John Barnard Steven Lund
 USPAS
 June 12-23, 2017
 Lisle, Illinois

I. Introduction
(related reading in parentheses)

Particle motion (Reiser 2.1)

Equation of motion (Reiser 2.1)
Dimensionless quantities (Reiser 4.2)
Plasma physics of beams (Reiser 3.2, 4.1)
Emittance and brightness (Reiser 3.1-3.2)

How do we describe and calculate the evolution of a collection of particles under the EM forces in an accelerator?

This array or "lattice" of focusing elements may be arranged in a linac or circular accelerator

Or

Particle equations of motion and dimensionless quantities

Consider the Lorentz force on a particle (mass m, charge q, momentum p, velocity $\underline{v}=c \beta$, Lorentz factor γ) under the influence of an electric (\underline{E}) and magnetic field (\underline{B}):

$$
\begin{aligned}
& \frac{d \underline{p}}{d t}=q(\underline{E}+\underline{v} \times \underline{B}) \quad(\text { Sl units employed throughout) } \\
& \underline{p}=\gamma m \underline{v} \quad \gamma^{2}=\frac{1}{1-\beta^{2}} \quad \underline{\beta}=\underline{v} / c
\end{aligned}
$$

Beam center
Consider the x-component of the motion (transverse to the streaming direction). s is the coordinate of the "design" (ideal) orbit (equivalent to z for a linear accelerator) and subscripts "comoving" indicate coordinates comoving with the design particle.
We may transform to s as the independent variable:

$$
\begin{gathered}
d t=\frac{d s}{v_{z}} ; \quad v_{x}=\frac{d x}{d t}=v_{z} x^{\prime} \quad \quad \text { where prime ' }=\frac{d}{d s} \\
v_{z} \frac{d}{d s}\left(\gamma m v_{z} x^{\prime}\right)=q(\underline{E}+\underline{v} \times \underline{B})_{x} \\
\gamma m v_{z}^{2} x^{\prime \prime}+x^{\prime} m v_{z} \frac{d\left(\gamma v_{z}\right)}{d s}=q(\underline{E}+\underline{v} \times \underline{B})_{x} \\
\Rightarrow \quad x^{\prime \prime}+\left[\frac{1}{\gamma v_{z}} \frac{d\left(\gamma v_{z}\right)}{d s}\right] x^{\prime}=\frac{q}{\gamma m v_{z}^{2}}(\underline{E}+\underline{v} \times \underline{B})_{x}
\end{gathered}
$$

Now consider an unbunched beam of uniform charge density ρ and circular cross section, with radius r_{b}

Line charge density $\lambda=\pi r_{b}{ }^{2} \rho$
First calculate electric field:

$$
\nabla \cdot \underline{E}=\frac{\rho}{\varepsilon_{0}}
$$

$$
2 \pi r E_{r}=\pi r^{2} \frac{\rho}{\varepsilon_{0}}
$$

(Gauss theorem)

$\Rightarrow E_{r}=\frac{\rho}{2 \varepsilon_{0}} r=\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{r}{r_{b}^{2}}$
$E_{x}=E_{r} \cos \theta=E_{r} \frac{x}{r}=\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{x}{r_{b}^{2}} y$

Similarly, calculate the magnetic field:

$$
\begin{aligned}
& \nabla \times \underline{B}=\mu_{0} \underline{J} \\
& 2 \pi r B_{\theta}=\mu_{0} \pi r^{2} \rho v_{z} \\
& \Rightarrow B_{\theta}=\mu_{0} \frac{\lambda v_{z}}{2 \pi \varepsilon_{0}} \frac{r}{r_{b}^{2}} \\
& \left(B_{z}=0\right)
\end{aligned}
$$

Let $(\underline{E}+\underline{v} \times \underline{B})_{x}=\left(E_{x}-v_{z} B_{y}\right)^{\text {self }}+\left(E_{x}+v_{y} B_{z}-v_{z} B_{y}\right)^{e x t}$
$\Rightarrow x^{\prime \prime}+\left[\frac{1}{\gamma v_{z}} \frac{d\left(\gamma v_{z}\right)}{d s}\right] x^{\prime}=\frac{q}{\gamma m v_{z}^{2}} \frac{\lambda}{2 \pi \varepsilon_{0}} \frac{x}{r_{b}^{2}}\left[1-\mu_{0} \varepsilon_{0} v_{z}^{2}\right]+\frac{q}{\gamma m v_{z}^{2}}\left(E_{x}+v_{y} B_{z}-v_{z} B_{y}\right)^{e x t}$
Now $\mu_{0} \varepsilon_{0}=\frac{1}{c^{2}}$; Assuming $\beta_{\mathrm{x}}^{2}+\beta_{\mathrm{y}}^{2} \ll \frac{1}{\gamma^{2}} \Rightarrow \gamma^{2} \cong \frac{1}{1-v_{z}^{2} / c^{2}} \quad$ (Paraxial approximation)
$\left(\gamma^{2} \cong 1 /\left(1-v_{z}^{2} / c^{2}\right)\right.$ equivalent to assuming $\left.\beta_{x}^{\text {comoving }}, \beta_{y}^{\text {comoving }} \ll 1\right)$.
$\Rightarrow x^{\prime \prime}+\left[\frac{1}{\gamma v_{z}} \frac{d\left(\gamma v_{z}\right)}{d s}\right] x^{\prime}=\frac{q}{\gamma^{3} m v_{z}^{2}} \frac{\lambda}{2 \pi \varepsilon_{0}} \frac{x}{r_{b}^{2}}+\frac{q}{\gamma m v_{z}^{2}}\left(E_{x}+v_{y} B_{z}-v_{z} B_{y}\right)^{e x t}$

First consider the self-field.

$$
\begin{aligned}
& x^{\prime \prime}+\left[\frac{1}{\gamma v_{z}} \frac{d\left(\gamma v_{z}\right)}{d s}\right] x^{\prime}=\frac{q}{\gamma^{3} m v_{z}^{2}} \frac{\lambda}{2 \pi \varepsilon_{0}} \frac{x}{r_{b}^{2}}+\frac{q}{\gamma m v_{z}^{2}}\left(E_{x}+v_{y} B_{z}-v_{z} B_{y}\right)^{e x t} \\
&=Q \frac{x}{r_{b}^{2}}+\frac{q}{\gamma m v_{z}^{2}}\left(E_{x}+v_{y} B_{z}-v_{z} B_{y}\right)^{e x t} \\
& Q \equiv \frac{q}{\gamma^{3} m v_{z}^{2}} \frac{\lambda}{2 \pi \varepsilon_{0}} \equiv \text { Generalized Perveance } \rightarrow \begin{cases}\frac{\lambda}{4 \pi \varepsilon_{0} V} & \text { for } \gamma^{2} v_{z}^{2} \ll c^{2} \\
\frac{\lambda}{2 \pi \varepsilon_{0} V\left(\frac{q V}{m c^{2}}\right)^{2}} & \text { for } \gamma^{2} v_{z}^{2} \gg c^{2}\end{cases} \\
& \equiv \frac{(q / e)}{m / m_{a m u}} \frac{2 I}{I_{0}} \frac{1}{\gamma^{3} \beta^{3}} \quad \text { where } \quad I_{0} \equiv \frac{4 \pi \varepsilon_{0} m_{a m u} c^{3}}{e} \approx 31 \text { MA }
\end{aligned}
$$

Here $q V=(\gamma-1) m c^{2}=$ ion kinetic energy, e is the proton charge, and $m_{a m u}$ is the atomic mass unit.
Also note in the non-relativistic limit:

$$
Q \equiv \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{m}{2 q}\right)^{1 / 2}\left(\frac{I}{V^{3 / 2}}\right) \quad \text { (non - relativistic) }
$$

(same scaling as original term "perveance" characterizing injectors)
$Q \equiv \frac{\phi_{\text {self }}}{V}=\frac{\int_{0}^{r_{b}}\left(E_{r}-v_{z} B_{\theta}\right) d r}{V}=\frac{\text { Potential energy of beam particle }}{\text { Kinetic energy of beam particle }}$

Now consider the external field. We often try to create focusing forces that are linear in x (examples are: electric or magnetic quadrupoles, solenoids, Einzel lenses.) So let this focusing force be represented by $K(s)$.

$$
\begin{gathered}
\frac{q}{\gamma m v_{z}^{2}}\left(E_{x}+v_{y} B_{z}-v_{z} B_{y}\right)^{e x t}=K(s) x \\
x^{\prime \prime}+\left[\frac{1}{\gamma v_{z}} \frac{d\left(\gamma v_{z}\right)}{d s}\right] x^{\prime}=Q \frac{x}{r_{b}^{2}}+\frac{q}{\gamma m v_{z}^{2}}\left(E_{x}+v_{y} B_{z}-v_{z} B_{y}\right)^{e x t} \\
=Q \frac{x}{r_{b}^{2}}+K(s) x
\end{gathered}
$$

The focusing forces are often periodic:
$K(s)=K\left(s+L_{p}\right)$ where $L_{p}=$ period of focusing element (when $d v_{z} / d s=0$, and Q is periodic with period Lp, then:
$x^{\prime \prime}=f(s) x$ where $f(s)$ is periodic. (Hill's equation).
For some purposes a suitable constant can be found which captures the "average" variation (over several periods) of the particle motion (continuous focusing approximation)

Then we replace the effects of the periodic lattice with a single focusing parameter $k_{\beta 0}{ }^{2}$

$$
x^{\prime \prime}+\left[\frac{1}{\gamma v_{z}} \frac{d\left(\gamma v_{z}\right)}{d s}\right] x^{\prime}=Q \frac{x}{r_{b}^{2}}-k_{\beta 0}^{2} x
$$

$k_{\beta 0}$ is defined as the "undepressed" betatron frequency

$$
x^{\prime \prime}+\left[\frac{1}{\gamma v_{z}} \frac{d\left(\gamma v_{z}\right)}{d s}\right] x^{\prime}=Q \frac{x}{r_{b}^{2}}-k_{\beta 0}^{2} x
$$

Consider a drifting beam $\left(d v_{z} / d s=0\right)$. The particle equation becomes:

$$
\begin{aligned}
x^{\prime \prime} & =Q \frac{x}{r_{b}^{2}}-k_{\beta 0}^{2} x \\
& =-k_{\beta 0}^{2}\left(1-\frac{Q}{k_{\beta 0}^{2} r_{b}^{2}}\right) x
\end{aligned}
$$

This is simple harmonic oscillator equation.
Note some frequently encountered definitions:

$$
k_{\beta 0}^{2}\left(1-\frac{Q}{k_{\beta 0}^{2} r_{b}^{2}}\right) \equiv k_{\beta}^{2} \equiv \text { depressed betatron frequency }
$$

Define also

$\sigma_{0} \equiv k_{\beta 0} L_{p} \equiv$ undepressed phase advance (per period)
and $\sigma \equiv k_{\beta} L_{p} \equiv$ depressed phase advance (per period) (includes space charge)

$$
\begin{aligned}
& \frac{\sigma}{\sigma_{0}} \equiv \frac{k_{\beta}}{k_{\beta 0}}=\left(1-\frac{Q}{k_{\beta 0}^{2} r_{b}^{2}}\right)=\text { tune depression } \\
& \text { Examples: } \frac{\sigma}{\sigma_{0}}=0 \Rightarrow \text { Fully tune depressed } \\
& \frac{\sigma}{\sigma_{0}}=1 \Rightarrow \text { No space charge depression }
\end{aligned}
$$

(so two dimensionless parameters: Q characterizes space charge relative to ion kinetic energy, σ / σ_{0} characterizes space charge force relative to focusing force)

Space charge reduces betatron phase advance

Without space charge: $\quad x=x_{i} \cos \left[k_{\beta 0}\left(s-s_{i}\right)\right]+\frac{x_{i}^{\prime}}{k_{\beta 0}} \sin \left[k_{\beta 0}\left(s-s_{i}\right)\right] \quad$ Particle orbit

With space charge:

Space charge reduces betatron phase advance

Plasma physics of beams

Physics of space charge = physics of space charge
 = plasma physics of particle beams

Plasma parameter \wedge :

$$
\begin{aligned}
q \phi_{I P} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r_{I P}}
\end{aligned} \begin{aligned}
& \text { Average potential energy } q \phi_{I P} \\
& \text { of particle due to its nearest } \\
& \text { neighbor a distance } r_{I P}=n_{0}{ }^{-1 / 3} \\
& \\
& =\frac{1}{4 \pi \varepsilon_{0}} q^{2} n_{0}^{1 / 3}
\end{aligned} \begin{aligned}
& (q=\text { charge of particle; } \\
& \left.n_{0}=\text { number density) }\right)
\end{aligned} ~ I f ~ q \phi_{I P} \ll k_{B} T \Rightarrow \begin{aligned}
& \text { "Weakly coupled plasma" } \\
& \text { or simply "plasma" }
\end{aligned}
$$

Define $\lambda_{D} \equiv \frac{\left(k_{B} T / m\right)^{1 / 2}}{\left(q^{2} n_{0} /\left(\varepsilon_{0} m\right)\right)^{1 / 2}} \equiv \frac{v_{t}}{\omega_{p}}=\left(\frac{k_{B} T \varepsilon_{0}}{q^{2} n_{0}}\right)^{1 / 2}=\begin{aligned} & \text { Debye } \\ & \text { Length }\end{aligned}$
= characteristic distance whereby charges are shielded in plasma
Define $\Lambda \equiv \frac{4 \pi}{3} n_{0} \lambda_{D}^{3} \equiv$ Plasma Parameter

$$
\sim\left(\frac{k_{B} T}{q \phi_{I P}}\right)^{1 / 2} \gg 1 \quad\left[\text { if } \quad q \phi_{I P} \ll k_{B} T\right]
$$

Klimontovich Equation

Theory," D.R. Nicholson, [Wiley, 1983].

$$
N(x, v, t)=\sum_{i=1}^{N_{0}} \delta\left(\underline{x}-\underline{X}_{i}(t)\right) \delta\left(\underline{v}-\underline{V}_{i}(t)\right)
$$

$N(\underline{x, v, t)}$ is the density of particles in phase space.
Note there are N_{o} particles: $\quad \int N(\underline{x}, \underline{v}, t) d^{3} x d^{3} v=N_{0}$ $X_{i}(t)$ and $V_{i}(t)$ are position and velocity of the $i^{\text {th }}$ particle.
The (non-relativistic) equations of motion are:

$$
\underline{\dot{X}}_{i}=\underline{V}_{i} \quad m \underline{\underline{X}}_{i}=q \underline{E}^{m}\left(\underline{X}_{i}(t), t\right)+q\left[\underline{V}_{i} \times \underline{B}^{m}\left(\underline{X}_{i}(t), t\right)\right]
$$

Let $\quad u=x-X_{i}(t) \Rightarrow \frac{\partial f(u)}{\partial x}=f^{\prime}(u) \quad$ and $\frac{\partial f(u)}{\partial t}=-\dot{X}(t) f^{\prime}(u)=-\dot{X}(t) \frac{\partial f(u)}{\partial x}$

So taking the derivative of $N(x, v, t)$ with respect to t :

$$
\begin{aligned}
\frac{\partial N}{\partial t}(\underline{x}, \underline{v}, t)= & -\sum_{i=1}^{N_{0}} \underline{\dot{X}}_{i}(t) \cdot \underline{\nabla}_{x}\left[\delta\left(\underline{x}-\underline{X}_{i}(t)\right) \delta\left(\underline{v}-\underline{V}_{i}(t)\right)\right] \\
& -\sum_{i=1}^{N_{0}} \underline{\underline{V}}_{i}(t) \cdot \underline{\nabla}_{v}\left[\delta\left(\underline{x}-\underline{X}_{i}(t)\right) \delta\left(\underline{v}-\underline{V}_{i}(t)\right)\right]
\end{aligned}
$$

Maxwell's equations:
$\underline{\nabla} \cdot \underline{E}^{m}=\frac{\rho^{m}}{\varepsilon_{0}} \equiv \frac{1}{\varepsilon_{0}} q \int N(\underline{x}, \underline{v}, t) d^{3} v \quad \underline{\nabla} \cdot \underline{B}^{m}=0$
$\underline{\nabla} \times \underline{E}^{m}=-\frac{\partial \underline{B}^{m}}{\partial t}$

$$
\underline{\nabla} \times \underline{B}^{m}=\mu_{0} \underline{J}^{m}+\frac{\partial \underline{E}^{m}}{\partial t} \equiv \mu_{0} q \int \underline{v} N(\underline{x}, \underline{v}, t) d^{3} v+\frac{\partial \underline{E}^{m}}{\partial t}
$$

(Here superscript "m" denotes "microscopic" quantity, not averaged locally over a small volume).

$$
\begin{aligned}
\Rightarrow \frac{\partial N}{\partial t}(\underline{x}, \underline{v}, t) & =-\sum_{i=1}^{N_{0}} \underline{V}_{i}(t) \cdot \underline{\nabla}_{x}\left[\delta\left(\underline{x}-\underline{X}_{i}(t)\right) \delta\left(\underline{v}-\underline{V}_{i}(t)\right)\right] \\
& -\sum_{i=1}^{N_{0}}\left(\frac{q}{m} E^{m}\left(X_{i}(t), t\right)+\frac{q}{m}\left[V_{i} \times B^{m}\left(X_{i}(t), t\right)\right]\right) \cdot \underline{\nabla}_{v}\left[\delta\left(\underline{x}-\underline{X}_{i}(t)\right) \delta\left(\underline{v}-\underline{V}_{i}(t)\right)\right]
\end{aligned}
$$

Note that $\underline{V}_{i}(t) \delta\left(\underline{v}-\underline{V}_{i}(t)\right)=v \delta\left(\underline{v}-\underline{V}_{i}(t)\right)$ so
$\Rightarrow \frac{\partial N}{\partial t}(\underline{x}, \underline{v}, t)=-\underline{v} \cdot \underline{\nabla}_{x} \sum_{i=1}^{N_{0}} \delta\left(\underline{x}-\underline{X}_{i}(t)\right) \delta\left(\underline{v}-\underline{V}_{i}(t)\right)$

$$
-\left(\frac{q}{m} E^{m}(\underline{x}, t)+\frac{q}{m}\left[\underline{v} \times \underline{B}^{m}(\underline{x}, t)\right]\right) \cdot \underline{\nabla}_{v} \sum_{i=1}^{N_{0}} \delta\left(\underline{x}-\underline{X}_{i}(t)\right) \delta\left(\underline{v}-\underline{V}_{i}(t)\right)
$$

$\Rightarrow \frac{\partial N}{\partial t}(\underline{x}, \underline{v}, t)=-\underline{v} \cdot \underline{\nabla}_{x} N(\underline{x}, \underline{v}, t)-\left(\frac{q}{m} E^{m}(\underline{x}, t)+\frac{q}{m}\left[\underline{v} \times \underline{B}^{m}(\underline{x}, t)\right]\right) \cdot \underline{\nabla}_{v} N(\underline{x}, \underline{v}, t)$

Note that the total derivative of a quantity along an orbit in phase space:

$$
\begin{array}{ll}
\frac{d}{d t}=\frac{\partial}{\partial t}+\left.\frac{d \underline{x}}{d t}\right|_{\text {orbit }} \cdot \underline{\nabla}_{x}+\left.\frac{d \underline{v}}{d t}\right|_{\text {orbit }} \cdot \underline{\nabla}_{v} \\
\left.\Rightarrow \frac{d}{d t} N(\underline{x}, \underline{v}, t)\right|_{\text {orbit }}=0 & \text { Note that } \mathrm{N}=0 \text { or infii }
\end{array} \quad \text { nothing in between! }
$$

Average N over some box in phase space. Δx, and Δy are the dimensions of the box. Assume $n^{-1 / 3} \ll \Delta x \ll \lambda_{D}$ so that $f(\underline{x}, v, t)$ is a smoothly varying function.

Now let $\quad f(\underline{x}, \underline{v}, t)=\frac{1}{\Delta x^{3} \Delta v^{3}} \int^{\Delta x^{3}, \Delta v^{3}} N(\underline{x}, \underline{v}, t) d^{3} x d^{3} v \equiv\langle N(\underline{x}, \underline{v}, t)\rangle$

Then $N=f+\delta f \quad f \equiv\langle N\rangle \quad\langle\delta f\rangle=0$

$$
\begin{array}{lll}
\underline{E}^{m}=\underline{E}+\delta \underline{E} & \underline{E}=\left\langle\underline{E}^{m}\right\rangle & \langle\delta \underline{E}\rangle=0 \\
\underline{B}^{m}=\underline{B}+\delta \underline{B} & \underline{B}=\left\langle\underline{B}^{m}\right\rangle & \langle\delta \underline{B}\rangle=0
\end{array}
$$

$$
\left.\frac{\partial f}{\partial t}+\underline{v} \cdot \underline{\nabla}_{x} f+\frac{q}{m}(\underline{E}+\underline{v} \times \underline{B}) \cdot \underline{\nabla}_{v} f=-\frac{q}{m}\langle\delta \underline{E}+\underline{v} \times \delta \underline{B}) \cdot \underline{\nabla}_{v} \delta f\right\rangle
$$

LHS: Smoothly varying part

RHS: Average over "rapidly fluctuating quantities", includes "discrete particle effects" or "collisions"

If collisions are neglected (so set RHS to zero): we have the "Vlasov Equation":

$$
\frac{\partial f}{\partial t}+\underline{v} \cdot \underline{\nabla}_{x} f+\frac{q}{m}(\underline{E}+\underline{v} \times \underline{B}) \cdot \underline{\nabla}_{v} f=0
$$

$$
\left.\Rightarrow \frac{d}{d t} f(\underline{x}, \underline{v}, t)\right|_{\text {orbit }}=0
$$

Phase space density on trajectories is constant. (Liouville's theorem).

The RHS represents the effects of collisions (i.e. interactions with non-smoothly varying fields).
Very heuristically:
$\left.-\frac{q}{m}\langle\delta \underline{E}+\underline{v} \times \delta \underline{B}) \cdot \underline{\nabla}_{v} \delta f\right\rangle \sim v_{c} f$
$v_{c} \sim \sigma n v$
$\sigma \sim \pi r_{c}^{2}$
where σ is the collision cross section.
For a large angle scattering the kinetic energy of particle will be of order the potential energy at cl approach, defining a collision radius by
$k_{B} T \sim \frac{q^{2}}{4 \pi \varepsilon_{0} r_{c}} \Rightarrow r_{c} \sim \frac{q^{2}}{4 \pi \varepsilon_{0} k_{B} T}$
$\Rightarrow v_{c} \sim \pi\left(\frac{q^{2}}{4 \pi \varepsilon_{0} k_{B} T}\right)^{2} n_{0}\left(\frac{k_{B} T}{m}\right)^{1 / 2}$
$\sim \frac{1}{16 \pi} \frac{v_{\text {th }}}{\lambda_{D}^{4} n_{0}}$

Recall the smoothed equation with the heuristic collision term:

$$
\frac{\partial f}{\partial t}+\underline{v} \cdot \underline{\nabla}_{x} f+\frac{q}{m}(\underline{E}+\underline{v} \times \underline{B}) \cdot \underline{\nabla}_{v} f=v_{c} f
$$

Consider the third term on the LHS of the equation: We approximate $\nabla_{v} \sim 1 / v_{t}$ and $\quad \nabla_{x} \sim 1 / \lambda_{D}$
and use $\quad \underline{\nabla}_{x} \cdot \underline{E}=\rho / \varepsilon_{0}$ yielding:

$$
\begin{aligned}
\frac{q}{m} \underline{E} \cdot \underline{\nabla}_{v} f & \sim \frac{q}{m}\left(\lambda_{D} \underline{\nabla} \cdot \underline{E}\right) \underline{\nabla}_{v} f \\
& \sim \frac{q}{m}\left(\frac{q \lambda_{D} n_{0}}{\varepsilon_{0}}\right) \frac{f}{v_{t h}} \sim \frac{\omega_{p}^{2} \lambda_{D}}{v_{t h}} f \\
& \sim \omega_{p} f
\end{aligned} \quad \text { where } v_{t} \sim\left(\frac{k_{B} T}{m}\right)^{1 / 2}-1 .
$$

Similarly, the second term on the LHS of the equation is approximately:

$$
\underline{v}^{\nabla_{x}} f \sim \frac{v_{t}}{\lambda_{D}} f \sim \omega_{p} f
$$

The first term can be argued a priori to be no greater than $\frac{\partial f}{\partial t}<\sim \omega_{p} f$

The fourth term can be of order the third term if it includes external focusing or is of order v^{2} / c^{2} if it includes only the self magnetic field.

So the LHS $\sim \omega_{p} f$. Pulling it all together then:

Collision term LHS $\sim \frac{1}{16 \pi \lambda_{D}^{3} n_{0}} \sim \frac{1}{12 \Lambda} \ll 1$ when $\Lambda \gg 1$

Accelerator beams are non-neutral plasmas

Phase space density conservation

Liouville's theorem: $\frac{d f}{d t}=0$ along a trajectory in phase space.
Let $d N=f d x d y d z d p_{x} d p_{y} d p_{z}$
The continuity equation in phase space is:
$\frac{\partial f}{\partial t}+\underline{\nabla_{6}} \cdot\left(f \underline{v_{6}}\right)=0$
where $\underline{v}_{6}=\left(\begin{array}{l}q_{1} \\ q_{2} \\ q_{3} \\ p_{1} \\ p_{2} \\ p_{3}\end{array}\right)$ and $\underline{\nabla}_{6} \cdot \underline{a}_{6}=\frac{\partial a_{1}}{\partial q_{1}}+\frac{\partial a_{2}}{\partial q_{2}}+\frac{\partial a_{3}}{\partial q_{3}}+\frac{\partial a_{4}}{\partial p_{1}}+\frac{\partial a_{5}}{\partial p_{2}}+\frac{\partial a_{6}}{\partial p_{3}}$
If the system is governed by a Hamiltonian $H(\underline{q}, \underline{p}, t)$

$$
\frac{d q_{i}}{d t}=\frac{\partial H}{\partial p_{i}} \quad \text { and } \quad \frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q_{i}}
$$

Now $\underline{\nabla}_{6} \cdot \underline{v}_{6}=\sum_{i=1}^{3}\left(\frac{\partial}{\partial q_{i}}\left(\frac{d q_{i}}{d t}\right)+\frac{\partial}{\partial p_{i}}\left(\frac{d p_{i}}{d t}\right)\right)=\sum_{i=1}^{3}\left(\frac{\partial^{2} H}{\partial q_{i} \partial p_{i}}-\frac{\partial^{2} H}{\partial p_{i} \partial q_{i}}\right)=0$
$\Rightarrow \frac{\partial f}{\partial t}+\underline{\nabla_{6}} \cdot\left(f \underline{v_{6}}\right)=\frac{\partial f}{\partial t}+\underline{f \nabla_{6}} \cdot \underbrace{v_{6}}_{0}+\underline{v_{6}} \cdot \underline{\nabla_{6}} f=0$
$\Rightarrow \frac{d f}{d t}=0 \quad$ along a 6D trajectory

Emittance and Brightness:

Liouvilles equation or Vlasov equation $\Rightarrow \frac{d N}{d x d y d z d p_{x} p_{y} p_{z}}=$ constant

If $x^{\prime \prime}=f(x)$ and not functions of y or z
$y^{\prime \prime}=f(y)$ and not functions of x or z
$z^{\prime \prime}=f(z)$ and not functions of x or y
$\Rightarrow \frac{d N}{d x d p_{x}}=$ constant; $\frac{d N}{d y d p_{y}}=$ constant; and $\frac{d N}{d z d p_{z}}=$ constant
separately.

Definitions of emittance:
Trace space emittance: area/ π of smallest ellipse that encloses all particles

For non-accelerating paraxial beam x^{\prime} proportional to p_{x}, etc.

Statistical definition:
Involves statistical averages of 2nd order quantitites such $\left\langle x^{2}\right\rangle,\left\langle x^{\prime 2}\right\rangle$, and $\left\langle x x^{\prime}\right\rangle$
$\varepsilon_{x}=4\left(\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}\right)^{1 / 2}$

For an upright, unform density beam in phase space $\left\langle x^{2}\right\rangle=r_{x}^{2} / 4$, $\left\langle x^{\prime 2}\right\rangle=x^{\prime}$ max $^{2} / 4$, and $\left\langle x x^{\prime}\right\rangle=0$, so $\varepsilon_{x}=x^{\prime}$ max $r_{x}=$ Area $/ \pi$

Normalized Emittance:

For a beam that is accelerating, return to $\mathrm{x}, \mathrm{p}_{\mathrm{x}}$ as appropriated definition of phase space area
$p_{x}=\gamma \beta m v_{x}=\gamma \beta \mathrm{mv}_{\mathrm{z}} \mathrm{x}^{\prime}$
normalized emittance can be defined:
$=>\varepsilon_{N x}=4 \gamma \beta\left(\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}\right)^{1 / 2}=\gamma \beta \varepsilon_{x}$
Here v_{z} is approximately equal to v.
Since emittance is related to the average phase space area (averaging over empty space) the emittance generally grows as a beam filaments (engulfing empty space).

Brightness:

The microscopic density f of particles in 6 D space is

$$
f=\frac{d N}{d x d y d z d p_{x} p_{y} p_{z}}
$$

A quantity that characterizes the average 6D phase space density is the 6 D brightness:

$$
\mathrm{B}_{6}=\frac{I \Delta t / q}{\pi^{3} \varepsilon_{x} \varepsilon_{y} \varepsilon_{z}}
$$

Note that f is normally constant along a trajectory whereas the 6D brightness can decrease.
Lower dimensional versions of the brightness are often used such as normalized brightness:

$$
\mathrm{B}_{\mathrm{N}}=I /\left(\varepsilon_{\mathrm{Nx}} \varepsilon_{\mathrm{Ny}}\right)
$$

and unnormalized brightness:

$$
B=I /\left(\varepsilon_{x} \varepsilon_{y}\right)
$$

Emittance is constant for linear force profiles and matched beams

Linear force profile ($\mathrm{x}^{\prime \prime}=-\mathrm{k}^{2} \mathrm{x}$) => Phase space area preserved, ellipse stays elliptical.

Emittance constant if forces linear

Non-linear forces (e.g. $x^{\prime \prime}=-k^{2} x+\varepsilon x^{3}$) \Rightarrow position-dependent frequency
\Rightarrow phase mixing, increasing effective area \Rightarrow Emittance increases if forces non-linear

The Heavy Ion Fusion Virtual National Laboratory

\cdots PPPL

