2)
mc
le) 21 1 4 3
__ale) 21 — Where IOEMzM MA
mim, 1, v e

Here qV=(y-1)mc? = ion Kinetic energy,
e is the proton charge, and m,,,, is the atomic mass unit.
Also note in the non-relativistic limit:

1/2

1 I

Q= (_m) ( 3/2) (non —relativistic)
dme,\2q) \V

(same scaling as original term "perveance" characterizing injectors)

0 Py forb(Er -v.By)dr  Potential energy of beam particle
vV o 1% ~ Kinetic energy of beam particle
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Now consider the external field. We often try to create focusing forces
that are linear in x (examples are: electric or magnetic quadrupoles,
solenoids, Einzel lenses.) So let this focusing force be represented by

K(s).

el (E,+v,B.-v.B)" =K(s)x

2

ymy,

d
xll+ |:L (WZ):IXI = Qiz'i' q (Ex +VyBZ _szy)ext
rb ')/I’)’ZVZ ‘ |

w. ds ’

= Qi2 + K(s)x
Ty

The focusing forces are often periodic:
K(s)=K(s+L,) where L ,=period of focusing element
(when dv_/ds = 0, and Q is periodic with period Lp, then:

x"'=f{s)x where f{s) is periodic. (Hill's equation).

For some purposes a suitable constant can be found
which captures the "average" variation (over several periods) of
the particle motion (continuous focusing approximation)

Then we replace the effects of the periodic lattice with
a single focusing parameter kg’

x" + [LM]X’ = Qiz - kéox
yw, ds r,

kﬁO is defined as the "undepressed" betatron frequency
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y, ds r,

Consider a drifting beam (dv_/ds = 0). The particle
equation becomes:

" X 2
x'=0——kgox
,

0
= ‘kéo(l—F)x

polp
This is simple harmonic oscillator equation.
Note some frequently encountered definitions:

go’s

kgo(l— kZ—QZ) =k, = depressed betatron frequency

Define also

0, = koL, = undepressed phase advance (per period)
and

0 =k, L, = depressed phase advance (per period) (includes space charge)

k
= = (1 - %) = tune depression

o i
O kg gols

Examples: 92 0 = Fully tune depressed

=1 = No space charge depression

oq |Q OQ

(so two dimensionless parameters: Q characterizes
space charge relative to ion kinetic energy, o/o, characterizes
space charge force relative to focusing force)
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Space charge reduces betatron phase advance

Without space charge: X=x Cos[kﬁo(s_si)]"'%sm[kﬁo(s_si)] Par}icle orbit

With space charge:

Parti/¢|e orbit

!
Xi

+— sin[kgo — (s - 5,)]
kg Oy

O
Beam envelope "’

X=X cos[kﬁO g (s—s)]
Oy

o/, ~ 5118 ~ 0.277
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Space charge reduces betatron phase advance

. . Focusing quads
T T T
Particle
orbit

With space charge:

Beam envelope

Particle
orbit
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Plasma physics of beams

Physics of space charge = physics of space charge

= plasma physics of particle

beams
Plasma parameter A:
1 Average potential energy ¢,
qo,, = 4 of particle due to its nearest
AT Tip neighbor a distance r;, = n,!"”
_ T (¢ = charge of particle;
4me, " n, = number density)

If <<k.T _, 'Weakly coupled plasma"
Wi ? or simply "plasma"

1/2
| (k, T /m)'" v k,Te, Debye
Ay = =—"= =

p

= characteristic distance whereby charges are
shielded in plasma

: 47
Define A = 7710?»3,) = Plasma Parameter

1/2
T ,
~ ( Ky ) >> | [if g¢,, <<k,T]
qP;p



Ref.: "Introduction to Plasma

Theory," D.R. Nicholson,
[Wiley, 1983].

Klimontovich Equation

N(x,v,t) = Eoﬁ(z =X, (0)o(v =V (1))

N(x,v,t) is the density oflblarticles in phase space.

Note there are N, particles: fN(g,\_z,t) d’x d’v =N,
X,(t) and V(t) are position and velocity of the i"* particle.
The (non-relativistic) equations of motion are:

X =V, my, = qE"(X,(0).t) +qlV, x B"(X,(1).1)]
et w=x-x,0) = TP and Dok p =% L

So taking the derivative of N(x,v,t) with respect to

—(x V1) = —EX (1) V,[8(x - X,(10)0(v -V (1))]

~ B V(1) V,[8(x = X ()3 - V(1))

(Here superscript "m" denotes "microscopic" quantity, not
averaged locally over a small volume).



N 0
= (Z—t(x v,t) = -2 V(1) V. [6(x - X,()0(v -V,(1))]

2( E™(X.(2), t)+—[V><B’"(X (1), t)]) V., [6(x-X,(1)0(v -V .(1)]

Note that V.(#)0(v -V ,(?)) =vo(v -V (1)) SO

=>—(xv )=V E(S(x X.()8(v =V (1)

_ (i E"(x0)+ L x g'"@,t)])- Y, 28(x = X,(1)5(v - V(1)
m m

i=1

;»@um_-v YV N(xp.) - ( E"(x)+ v x B (x. r)]) VN (xp.)

o " Kiimontivich Equation
Note that the total derivative of

a quantity along an orbit in phase space:

d 0 dg dv

T orbit. Y)c + — orbn‘ v

dt at dt dt

N iN(x ol = Note_ tha_t N=0 or infinity,
dt nothing in between!

Average N over some box in phase space. Ax,and Ay
are the dimensions of the box. Assume n™"* << Ax << A,
so that f{x,v,t)is a smoothly varying function.

Ax3, Av3

Now let f(x,v,t) = fN(g,\_},t)d3xd3v = (N(x,v,1))

Ax AV’

Then N = f +6f f=(N) (6F) =0
E"=E+0E E

B"=B+6B B=(B") (8B)=0



i+\_/' yxf+i(g+1_zx§)' V.f =—i<5ﬁ+\_/><5§)' Yv5f>
ot m m
| |

LHS: Smoothly varying part RHS: Average over
"rapidly fluctuating
quantities”, includes
"discrete particle effects
or "collisions”

If collisions are neglected (so set RHS to zero):
we have the "Vlasov Equation™:

Y vV f+ L (E+vxBy Y, f=0
ot m

=0

d
. b 9t
= dtf(ﬂ )

orbit

Phase space density on trajectories is constant.
(Liouville's theorem).



The RHS represents the effects of collisions (i.e.
interactions with non-smoothly varying fields).
Very heuristically:

~L(OE+vx 3By V.0 )~ V. f
m

V. ~Oony
2
o ~ 7,

c

where o is the collision cross section.
For a large angle scattering the kinetic energy of
particle will be of order the potential energy at cl

approach,defining a collision radius by
2 2

k,T ~ d = 1~ 4
dme,r, dme kT

q2 2 (kBT)l/z
=V, ~ | | B| ——
dme k, T m

oy,
16 A, n,




Recall the smoothed equation with the heuristic collision term:

Ly v f+d(ErvxBy V.S =v [
ot m

Consider the third term on the LHS of the equation:
We approximate V, ~1/v,
and Vv _~1/4,
anduse v.p = ple, yielding:

A w’>A
lE'yvaE(ADY'E)YVfNE(q Dl’lo) f b Df
m m m\ €& |v, v,

© T\
~o,f where v, ~(ﬁ)

Similarly, the second term on the LHS of the equation
is approximately:

Vl
v V. f~ A—f ~w,f
D

The first term can be argued a priori to be no greater than

df
ot ”f

The fourth term can be of order the third term if it includes
external focusing or is of order v?/c? if it includes only the self
magnetic field.

So the LHS ~ w, f. Pulling it all together then:

Collision term 1 1
~ — ~ <<1 whenA>>1
LHS 167X n, 12A




Accelerator beams are non-neutral plasmas

Magnetic AR Inertial

confinement ¥ j confinement

fusion {4« fusion
B

Nebula . . . 5

Solar copé

Solar wind gonsign
AN
interstellar space ppuocacdant light
Accelerator beams
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Phase space density conservation

daf

Liouville's theorem: o =0 along a trajectory in phase space.

Let dN =f dx dy dz dp, dp, dp,
The continuity equation in phase space is:

daf

—+ Vo (fve) =0
q,
q,
o O o 17 o o
where v, = %1 and Vg, =204 % X K (Hs  H
P oq,  dq, dq; Ip,  Ip, Ip;
P>
P
If the system is governed by a Hamiltonian H(q,p,t)
dg. JH dp. oH
&=_ and £=__
dt  dp, dt aq,
s (0 (dg,\ 9 (dp, s ( °H  °H
Now Vv = ( q,)+ ( p,) Y _ _0
=\dg;\ dt ) dp;\ dt =\ dq,0p;  dp;9q;
% 1%
= L9 (1) =LA R v + v Vi =0

0

=>d—j;=0 along a 6D trajectory




Emittance and Brightness:

. : ] dN
Liouvilles equation or Vlasov equation = = constant
dx dy dz dpxpyDPz

If X"’ = f(x) and not functions of y or z
y’’ = f(y) and not functions of x or z
z”’ = f(z) and not functions of x ory

dN dN
= ———=constant; ——=constant; and =constant

dx dpx Yy apy Z 4Pz
separately.

Definitions of emittance:
Trace space emittance: area/n of smallest ellipse that encloses all
particles

For non-accelerating paraxial beam x” proportional to p,, etc.

Statistical definition:
Involves statistical averages of 2nd order quantitites such
<x2>,<x’2>, and <xx’>

g, =4 (<X2><x’2>- <xx'>2)1/2

For an upright, unform density beam in phase space <x?> =r,?/4,

12 —v’ 2 ' — — v’ —
<x'2>=x’_ 2[4, and <xx’>=0, so g,= X ., I, = Area/m



Normalized Emittance:

For a beam that is accelerating, return to x, p, as appropriated
definition of phase space area

P, =YBmv, = ypmv, X’
normalized emittance can be defined:

=> gy, =4 YP(<xZ><x'2>- <xx’>2) Y2 = yfe,
Here v, is approximately equal to v.

Since emittance is related to the average phase space area
(averaging over empty space) the emittance generally grows as
a beam filaments (engulfing empty space).

Brightness:

The microscopic density f of particles in 6 D space is
fo dN
dx dy dz dpxpypz

A quantity that characterizes the average 6D phase space

density is the 6 D brightness:
IAt/q

BG:n?’ ExEy€z
Note that fis normally constant along a trajectory whereas
the 6D brightness can decrease.
Lower dimensional versions of the brightness are often used
such as normalized brightness:

By = 1/(exyeny)
and unnormalized brightness:

B=1/(gg,)




Emittance is constant for linear force profiles
and matched beams

Linear force profile (x” = - k2 X) => Phase space area preserved, ellipse stays elliptical.
011 0.2 0.3

s=0.0]

Emittance = phase space area Here, width of beam is oscillating or “mismatched.

Emittance constant if forces linear

Non-linear forces (e.g. x” = - k2x + ex3) — position-dependent frequency
— phase mixing, increasing effective area = Emittance increases if forces non-linear

s=0.0 | 3.0 7.0 23.0

Px

- - - |  rrrrorr | Q
] [ ] &
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