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Transverse Particle Dynamics: Outline

1) Particle Equations of Motion

2) Transverse Particle Equations of Motion in Linear Applied Focusing
Channels

3) Description of Applied Focusing Fields

4) Transverse Particle Equations of Motion with Nonlinear Applied Fields

5) Transverse Particle Equations of Motion Without Space-Charge,
Acceleration and Momentum Spread

6) Floquet's Theorem and the Phase-Amplitude Form of Particle Orbits

7) The Courant-Snyder Invariant and the Single-Particle Emittance

8) The Betatron Formulation of the Particle Orbit

9) Momentum Spread Effects

10) Acceleration and Normalized Emittance

11) Calculation of Acceleration Induced Changes in gamma and beta

12) Symplectic Formulation of Dynamics

13) Self-Consistent Models and Liouville's Theorem
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Transverse Particle Dynamics: Detailed Outline

Section headings include embedded links that when clicked on will direct you to
the section

1) Particle Equations of Motion
A. Introduction: The Lorentz Force Equation
B. Applied Fields
C. Machine Lattice
D. Self Fields
E. Equation of Motion in s and the Paraxial Approximation
F. Axial Particle Kinetic Energy
G. Summary: Transverse Particle Equations of Motion
H. Overview of Analysis to Come
I. Bent Coordinate System and Particle Equations of Motion with Dipole Bends
and Axial Momentum Spread

Appendix A: Gamma and Beta Factor Conversions
Appendix B: Magnetic Self-Fields
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Detailed Outline - 2

2) Transverse Particle Equations of Motion in Linear Focusing Channels
A. Introduction
B. Continuous Focusing
C. Alternating Gradient Quadrupole Focusing — Electric Quadrupoles
D. Alternating Gradient Quadrupole Focusing — Magnetic Quadrupoles
E. Solenoidal Focusing
F. Summary of Transverse Particle Equations of Motion
G. Conservation of Angular Momentum in Axisymmetric Focusing Systems
Appendix A: Quadrupole Skew Coupling
Appendix B: The Larmor Transform to Express Solenoidal Focused
Particle Equations of Motion in Uncoupled Form
Appendix C: Transfer Matrices for Solenoidal Focusing
Appendix D: Axisymmetric Magnetic Field Expansion

Appendix E: Thin Lens Equivalence for Thick Lenses
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Detailed Outline - 3
3) Description of Applied Focusing Fields

A. Overview
B. Magnetic Field Expansions for Focusing and Bending
C. Hard Edge Equivalent Models
D. 2D Transverse Multipole Magnetic Moments
E. Good Field Radius
F. Example Permanent Magnet Assemblies
4) Transverse Particle Equations of Motion with Nonlinear Applied Fields
A. Overview
B. Approach 1: Explicit 3D Form
C. Approach 2: Perturbed Form
5) Linear Equations of Motion Without Space-Charge, Acceleration,
and Momentum Spread
A. Hill's equation
B. Transfer Matrix Form of the Solution to Hill's Equation
C. Wronskian Symmetry of Hill's Equation
D. Stability of Solutions to Hill's Equation in a Periodic Lattice
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Detailed Outline - 4

6) Hill's Equation: Floquet's Theorem and the Phase-Amplitude Form
of the Particle Orbit
A. Introduction
B. Floquet's Theorem
C. Phase-Amplitude Form of the Particle Orbit
D. Summary: Phase-Amplitude Form of the Solution to Hill's Equation
E. Points on the Phase-Amplitude Formulation

F. Relation Between the Principal Orbit Functions and the Phase-Amplitude Form Orbit
Functions

G. Undepressed Particle Phase Advance
Appendix A: Calculation of w(s) from Principal Orbit Functions
7) Hill's Equation: The Courant-Snyder Invariant and
the Single-Particle Emittance
A. Introduction
B. Derivation of the Courant Snyder Invariant
C. Lattice Maps
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Detailed Outline - 5

8) Hill's Equation: The Betatron Formulation of the Particle Orbit and

Maximum Orbit Excursions
A. Formulation
B. Maximum Orbit Excursions
9) Momentum Spread Effects in Bending and Focusing
A. Overview
B. Dispersive Effects
C. Chromatic Effects
Appendix A: Green Function Solution to the Perturbed Hill's Equation
Appendix B: Uniqueness of the Dispersion Function in a Periodic (Ring) Lattice
Appendix C: Transfer Matrix for a Negative Bend
10) Acceleration and Normalized Emittance
A. Introduction
B. Transformation to Normal Form
C. Phase-Space Relations between Transformed and Untransformed Systems
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Detailed Outline - 6

11) Calculation of Acceleration Induced Changes in gamma and beta
A. Introduction
B. Solution of the Longitudinal Equations of Motion
C. Longitudinal Solution via Energy Gain
D. Quasistatic Potential Expansion
12) Symplectic Formulation of Dynamics
A. Expression of Hamiltonian Dynamics
B. Symplectic Dynamics = Phase-Space Area Conservation
13) Self-Consistent Models and Liouville's Theorem
A. Kilmontovich Equation for Beam/Plasma Evolution
B. Valasov's Equation and Liouville's Theorem
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S1: Particle Equations of Motion
STA: Introduction: The Lorentz Force Equation

The Lorentz force equation of a charged particle is given by (MKS Units):

(1) = 6 [B(xi,1) + vi(t) xB(xi, )

3

i, Qi ....particle mass, charge 1 = particle index

S1B: Applied Fields used to Focus, Bend, and Accelerate Beam

Transverse optics for focusing:

Electric Quadrupole Magnetic Quadrupole Solenoid
7y y
Coil (Azimuthally Symmetric)
[eeleralelelerelal
\\\ /

T

. = S

x;(t) .. particle coordinate ¢ = time XXX K]
p;(t) = my(t)vi(t) ... particle momentum E‘“"“Sffcﬁéf*‘;“‘;'“C‘J*'i’7,5"‘

d . Dipole Bends:
vi(t) = —x;(t) = cfBi(t) .. particle velocity Electric x-direction bend Magnetic x-direction bend

dt 1 Y v Coils
() = —— .. particle gamma factor

= ,Bf(t) . - Coils 1. _, Coils
Total Applied Self
Electric Field:  E(x,t) = E%(x,t) + E°(x,t) ’
Magnetic Field:  B(x,t) = B%x,t) + B°(x,t) )
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Longitudinal Acceleration:

RF Cavity Induction Cell
Pulse Power
Feed Magnetic
: 1=
~——
- . S e—]
= . Bean § “ -

\ Acceleration z
Gap

We will cover primarily transverse dynamics. Lectures by J.J. Barnard will cover
acceleration and longitudinal physics:

+ Acceleration influences transverse dynamics — not possible to fully decouple

S1C: Machine Lattice

Applied field structures are often arraigned in a regular (periodic) lattice for beam
transport/acceleration:

Al A 1]
YRRV VE

Focus, Accel Focus Accel

Focus,
Quadrupole  RF Cavity
Solenoid Induction Cell

+ Sometimes functions like bending/focusing are combined into a single element

Example — Linear FODO lattice (symmetric quadrupole doublet)

Lattice Period 4>E

N e
OO

Focus Accel DeFocus Accel

Focus
Quadrupole Quadrupole Quadrupole
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Lattices for rings and some beam insertion/extraction sections also incorporate
bends and more complicated periodic structures:

Lattice
Period
Sector

One Lattice Period

Triplet I .

Quadrupoles B§nding *
Dipoles

Ring Lattice: 12 Periods
(SIS-18, GSI)

+ Elements to insert beam into and out of ring further complicate lattice
+ Acceleration cells also present

(typically several RF cavities at one or more location)
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S1D: Self fields

Self-fields are generated by the distribution of beam particles:

Charges
Currents
Particle at Rest Particle in Motion
(pure electrostatic) ES
ES
Obtain from
Lorentz boost q V
of rest-frame field:
see Jackson,
Classical
B°=0 Electrodynamics

Cew

+ Superimpose for all particles in the beam distribution
+ Accelerating particles also radiate
- We neglect electromagnetic radiation in this class
(see: J.J. Barnard, Intro Lectures)
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The electric (E%) and magnetic ( B®) fields satisfy the Maxwell Equations. The
linear structure of the Maxwell equations can be exploited to resolve the field into
Applied and Self-Field components:

E=E*+E°

B =B"+B°
Applied Fields (often quasi-static /0t ~0 ) E®, B®

Generated by elements in lattice

P 10
V-E*=— V x B® = ;pJ* + = =—E°
€0 % Hol™ o+ 2ot
VXEa:_QBa VBa:O
ot
p® = applied charge density 1 _ 2
J® = applied current density o€o
+ Boundary Conditions on E* and B“

+ Boundary conditions depend on the total fields E, B
and if separated into Applied and Self-Field components, care can be required
+ System often solved as static boundary value problem and source free in the

vacuum trangport region of the beam
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/1l Aside: Notation:

V=x—+Y% 0 +z 0 C i i
=Xor y By 92 artesian Representation
o 00 .0
=f—+4+ —-— +2— - Cylindrical Representation
or rdl 0z P o
T =r71cosf r=xcosf +ysinf
9 y =rsind 6 = —%sinf +ycosb
~ x - Abbreviated Representation
= i + Zﬁ - Resolved Abbreviated Representation
Ox1 9z Resolved into Perpendicular (J_)

X =Xz + Yy + 22 and Parallel (Z ) components
=x, +2z X, =Xr+Jy

In integrals, we denote:

/d2xl-~-:/ dm/ dy--~=/ drr/ do ---
oo oo 0 — "
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Self-Fields (dynamic, evolve with beam)
Generated by particle of the beam rather than (applied) sources outside beam

p° 10
v.E =" S, EIE R
. V xB LodJ +028tE
L0, VB =0
V xE :_EB i = particle index

(N particles)
q; = particle charge

p° = beam charge density
N
= Z qid[x — x;(t)] x; = particle coordinate
=1

v; = particle velocity

N 6(x) = 6(x)d(y)d(2)
- Z qivi(t)d[x — x;(t)] d(z) = Dirac-delta function
i=1 N
Z = sum over
i=1 beam particles
+ Boundary Conditions on E® and B*®
from material structures, radiation conditions, etc.

J® = beam current density
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In accelerators, typically there is ideally a single species of particle:

4 —4q Large Simplification!
m; —m Multi-species results in more complex collective effects

Motion of particles within axial slices of the “bunch” are highly directed:
Slice 1 Y i

= Mean axial velocity of

N’ particles in beam slice

|0vi| < |Bp|lc  Paraxial Approximation

There are typically many particles: (see S13, Vlasov Models for more details)

N
p° = Z qi6[x — x;(t)]

~ p(x, 1) continuous
= PAXT) - charge-density
SM Lund, USPAS, 2017

N
J° = Z vi(t)d[x — x;(1)]

~ Byep(x, )2 continuous axial
= PP U)Z current-density
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The beam evolution is typically sufficiently slow (for heavy ions) where we can
neglect radiation and approximate the self-field Maxwell Equations as:
See: Appendix B, Magnetic Self-Fields and
J. J. Barnard, Intro. Lectures: Electrostatic Approximation

s Vast Reduction of
B =-ve 4 self-field model:
B°=VxA A= - Approximation equiv to
s electrostatic interactions
V3¢ = 9.9 __r in frame moving with
ox  Ox €0 beam: see Appendix B
+ Boundary Conditions on ¢ But still complicated

Resolve the Lorentz force acting on beam particles into

Applied and Self-Field terms: F; =F} + F;
E=E*+FE°

F;(x;, 1) = qE(xi, ) + qvi(t) x B(xi, ) *

. B =B+ B°®
Applied:

F} = ¢E} + qvi x B}
a — a

Self-Field: E*(x;,t) = Ef etc.

F; = ¢E} + qvi x B}

SM Lund, USPAS, 2017
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The self-field force can be simplified:
+ See also: J.J. Barnard, Intro. Lectures

Plug in self-field forms:

F? = ¢E! + qv; x B? ~0 Neglect: Paraxial

f3l0) . 9 b
~q [—& i+(6bcz+(5 1) X (& XZ?(ﬁ) z:|
Resolve into transverse (x and y) and longitudinal (z) components and simplify:
. 9 B PR 9 .
Bpcz X <8—X X z:qﬁ) i = [pz % <E X z¢> ,-
o (85

7 X=X;

. xY
op. 09
-1 (5% 5)|,
_ g2 09
baXLi
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also
_9¢
ox

7

Together, these results give:

Transverse  Longitudinal
1

Yo = —Tﬁf

Axial relativistic gamma of beam

+ Transverse and longitudinal forces have different axial gamma factors
+ 1/~} factor in transverse force shows the space-charge forces become weaker
as axial beam kinetic energy increases
- Most important in low energy (nonrelativistic) beam transport
- Strong in/near injectors before much acceleration
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/Il Aside: Singular Self Fields
In free space, the beam potential generated from the singular charge density:

N
p* = Z qid[x — x;(1)]

is B N

Which diverges due to the i = j term. This divergence is essentially “erased”
when the continuous charge density is applied:

p’ = Zqzﬁ[x -x;(t)] — px,t)

+ Effectively removes effect of collisions
See: J.J. Barnard, Intro Lectures for more details
- Find collisionless Vlasov model of evolution is often adequate I
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The particle equations of motion in x; — v; phase-space variables become:

+ Separate parts of ¢E? 4+ qv; x B{ into transverse and longitudinal comp
Transverse

d
%Xu =Vl

g (MivLi) =

Longitudinal

d

Ezi = Uz

7 (Mmy;v.;) ~

Yy

qB2 — q(vei By —vyiBg;) | i —q o

In the remainder of this (and most other) lectures, we analyze Transverse
Dynamics. Longitudinal Dynamics will be covered in J.J. Barnard lectures
+ Except near injector, acceleration is typically slow
« Fractional change in Vs, [y small over characteristic transverse dynamical
scales such as lattice period and betatron oscillation periods
+ Regard Vb, By as specified functions given by the “acceleration schedule”
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S1E: Equations of Motion in s and the Paraxial Approximation
In transverse accelerator dynamics, it is convenient to employ the axial coordinate
(s) of a particle in the accelerator as the independent variable:

+ Need fields at lattice location of particle to integrate equations for particle trajectories

7
s=s; +/ dt v.;(t)
tA

Initial Becam x

Time t Beam

Slice |
Transform: =t
ds dx; dsdx; dx; (Boc + 6v.0) dx;
Vg = — fr— Vs = = — = Vyy— = bc )
=T At o dt dt ds * ds =7 ds
Denote: N dx;
dxl — B bC d
Vgi = ~ Byex; S
r_ i dt Neglecting term consistent
- ds dyi , with assumption of small
Vyi = dt ~ Byey; longitudinal momentum spread
(paraxial approximation)
+ Procedure becomes more complicated when bends present: see S1H
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In the paraxial approximation, x' and y' can be interpreted as the (small
magnitude) angles that the particles make with the longitudinal-axis:

m—angle—%fvvzi—m'- - .
Vi By i Tylpllcal 5a(():cel lzttlce values:
Vi U x'l < 50 mra

y —angle = 2 ~ YL —f
Vzi Bbc

The angles will be small in the paraxial approximation:

2 2 2 2 2

Ugis in < /Bbc z;, yz < 1

Since the spread of axial momentum/velocities is small in the paraxial
approximation, a thin axial slice of the beam maps to a thin axial slice and s can

also be thought of as the axial coordinate of the slice in the accelerator lattice

N/
Slice V=i
¢ By =
=1
slice
t
s:si—i—c/ dt By(t)
ti
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7
s:si—f-c/ dt By(t)
ti

The coordinate s can alternatively be interpreted as the axial coordinate of a
reference (design) particle moving in the lattice
+ Design particle has no momentum spread

It is often desirable to express the particle equations of motion in terms of s rather
than the time t

+ Makes it clear where you are in the lattice of the machine

+ Sometimes easier to use t in codes when including many effects to high order
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Transform transverse particle equations of motion to s rather than t derivatives

a’; oy T 1 0¢
my;vy;)i~ qES. + cz><B+Bv Zi—q— —
gl = L kB Bt X8 macg |
Term 1 Term 2
Transform Terms 1 and 2 in the particle equation of motion: d d
— =y —
T 1 d dXJ_i d d dt ds
o MY = MUz~ | ViVzi - X1
e " ds \ st
d? " d d ( )
- i X1 zi | 7-XL1i | 7= 1Vzi
= mvl gLt mvs  goxwi | 7 (O
Term 1A Term 1B
Approximate:
d2 d2 2 2. 11
Term 1A:  my;v zzd ——X1i ~ myfic? XL = = mypByc X

d d d d
Term 1B:  muy; <£Xu) s (1iv2i) =~ mPByc <£Xu) 7 (7Bve)
~ mByc® (W) %,
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Using the approximations 1A and 1B gives for Term 1:

d dxli) 2 92 [ 1" ('Ybﬂb)/ ’
m— | v ~m X+ X
dt <7 dt b T (b))

Similarly we approximate in Term 2:

a 5 o a ’ -
qB%;v1i X2~ qBZBycx | ; X Z

Using the simplified expressions for Terms 1 and 2 obtain the reduced transverse
equation of motion:

!
X//i_i_MX/i:LEai_F ZXB
T (wB) T mypBRR T m%,@bc
By, .4 %
mypByc mypBEc? x|,

+ Will be analyzed extensively in lectures that follow in various limits to
better understand solution properties
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S1F: Axial Particle Kinetic Energy
1
L ey

£ =(y—1mc? v = (B + 0B.)ca + BLek,
= Particle Velocity (3D)
For a directed paraxial beam with motion primarily along the machine axis the

kinetic energy is essentially the ax(isal kinetizc energy &, :
E = (y — 1)mc? +@<|B J‘)

By B}
E~& = (yw—1)me?

Relativistic particle kinetic energy is:

In nonrelativistic limit: ﬂf <1

& = (1 — 1)mc? = —m,é’  + mﬁbc + -

lmﬁw + o)

~
2
Convenient units:
Electrons: . .
ectrons _ 511 keV Electrons rapidly relativistic
m=me = — .
€ ) due to relatively low mass
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Tons/Protons:

m = (atomic mass) - my, m,, = Atomic Mass Unit
M
— 93149 MV
Note: y V
m, = Proton Mass = 938.27 ° MeV

my ~ my, =~ 940

M v c?
m,, = Neutron Mass = 939.57 °
A t hly fi :
pproximate roughly for ions: ey > me
m ~ Am,, A =Mass Number Protons/ions take much

(Number of Nucleons) longer to become relativistic
than electrons

Mp, My > My due to nuclear binding energy

& /A
&/A =1+ ”/2
N’Yb_]- e My C

myc®
By =1/1-1/%

Energy/Nucleon &, /A fixes Bp to set phase needs of RF cavities
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Contrast beam relativistic 35 for electrons and protons/ions:

Electrons Ions (and approx Protons)

7 7
i i

7
Speed of Light Speed of Light

/
!
08 'I
7
7

Non-Relativistic Non-Relativistic Relativistic

i
1
i
/
08 [ /
/
/
s /
/ / Relativistic /
06 / 06 F /
I k)
Y
Y/

9, Axial Beta
3 Axial Beta

0.0

0.1 1 10 100 1,000 10 0.
&, Axial Kinetic Energy (keV) &/A Axial Kinetic Energy Per Nucleon (MeV /u)

Notes: 1) plots do not overlay, scale changed
2) Ton plot slightly off for protons since M 7 My

+ Electrons become relativistic easier relative to protons/ions due to light mass
+ Space-charge more important for ions than electrons (see Sec. S1D)
- Low energy ions near injector expected to have strongest space-charge
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1 10 100 1,000 10,000

S1G: Summary: Transverse Particle Equations of Motion

VB) q a 4 . e, 4B .
XL+ ((’Ybﬁb)) XL = my, B c? Bl m’YbﬁbCz xBl+ m’YbEbCX e
q d
 mApBRe? 9x .
= Applied Electric  Field = i oy = 1
@ = Applied Magnetic Field T ds V1-5;
g 0 P
V2¢ o 8X (9_x - _60
+ Boundary Conditions on ¢

Drop particle i subscripts (in most cases) henceforth to simplify notation
Neglects axial energy spread, bending, and electromagnetic radiation
~— factors different in applied and self-field terms:

In _4 3 32e2 Ox —¢, contributions to 'yg :
m'Yb Bb & ) ]
v¥» = Kinematics
2 . . . .
Y» = Self-Magnetic Field Corrections (leading order)
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S1H: Preview: Analysis to Come

Much of transverse accelerator physics centers on understanding the evolution of
beam particles in 4-dimensional x-x' and y-y' phase space.

Typically, restricted 2-dimensional phase-space projections in x-x' and/or y-y' are
analyzed to simplify interpretations:

When forces are linear particles tend

to move on ellipses of constant area
- Ellipse may elongate/shrink and
rotate as beam evolves in lattice

Nonlinear force components distort
orbits and cause undesirable effects
- Growth in effective
phase-space area reduces
focusability
x Ellipse Twists and Lengthens x4
Phase—Space

Ellipse '—
Const Area L
Particle Lo 7 Particle
/ - ] - o~

X

X
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The “effective” phase-space volume of a distribution of beam particles is of

fundamental interest
Effective area measure in

x-x' phase-space is the
X-emittance

0.03

o
=)
5}

o
o

Statistical " Area” ~ e,

e = 4[(2®) L(a"?) 1 — (@3]

X [rad]

-0.01

-0.02

-003—
R RN RN RN RN RN NN

—0.018 -0.010 —0.008 0.000 0.00& 0.010 0015
xIml

We will find in statistical beam descriptions that:
Harder/Easier

<~ to focus beam
on small final spots

Larger/Smaller beam phase-space areas
(Larger/Smaller emittances)

SM Lund, USPAS, 2017 Transverse Particle Dynamics 34

Much of advanced accelerator physics centers on preserving beam quality by
understanding and controlling emittance growth due to nonlinear forces arising
from both space-charge and the applied focusing. In the remainder of the next
few lectures we will review the physics of a single particles moving in linear
applied fields with emphasis on transverse effects. Later, we will generalize
concepts to include forces from space-charge in this formulation and nonlinear
effects from both applied and self-fields.
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S1I: Bent Coordinate System and Particle Equations of
Motion with Dipole Bends and Axial Momentum Spread

The previous equations of motion can be applied to dipole bends provided the
x,y,z coordinate system is fixed. It can prove more convenient to employ
coordinates that follow the beam in a bend.

+ Orthogonal system employed called Frenet-Serret coordinates

T Magnetic

| 2 Dipole Bend
. h s 7  Circular Path
Reference Straight Path E—--. ® By ds — RdO
Trajectory ¥ z ds =dz T
e
Applicd Ficld Region | o
B* = By L \ (S]grilg(}lzt Path
' T . "“ @
o o {
© = Bend Angle Pend
Center |
R = Bend Radlus Reference
s = Reference Trajectory Coordinate Trajectory
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In this perspective, dipoles are adjusted given the design momentum of the
reference particle to bend the orbit through a radius R.
+ Bends usually only in one plane (say x)
- Implemented by a dipole applied field: £ or By
+ Easy to apply material analogously for y-plane bends, if necessary
Denote:

po = mypPyc = design momentum

Then a magnetic x-bend through a radius R is specified by:
B® = B,y = const in bend
1 4By

R Po

The particle rigidity is defined as ( [ Bp] read as one symbol called “B-Rho”):
_ bo _ myBc
[Bp) = 2o = TR

Analogous formula for
Electric Bend will be derived
in problem set

q q
is often applied to express the bend result as:
1 By
R [Bp]
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Comments on bends:
+ R can be positive or negative depending on sign of BZ /[Bp]
+ For straight sections, R — oo ( or equivalently, B, = 0)
+ Lattices often made from discrete element dipoles and straight sections with
separated function optics
- Bends can provide “edge focusing”
- Sometimes elements for bending/focusing are combined
+ For a ring, dipoles strengths are tuned with particle rigidity/momentum so the
reference orbit makes a closed path lap through the circular machine
- Dipoles adjusted as particles gain energy to maintain closed path
- In a Synchrotron dipoles and focusing elements are adjusted together
to maintain focusing and bending properties as the particles
gain energy. This is the origin of the name “Synchrotron.”
+ Total bending strength of a ring in Tesla-meters limits the ultimately
achievable particle energy/momentum in the ring
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For a magnetic field over a path length S, the beam will be bent through an angle:

s _ SB:

R [Bp]

To make a ring, the bends must deflect the beam through a total angle of 27 :
+ Neglect any energy gain changing the rigidity over one lap

S SiBy
2= 2, 0i=) 7 =2 g,

i,Dipoles [

For a symmetric ring, N dipoles are all the same, giving for the bend field:
# Typically choose parameters for dipole field as high as technology allows for a
compact ring

o [Bp]
By =2rm NS
For a symmetric ring of total circumference C with straight sections of length L
between the bends:

# Features of straight sections typically dictated by needs of focusing, acceleration, and

dispersion control

C=NS+NL

SM Lund, USPAS, 2017
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Example: Typical separated function lattice in a Synchrotron
Focus Elements in Red
Bending Elements in Green

Lattice
Period

Sector

One Lattice Period
(separated function)

L

Ring Lattice: 12 Periods

Triplet _
(SIS-18, GSI) Quadrupoles Bending v,
18 Tesla-Meter Dipoles
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For “off-momentum” errors:

Ps = Po + Op
po = mypPpc = design momentum

0p = off- momentum

This will modify the particle equations of motion, particularly in cases where
there are bends since particles with different momenta will be bent at different

radii ‘
Ds ! ® Byy

N Ps=pot dp
\ \\\ Off Momentum (High)
\ N

- Common notation:
Pe=p0

Design 5
o= o =Fractional

Po

Momentum Error

+ Not usual to have acceleration in bends
- Dipole bends and quadrupole focusing are sometimes combined

Derivatives in accelerator Frenet-Serret Coordinates
Summarize results only needed to transform the Maxwell equations, write field

derivatives, etc.
# Reference: Chao and Tigner, Handbook of Accelerator Physics and Engineering

U(z,y,s) = Scalar

V(z,y,s) = Vo(z,y,8)% + Vy(z,y,5)y + Vs(z,y,5)8 = Vector
Vector Dot and Cross-Products: (V1, Vo Two Vectors)
ViV =V Vo, + ‘/ly‘/Qy + VisVas

X y S
Vl X V2 = Vlac Vly Vvls
‘/2z V2y ‘/ZS

= (‘/11‘/25 - Vls‘/Zz))Ac + (Vls‘/2z - le‘/Zs)y + (‘/193‘/2y - Vl'q‘/2:v)§
Elements:
d*z, = dxdy

B, = (1+%) dxdyds i’ = *d$+9dy+é(1+%) ds
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Gradient: Transverse particle equations of motion including
v 9w 1 ov bends and “off-momentum” effects
V¥ = X% + ya_y + Sl +z/R s + See texts such as Edwards and Syphers for guidance on derivation steps
! + Full derivation is beyond needs/scope of this class
Divergence: "y (w0B)" N [ 1 1- 5] | q ES
19 v, 1 v, * T 2 r= 3.3 2
1+ x/R0x 0y 1+z/R s q B2 q B® J - q 1 99
Curl: myBrcl+6  myBrcl+6 mypBEc? 1+ 6 Oz
av., 1oy, 1 (oV, @ PR O ¢ D
- 2.2 2
VXV:)A((—S—i—y> ty—— <—Z——[(1—|—m/R)V;]> (705) myfyc? (146)*  mywbyel+0
dy 1+4+=x/R 0s 1+z/R\ 0s Ox g Be o q 1 99
+8(1+z/R) (% _ 8V’”) myPec 1+ 0 mypBEc2 1+ 6 dy
oz Oy po = mypPpc = Design Momentum 1 By (s)|pipole By Do
Laplacian: =2 _ Fractional Momentum Error R(s) [Bp] q
Po
10 z\ O¥] O*V 1 0 1 oV
VW =—— " {( —) —} -5t — { —} Comments:
1+ z/Rox R/ Ox Ay 1+x/R0s |1+ x/R Os + Design bends only in x and BZ , 23 contain no dipole terms (design orbit)
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- Dipole components set via the design bend radius R(s)

+ Equations contain only low-order terms in momentum spread ¢
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Comments continued:

+ Equations are often applied linearized in ¢

+ Achromatic focusing lattices are often designed using equations with
momentum spread to obtain focal points independent of § to some order
x and y equations differ significantly due to bends modifying the x-equation
when R(s) is finite

+ It will be shown in the problems that for electric bends:

1 E2(s)

R(s)  Pue[Bp]

+ Applied fields for focusing: El, B, B
must be expressed in the bent x,y,s system of the reference orbit
- Includes error fields in dipoles
+ Self fields may also need to be solved taking into account bend terms
- Often can be neglected in Poisson's Equation

#i (14_2)& +8_2+ 1 g 1 2 ¢—_£
1+ x/R0x R/ Ox| 0y> 1+z/ROs|1+z/RJs e

Appendix A: Gamma and Beta Factor Conversions

It is frequently the case that functions of the relativistic gamma and beta factors
are converted to superficially different appearing forms when analyzing transverse
particle dynamics in order to more cleanly express results. Here we summarize
useful formulas in that come up when comparing various forms of equations.
Derivatives are taken wrt the axial coordinate s but also apply wrt time ¢

Results summarized here can be immediately applied in the paraxial
approximation by taking:
pp. y g B~ By

v=|v|~uv, = Bpe —
7=
Assume that the beam is forward going with 3 > ( :
1
— 1
,7 = T = — 2 _
/1= 32 B 5 Y 1
1
2__ - 2 _ 4 2
v 1— 2 pe=1 1/7

A commonly occurring acceleration factor can be expressed in several ways:
+ Depending on choice used, equations can look quite different!

if R — o0 2 2 2
K P ) 0B _ A, B
.- 5T a3t 53 = 4= =
reduces to familiar: or oy Js €0 ~ B ~32
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Axial derivative factors can be converted using: Appendix B: Magnetic Self-Fields
~ = BB g = v The full Maxwell equations for the beam self fields
(1— B2)3/2 A2 /72— 1 E°, B°®
with electromagnetic effects neglected can be written as
Energy factors: + Good approx typically for slowly varying ions in weak fields
Eiot = ’ymcz =&+ mc? p 1.9
v . :ES = — s __ A% nT]
€o VxB _MOJ+02/5§\E
£\ £ 9, B —
7[3:\/(—2) +2<—2> VXES:_/E%\BS v "
mc mc
+ Boundary Conditions on E® and B*
Rigidity: from material structures, etc.
p  ymv  mc me &\’ & .
[Bpl==="—=—98=—4/|— ) +2(— p = qn(x,t) n(x,t) = Number Density
q q q q mc? mc?
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J = gn(x,t)V(x,t) V(x,t) = "Fluid” Flow Velocity

+ Beam terms from charged particles + Calc from continuum approx distribution
making up the beam

SM Lund, USPAS, 2017 Transverse Particle Dynamics 48




Electrostatic Magnetostatic

AHHIUA: ADPpPIox:
v.ge =" V x B® = poJ
€0
V-B°=0
VxE*=0
E*=-Vo B5=Vx A

¢ = Electrostatic
Scalar Potential
— UXE'=-VxXVé=0

A = Magnetostatic

Vector Potential

— V-B°=V - (VxA)=0

Continuity of
mixed partial -
derivatR/es n Continuity of
= V-E’°=-V.-V¢= qn mixed partial
€0 s derivatives
= VxB =V x(VXxA)=ppJ
qn
Vip= -
¢ €0 Continue next slide

+ Boundary Conditions on ¢
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Magnetostatic Approx Continued:
VxB* =V x(VxA)=puyJ
V(V-A)—V3A = poJ
Still free to take (gauge choice):
V-A =0 Coulomb Gauge

Can always meet this choice:

A — A+V¢ ¢ = Some Function

0 Cont mixed partial derivatives

= BS:VXA—>V><A+V></Y;§:V><A

==V -A -V -A+V3
Can always choose & such that V - A = 0 to satisfy the Coulomb gauge:
VZA = —poJ = —poqnV

+ Essentially one Poisson form eqn
for each field x,y,z comp
+ Boundary conditions diff than ¢

But can approximate this further for “typical” paraxial beams .....
SM Lund, USPAS, 2017

+ Boundary Conditions on A
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V2A = —pod = —pognV
Expect for a beam with primarily forward (paraxial) directed motion:

V. = Brc Ve ~ R By R’ = Beam Envelope Angle

(Typically 10s mrad Magnitude)

= Az, < AL

Giving:
T A Rt
VA, = (po€o)cBy V3o Ho€o = le From unit definition
VA, = %v%

= A,

_ P
—C

+ Allows simply taking into account low-order self-magnetic field effects
- Care must be taken if magnetic materials are present close to beam
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Further insight can be obtained on the nature of the approximations in the reduced
form of the self-magnetic field correction by examining
Lorentz Transformation properties of the potentials.

From EM theory, the potentials ¢, ¢A  form a relativistic 4-vector that
transforms as a Lorentz vector for covariance:

Au = ((pv CA)

By

In the rest frame (*) of the beam, assume that the flows are small enough where
the potentials are purely electrostatic with:
qn*
v2 * 1"
¢ o

AL =(¢%,0)
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Review: Under Lorentz transform, the 4-vector components of A, = (¢, cA)
transform as the familiar 4-vector =, = (ct, x)

X1 Lab Frame

Transform Inverse Transform

ct* =yp(ct — Bpz) ct =yp(ct™ + Bpz™)
2 =m(z = Boct) z=m(2" + Bpct”)
x" =x X =X
This gives for the 4-potential 4,, = (¢,cA) :
0

¢ =10 +é3b0 7)) =Mo"

cA, = %(0//54- Bpd*) = Bo(169™) = Bud

+ Shows result is consistent with pure
electrostatic in beam (*) frame

:>AZ:@
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S2: Transverse Particle Equations of Motion in
Linear Applied Focusing Channels
S2A: Introduction

Write out transverse particle equations of motion in explicit component form:

/
2"+ (75) = q B — q Bo q By
(73) myBEc? mwBoc ¥ mpBhe 7Y
__a_ 99
myp BEc? Ox
1" (rybﬂb)/ / q a q a q a,.!
+ frd B — 732,.%'
Y (75) Y myBEY T myBe C mypBhe
a9
myp BEc? dy

Equations previously derived under assumptions:

+ No bends (fixed x-y-z coordinate system with no local bends)

+ Paraxial equations ( 22,92 < 1)

+ No dispersive effects (3, same all particles), acceleration allowed (3, # const )
+ Electrostatic and leading-order (in /35 ) self-magnetic interactions
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The applied focusing fields
Electric: By, Ey
Magnetic: Bg, By, Bj

must be specified as a function of s and the transverse particle coordinates x and y
to complete the description
+ Consistent change in axial velocity ( 3yc ) due to EY must be evaluated
- Typically due to RF cavities and/or induction cells
+ Restrict analysis to fields from applied focusing structures
Intense beam accelerators and transport lattices are designed to optimize
linear applied focusing forces with terms:

Electric: E2 ~ (function of s) X (z or y)

By ~ (function of s) x (x or y)

Magnetic: Bj = (function of s) x (z or y)
By ~ (function of s) x (z or y)

B¢ ~ (function of s)
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Common situations that realize these linear applied focusing forms will be
overviewed:
Continuous Focusing (see: S2B)
Quadrupole Focusing
- Electric  (see: S2C)
- Magnetic (see: S2D)
Solenoidal Focusing (see: S2E)

Other situations that will not be covered (typically more nonlinear optics):
Einzel Lens (see: J.J. Barnard, Intro Lectures)
Plasma Lens
Wire guiding

Why design around linear applied fields ?
+ Linear oscillators have well understood physics allowing formalism to be
developed that can guide design
+ Linear fields are “lower order” so it should be possible for a given source
amplitude to generate field terms with greater strength than for “higher
order” nonlinear fields
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S2B: Continuous Focusing

Assume constant electric field applied focusing force:
B*=0
E! = E% + Bl =

_m’Ybﬁgch%O - k3o = const >0

q rad
kgol = —
[kgo] = —

Continuous focusing equations of motion:
Insert field components into linear applied field equations and collect terms

x/! (Vbﬂb)/ q 8¢

+ X/ + kZ X =————
L By O mypBEc? Ox
a (wB) 2 q ¢
kg = —— " '
v (753b) ¥ Ko my; BEc? Oz Equivalent
Component
" (7bﬁb)/ ’ 2 q ¢
4y b kY= ——— 552 F
(768) pO myEBEc? Oy orm

Even this simple model can become complicated
+ Space charge: @ must be calculated consistent with beam evolution
+ Acceleration: acts to damp orbits (see: S10)
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Simple model in limit of no acceleration ( Y/, =~ const ) and
negligible space-charge (¢ ~ const ):

x|+ k%ox 1 =0 = orbits simple harmonic oscillatons

General solution is elementary:

x1 = x1(s:) cos[kpo(s — s:)] + [x, (s:)/kpo] sin[kgo(s — s:)]
x| = —kgox1 (s;)sinlkgo(s — s:)] + x| (i) coslkgo(s — ;)]
x (s;) = Initial coordinate

x/| (s;) = Initial angle

In terms of a transfer map in the x-plane (y-plane analogous):

2], = [ 2],

i

cos[kgo(s — ;)] % sin[kgo(s — s;)]

M, (s|s;) = { —kgosinfkgo(s — s;)]  cos[kgo(s — si)]
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/I Example: Particle Orbits in Continuous Focusing
Particle phase-space in x-x' with only applied field

kgo = 27 rad/m 2(0) =1 mm y(0)=0
¢~0 WPy =const 2(0)=0 y'(0) =0
10 T T
05}
00
-05f
— 1‘0 £

X [mm]

—_
=
&
=
g
3 | | |
0.0 0.5 1.0 1.5 2.0
s Iml

+ Orbits in the applied field are just simple harmonic oscillators
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Problem with continuous focusing model:

The continuous focusing model is realized by a stationary (m — oo ) partially
neutralizing uniform background of charges filling the beam pipe. To see this
apply Maxwell's equations to the applied field to calculate an applied charge
density:

o m ey D e = meonBicRhy
ox q

= const

+ Unphysical model, but commonly employed since it represents the average
action of more physical focusing fields in a simpler to analyze model
- Demonstrate later in simple examples and problems given
+ Continuous focusing can provide reasonably good estimates for more realistic
periodic focusing models if k%g is appropriately identified in terms of
“equivalent” parameters and the periodic system is stable.
- See lectures that follow and homework problems for examples
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In more realistic models, one requires that guasi-static focusing fields in the
machine aperture satisfy the vacuum Maxwell equations

V-E*=0
VxE*=0

V-B*=0
VxB*=0

+ Require in the region of the beam
+ Applied field sources outside of the beam region

The vacuum Maxwell equations constrain the 3D form of applied fields resulting
from spatially localized lenses. The following cases are commonly exploited to
optimize linear focusing strength in physically realizable systems while keeping
the model relatively simple:
1) Alternating Gradient Quadrupoles with transverse orientation
- Electric Quadrupoles (see: S2C)
- Magnetic Quadrupoles (see: S2D)
2) Solenoidal Magnetic Fields with longitudinal orientation (see: S2E)
3) Einzel Lenses (see J.J. Barnard, Introductory Lectures)
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S2C: Alternating Gradient Quadrupole Focusing
Electric Quadrupoles

In the axial center of a long electric quadrupole, model the fields as 2D transverse

2D Transverse Fields

B“=0

E; = -Gz

E; = Gy

o= Ve _ 0By 0B
2 ox oy
= Electric Gradient

p— Vq = Pole Voltage

q
Electrodes Outside of Circle r = r,
Electrodes: z* — y* = F72

+ Electrodes hyperbolic
+ Structure infinitely extruded along z

r, = Pipe Radius
(clear aperture)
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S . o
//Aside: How can you calculate these fields? Quadrupoles actually have finite axial length in z. Model this by taking the
Fields satisfy within vacuum aperture: gradient G to vary in s, i.e., G = G(s) with 8 = 2 — Zcenter (straight section)
V-E*“=0 a o + Variation is called the fringe-field of the focusing element
VxE® =0 E® = —V¢ + Variation will violate the Maxwell Equations in 3D

Choose a long axial structure with 2D hyperbolic potential surfaces:
$* = const(z? — y?)

Require: ¢ =V, at x=r,y=0 —

Vq

2
const = V, /1,

¢a:—2($2—y2)
"p
@ -2
Eg:—a¢ = 2Vq = -Gz
oz Tp _2Vq
gl 0t 2 =5
y 8y - TIQ) Y= Y

Realistic geometries can be considerably more complicated
+ Truncated hyperbolic electrodes transversely, truncated structure in z

1/
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- Provides a reasonable first approximation in many applications

+ Usually quadrupole is long, and G(s) will have a flat central region and rapid
variation near the ends

A Gs)

Accurate fringe calculation
typically requires higher
level modeling:

3D analysis

Detailed geometry

S = Z — Zcenter

Typically employ magnetic
design codes

m‘r

Axial Extent
Quadrupole
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For many applications the actual quadrupole fringe function G(s) is replaced by a

simpler function to allow more idealized modeling
+ Replacements should be made in an “equivalent” parameter sense to be
detailed later (see: lectures on Transverse Centroid and Envelope Modeling)
+ Fringe functions often replaced in design studies by piecewise constant G(s)
- Commonly called “hard-edge” approximation
+ See S3 and Lund and Bukh, PRSTAB 7 924801 (2004), Appendix C for more

details on equivalent models

A Gis)

Replace Gradient ’
H

Piecewise

Continuous

i )

s )

Axial Extent
Quadrupole
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Electric quadrupole equations of motion:
+ Insert applied field components into linear applied field equations and collect

terms
’ Do
x//_i_('ybﬂb) 2+ k(s = — q el
b * T = e
" ('Ybﬁb), ’ q ¢
k(s = —— 1 TP
Y (753) (8)y my; Brc? dy
K(s) = G G
myfyc?  Byc[Bp)
G _OBr OBy 2y g, Beme gy
ox o r2

Bye[Bp] = Electric Rigidity

+ For positive/negative K , the applied forces are Focusing/deFocusing in

the x- and y-planes
+ The x- and y-equations are decoupled
+ Valid whether the the focusing function k is piecewise constant or

incorporates a fringe model
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Simple model in limit of no acceleration ( ~y,3;, ~ const ) and
negligible space-charge (¢ ~ const ) and k = const:

= orbits harmonic or hyperbolic
depending on sign of k

2+ kr=0

y' —ky=0

General solution:

k>0 :
x = m; cos[v/k(s — 5i)] + (27 /v/k) sin[V/k(s — s;)]
2 = —kx;sin[v/k(s — s;)] + @} cos[v/k(s — s;)]
x(s;) = z; = Initial coordinate
2'(s;) = o}, = Initial angle
y = yi cosh[v/k(s — s;)] + (y;/V/k) sinh[V/k(s — s;)]
y' = Vky; sinh[Vk(s — s;)] + ¥ cosh[v/k(s — s;)]
y(s;) = y; = Initial coordinate
y'(s;) =y, = Initial angle
k<0 :
Exchange  and y in x > 0 case.

Transverse Particle Dynamics
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In terms of a transfer maps:

k>0 :
] i [
7] =[],
o) = [ oty B
My (sls) = [ Cjzﬂﬁsf&;i—ﬂsm zs}%g—i;lsm }
k<0 :
Exchange = and y in x > 0 case.

SM Lund, USPAS, 2017 Transverse Particle Dynamics

68

SM Lund, USPAS, 2017




Quadrupoles must be arranged in a lattice where the particles traverse a sequence
of optics with alternating gradient to focus strongly in both transverse directions
+ Alternating gradient necessary to provide focusing in both x- and y-planes
+ Alternating Gradient Focusing often abbreviated “AG” and is sometimes

called “Strong Focusing”

+ FODO is acronym:
- F (Focus) in plane placed where excursions (on average) are small
- D (deFocus) placed where excursions (on average) are large
- O (drift) allows axial separation between elements

+ Focusing lattices often (but not necessarily) periodic
- Periodic expected to give optimal efficiency in focusing with

quadrupoles
+ Dirifts between F and D quadrupoles allow space for:
acceleration cells, beam diagnostics, vacuum pumping, ....
+ Focusing strength must be limited for stability (see S5)
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Example Quadrupole FODO periodic lattices with piecewise constant &
+ FODO: [Focus drift(O) DeFocus Drift(O)] has equal length drifts and same
length F and D quadrupoles
+ FODO is simplest possible realization of “alternating gradient” focusing
- Can also have thin lens limit of finite axial length magnets in FODO lattice

'y |
Ro(s)] | (Ke = —hy) | .
e — o ,I{ —_—————— —
d l d
FQuad|e—»it— it
I I ‘ >
| > D Quad |
Lo :
TpmTmeees e E —K -
- Ly d=(1-)L,/2
| Lattice Period | { — nlL. /2
! = nLy/
n = Occupancy € (0, 1]
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/I Example: Particle Orbits in a FODO Periodic Quadrupole Focusing Lattice:
Particle phase-space in x-x' with only hard-edge applied field

Lp=05m x=450rad/m?in Quads «(0)=1mm y(0)=
n=0.5 ¢=~0 W = const 2'(0) =0 y'(0)=0
T ]
g 1
= T N~ ]
P x (scaled + shifted)s
S o o — o
4 L 1 L 1
0 1 2 3 4 5
s/ L, |Lattice Periods]
_ 10 T T T T
T o
I e e e i ek N
~ 7‘13 e /- _r (scaled 4 shifted)\
—-15 P __D__ ____ ____ ____ ___
0 1 2 3 4 5

s/ L, [Lattice Periods] I
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Comments on Orbits:
+ Orbits strongly deviate from simple harmonic form due to AG focusing
- Multiple harmonics present

+ Orbit tends to be farther from axis in focusing quadrupoles and
closer to axis in defocusing quadrupoles to provide net focusing

+ Will find later that if the focusing is sufficiently strong, the orbit can
become unstable (see: S5)

+ y-orbit has the same properties as x-orbit due to the periodic structure and AG
focusing

+If quadrupoles are rotated about their z-axis of symmetry, then the
x- and y-equations become cross-coupled. This is called quadrupole
skew coupling (see: Appendix A) and complicates the dynamics.

Some properties of particle orbits in quadrupoles with £ = const
will be analyzed in the problem sets

SM Lund, USPAS, 2017 Transverse Particle Dynamics 72




S2D: Alternating Gradient Quadrupole Focusing
Magnetic Quadrupoles

In the axial center of a long magnetic quadrupole, model fields as 2D transverse

Yy
2D Transverse Fields
i =
By =Gy
» By =Gz
x B? =0

o B, _oB: 0B
T Oy Ox

= Magnetic Gradient
By = |B*|,;=, = Pole Field

Conducting Beam Pipe: v — 7,

2
Poles: zy = ﬁ:%”

//Aside: How can you calculate these fields?
Fields satisfy within vacuum aperture:

V-B*=0
VxB*=0

Analogous to electric case, BUT magnetic force is different so rotate potential
surfaces by 45 degrees:

B® = —V¢*

Electric Magnetic

a a

F,=—¢ F, = —gppcz x 8¢
X

8XJ_

¢»® = const (xQ — yQ) expect electric potential form

rotated by 45 degrees ...
1 1
T——=T — —=Y

V2§ V2

1 1
ST+ —
vy 55t 5Y

+ Magnetic .(id.ea}] iron) poles hyperbolic rp = Pipe Radius ¢ — ¢% = —const - xy
+ Structure infinitely extruded along z
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B — _ ¢ — const - y Analogously to the electric quadrupole case, take G = G(s)
N v or + Same comments made on electric quadrupole fringe in S2C are directly
a Ioloxs applicable to magnetic quadrupoles
By = - = const - x . . .
dy Magnetic quadrupole equations of motion:
+ Insert field components into linear applied field equations and collect terms
ire: al _ - 2 2 _ =
Require: [B*| =B, at r=+az?2+y?>=r), = const = B,/ T (why) B q 96
B X +—.Z’ +/€(8)‘T—_3722—
a By G=2=F (v65b) my;, By c? 0z
— ¢t =y "» v (wB) q 99
p + Yy —h()y=———55
. . . . (75) m; B¢ Oy
Realistic geometries can be considerably more complicated
. . qG’ G
+ Truncated hyperbolic poles, truncated structure in z K(s) = —
+ Both effects give nonlinear focusing terms MYy Bpc [Bp]

1
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oy Oox Tp

= Rigidity

Yo Bymce
Bpl= ——
[Bp] .

+ Equations identical to the electric quadrupole case in terms of £(s)

+ All comments made on electric quadrupole focusing lattice are immediately
applicable to magnetic quadruples: just apply different < definitions in design

+ Scaling of K with energy different than electric case impacts applicability
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o : o emr oy

_ ) BoclBa] Electric Focusing; G = L = 2
" = Magnetic Focusing: G = 28z — Ba
[Bo] g g G= "5z ="

+ Electric focusing weaker for higher particle energy (larger 5)
+ Technical limit values of gradients

- Voltage holding for electric

- Material properties (iron saturation, superconductor limits, ...) for magnetic
+ See JIB Intro lectures for discussion on focusing technology choices

Different energy dependence also gives different dispersive properties when beam
has axial momentum spread:

0
= P _ Fractional Momentum Error
Po
is  Electric Focusing
R —
45 Magnetic Focusing

+ Electric case further complicated because 0 couples to the transverse motion since
particles crossing higher electrostatic potentials are accelerated/deaccelerated
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S2E: Solenoidal Focusing
The field of an ideal magnetic solenoid is invariant under transverse rotations
about it's axis of symmetry (z) can be expanded in terms of the on-axis field as as:

Coil (Azimuthally Symmetric)
[e o o o o oo 00

Vacuum Maxwell equations:

V-B*=0
VxB*=0

— T
[ Imply B® can be expressed in
/ N terms of on-axis field B¢(r = 0, 2)
a __ See
E*=0 Appendix D
Bt 1 i (_1)1/ 82’/713;0(2’) (|XL|>ZV_2 . (I;r.
1=z TEEELY o1 — eiser,
2 v=1 V'(V 1)' 0z 2 Theory and Design
oo v 220 2v of Charged
B¢ = B.o(2) + Z (*1)2 33720(2) <M) Particle Beams,
— ) 0z 2 Sec.3.3.1
B.o(z) = BZ(x,L = 0,z) = On-Axis Field
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Writing out explicitly the terms of this expansion:

N

B(r,z) =By (r,z) + 2BZ(r, 2)
= (—%sinf + ycos0) By (r, z) + 2BZ(r, z)

here o
v a (=1"  Lev-1,, (T\* 1
Br (Tv Z) = Z l/!(V — 1)!Bz0 (Z) <§)
v=1
B%)(Z) 7 B%)(z) 9
1474560

3 5
=i Bio)(z)rs _ Bio)(z) 5
2 16 384 18432

i 1 BaE) e BEG) s BEG) 6 BEE) o
_____ OV Ty 64 2304 147456
B.o(z) = B%(r = 0, z) = On-axis Field Linear Terms
(n)(,y — 9"Bz0(2) 1y _ 9Bo(2) y o 9?B.(2)
BZO (Z)f azn BzO(Z)f aZ BZO(Z): T
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For modeling, we truncate the expansion using only leading-order terms to obtain:
+ Corresponds to linear dynamics in the equations of motion

Bg _ _laBzO(z)x
2 0z
po= 19B0(2)  Buy(z) = Bi(xL = 0.2)
L2 0z = On-Axis Field
Bz = Bzo(z)
Note that this truncated expansion is divergence free:
10B,, 0 0
Br=_-2220 7 ~ B,y =
v 2 0z Ox, XL+8z =0 0
but not curl free within the vacuum aperture:
1 62320(2)
a_ 107°B0(2) . .
VxB®=s——(-%y +y2)
19%B, 10%B, .
:—a—o(z)r(—fcsiHQ—i-ycos@):—a 0(2) 0

2 022 27 022
+ Nonlinear terms needed to satisfy 3D Maxwell equations
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Solenoid equations of motion:
+ Insert field components into equations of motion and collect terms

2" + ('Ybﬁb)l . Zo(s ) BzO( ) _ q a(b
(75 [ o’ [BP] - myp B2 Ox
! a(b
//_|_('7bﬁb) ' Blo(s) T+ ()/:_ q o9
(oin 2B T (B ¢ T e oy
_ Wwhyme L B.o(s) _ wels)
Bp| = — = Rigidit

N V-7 e ¥

we(s) = M = Cyclotron Frequency
m (in applied axial magnetic field)

+ Equations are linearly cross-coupled in the applied field terms
- x equation depends on y, y'
- y equation depends on x, x'
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It can be shown (see: Appendix B) that the linear cross-coupling in the applied
field can be removed by an s-varying transformation to a rotating
“Larmor” frame:

y A A = xcosy(s)+ysiny(s)
) § = —xsini(s) + ycos(s)

o ] D(s) = — /:dg k(3)

) i
B.o(s) we(s)
o kr(s) = =
P z () 2[Bp]  2mBe
= Larmor

wave number
. used to denote
rotating frame variables

s = s; defines
initial condition
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If the beam space-charge is axisymmetric:
8(;5 0(;5 or  0¢pxy
x| N T orox, L. orr

then the space-charge term also decouples under the Larmor transformation and
the equations of motion can be expressed in fully uncoupled form:

4+ ('Ybﬁbyj/ + m(s)i _ q a¢ z
3322
((%gb))/ m’yb ﬁbc g; " Will demonstrate
~1/ YoPb) - ~_ 9 y this in problems
" (75) ¥+ Rl m'yb 51; my3B2¢2 or r for the simple
case of:
B 0(5)]2 [ we(s) ]2 B.o(s) = const
k(s) = k2 (s) = { z = 20
() =k2(9) = 315, 2yBpc

+ Because Larmor frame equations are in the same form as continuous and
quadrupole focusing with a different ~, for solenoidal focusing we implicitly
work in the Larmor frame and simplify notation by dropping the tildes:

)~(L—>Xl
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/1l Aside: Notation:

A common theme of this class will be to introduce new effects and generalizations
while keeping formulations looking as similar as possible to the the most simple
representations given. When doing so, we will often use “tildes” to denote
transformed variables to stress that the new coordinates have, in fact, a more
complicated form that must be interpreted in the context of the analysis being
carried out. Some examples:
+ Larmor frame transformations for Solenoidal focusing
See: Appendix B
+ Normalized variables for analysis of accelerating systems
See: S10
+ Coordinates expressed relative to the beam centroid
See: S.M. Lund, lectures on Transverse Centroid and Envelope Model
+ Variables used to analyze Einzel lenses
See: J.J. Barnard, Introductory Lectures

"

SM Lund, USPAS, 2017 Transverse Particle Dynamics 84




/I Example: Larmor Frame Particle Orbits in a Periodic Solenoidal Focusing
Solenoid periodic lattices can be formed similarly to the quadrupole case Lattice: & — &’ phase-space for hard edge elements and applied fields
* DriftsAplllaced betwe;n sc?lenoids' of finite ?xial lenffth . . L,=05m =90 rad/m2 in Solenoids 5;([)) =1 mm g(()) =0
- Allows space for iagnostics, pumping, acceleration cells, etc. n=05 b0 Y = const #(0)=0 7(0) = 0
+ Analogous equivalence cases to quadrupole . . . .
- Piecewise constant ~ often used (1).2 E = f
+ Fringe can be more important for solenoids g [030) SR Sl
E -05 .
Simple hard-edge solenoid lattice with piecewise constant < E: }g P K (Scaled + Shlfted)
\ 20— 2 : : . ]
A | 0 1 2 3 4 5
Kl 8 | Ry = R ~ ! . .
2(8) (I y) S — - s/ L, |Lattice Periods|
3 i af ' ' '
: : = 2t
§ § - A U Gl Nelninie
! | | | | s E -2 .
S -~ = 4F K (scaled + shifted)
cdi2t 0 dfe d2t d=(1=n)l, Boob 0 B
347 Lpgbi ¢ = nL}P - 0 1 2 3 4 5
| Lattice Period | 1 = Occupancy € (0, 1] s/ L, [Lattice Periods|
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Contrast of Larmor-Frame and Lab-Frame Orbits Contrast of Larmor-Frame and Lab-Frame Orbits
+ Same initial condition + Same initial condition
Larmor-Frame Coordinate Orbit in transformed x-plane only Larmor-Frame Angle
1.0 §
05
"§ 00 -—mmm NG e e oD ’é
E -0.5 . [l
—-10 E x (scaled + shifted) N
Wy —15F o E
—-2.0 = n T n n —
0 1 2 3 4 5
s/L, [Lattice Periods] Lab-Frame Angle
Lab-Frame Coordinate Orbit in both x- and y-planes
HE R el
OF - — - ——— == B it T E
. ¥ ~ (scaled shiftcd) Calculate f Calculate
L e ] using using
o} 1 2 3 4 5
s/ L, |Lattice Periods| transfer transfer
= , Matrices in 4 matrices in
- Y S i Appendix C = 7 Appendix C
ST ~ ] App T o pp
E ' r (scaled shifted) a=F -4f F # (scaled + shifted)
o E N o - ]
o 1 2 3 4 _— o 1 2 3 4 5
s/Lp [Lattice Periods] s/L, |Lattice Periods|
. . 87 SM 1 88




Additional perspectives of particle orbit in solenoid transport channel
+ Same initial condition
Radius evolution  (Lab or Larmor Frame: radius same)

e o =
o »n o

# (scaled + shifted)

7 |mm]
L s
o o

0 1 2 3 4 5
s/ Ly, |Lattice Periods|

Side- (2 view points) and End-View Projections of 3D Lab-Frame Orbit

&

< -
ol | | Cglculate
£, . using
,}E / - ) T transfer
° ® Deroid ' £ matrices in
o Appendix C
° Peroid o
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Larmor angle and angular momentum
of particle orbit in solenoid transport channel

+ Same initial condition s
7/£h®
Si

Larmor Angle 7;(5) =

¥, Larmor Angle

ab
&' =300 & (scaled | shilted)

0 1 2 3
s/L, [Lattice Periods]
Angular Momentum and Canonical Angular Momentum (see Sec. S2G )

S
o

'\y’* ya!

g 0 > \
E P ) # (scalod + shifred)
15— : : - : —
0 1 2 3 4 5
s/ L, [Lattice Periods] 1
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Comments on Orbits:
+ See Appendix C for details on calculation
- Discontinuous fringe of hard-edge model must be treated carefully if
integrating in the laboratory-frame.
+ Larmor-frame orbits strongly deviate from simple harmonic form due to
periodic focusing
- Multiple harmonics present
- Less complicated than quadrupole AG focusing case when interpreted
in the Larmor frame due to the optic being focusing in both planes
+ Orbits transformed back into the Laboratory frame using Larmor
transform (see: Appendix B and Appendix C)
- Laboratory frame orbit exhibits more complicated x-y plane coupled
oscillatory structure
+ Will find later that if the focusing is sufficiently strong, the orbit can
become unstable (see: S5)
+ Larmor frame y-orbits have same properties as the x-orbits due to the equations
being decoupled and identical in form in each plane
- In example, Larmor y-orbit is zero due to simple initial condition in x-plane
- Lab y-orbit is nozero due to x-y coupling

SM Lund, USPAS, 2017 Transverse Particle Dynamics 91

Comments on Orbits (continued):
+ Larmor angle advances continuously even for hard-edge focusing
+ Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition in this example (initial x-plane motion)
+ Canonical angular momentum F; is conserved in the 3D orbit evolution
- As expected from analysis in S2G
- Invariance provides a good check on dynamics
- Py in example has zero value due to the specific (x-plane)
choice of initial condition. Other choices can give nonzero values
and finite mechanical angular momentum in drifts.

Some properties of particle orbits in solenoids with piecewise x = const
will be analyzed in the problem sets

i
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S2F: Summary of Transverse Particle Equations of Motion

In linear applied focusing channels, without momentum spread or radiation, the
particle equations of motion in both the x- and y-planes expressed as:

(v650)' B q 0
o (’Ybﬁb) v ha(s)e = mfyb 32 mr3B2c2 8:c¢
( vBb)’ _ q 0

(’7 ) + " (S)y B m’Yb Bb myE et 8y¢

kz(s) = a-focusing function of lattice

ky(s) = y-focusing function of lattice

Common focusing functions:
Continuous:

Although the equations have the same form, the couplings to the fields are
different which leads to different regimes of applicability for the various focusing
technologies with their associated technology limits:
Focusing:
Continuous:
Kz(8) = Ky(s) = k%o = const
Good qualitative guide (see later material/lecture)
BUT not physically realizable (see S2B)
Quadrupole:

G(s) - _ myBe
ia() = —riy (5) = | FyclBa  Electric [Bol = ——
* Y G(s) Magnetic 1
c[Bp]’ &

G is the field gradient which for linear applied fields is:

OE® OE? 2V, .
e = % ==2  FElectric

Kz (8) = ky(s) = k3, = const G(s) = ;B?I _83‘39 _B 5
R vy _— Zp 1
Quadrupole (Electric or Magnetic): dy Oz  rp? Magnetic
Kz (s) = —ky(s) = K(s) Solenoid:
Solenoidal (equations must be interpreted in Larmor Frame: see Appendix B): 9 B.o(s) 2 we(s) 2 qB.o(s)
Kz (8) = Ky(s) = K(s) Kz (8) = ky(s) = ki (s) = = we(s) = ———=
x y 2[Bp] 27 BpC m
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It is instructive to review the structure of solutions of the transverse particle Common, simple examples of periodic lattices:
equations of motion in the absence of: R Periodic Solenoid
0 0 kS)] D (ky = & L
Space-charge: —¢ ~ —(b 0 (<) ‘( 2 R -
oo () 3 3
. VoPb |
Acceleration: 7,3 ~ const == —F~0 |
(7650) : | .
In this simple limit, the x and y-equations are of the same Hill's Equation form: i P . 8
! WL "d/ 3W2%d:07m%
'+ ky(s)x =0 | ‘ t=nlL
I % | Periodic FODO Quadrupole | P
y' +hy(s)y =0 wo(s)| | (k= —ry N
,,,,,,,,,,,,,,,,,,,,,,, R e
+ These equations are central to transverse dynamics in conventional d ¢ d
accelerator physics (weak space-charge and acceleration) F Quad [l i
- Will study how solutions change with space-charge in later lectures ' | -
s
In many cases beam transport lattices are designed where the applied focusing - P} = D Quad
functions are periodic: : =
S —% -
K (s + Lp) = Ka(s) - Ly - d=1(1-
. . . ] | = MLy/2
k(s + L) = ry(5) L, = Lattice Period Lattice Period | ¢ =L,/
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However, the focusing functions need not be periodic:

+ Often take periodic or continuous in this class for simplicity of interpretation
Focusing functions can vary strongly in many common situations:

+ Matching and transition sections

+ Strong acceleration

+ Significantly different elements can occur within periods of lattices in rings

- “Panofsky” type (wide aperture along one plane) quadrupoles for beam
insertion and extraction in a ring

Example of Non-Periodic Focusing Functions: Beam Matching Section
Maintains alternating-gradient structure but not quasi-periodic

Matching Section x-Focusing Strength

-
o

Example corresponds to
High Current Experiment
Matching Section

kx (Arb Units)
|
o9 oo 09
BN ON B OO

(hard edge equivalent)
at LBNL (2002)
0 50. 100. 150. 200. 250. 300. 350.
s [em]
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Equations presented in this section apply to a single particle moving in a beam
under the action of linear applied focusing forces. In the remaining sections, we
will (mostly) neglect space-charge (¢ — () as is conventional in the standard
theory of low-intensity accelerators.
+ What we learn from treatment will later aid analysis of space-charge effects
- Appropriate variable substitutions will be made to apply results
+ Important to understand basic applied field dynamics since space-charge
complicates
- Results in plasma-like collective response

/Il Example: We will see in Transverse Centroid and Envelope Descriptions of
Beam Evolution that the linear particle equations of motion can be applied to
analyze the evolution of a beam when image charges are neglected

r — x.={(x), x— centroid

Yy —ye=(y)1 y— centroid p
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S2G: Conservation of Angular Momentum in
Axisymmetric Focusing Systems
Background:

Goal: find an invariant for axisymmetric focusing systems which can help us
further interpret/understand the dynamics.

In Hamiltonian descriptions of beam dynamics one must employ proper canonical
conjugate variables such as (x-plane):

T = Canonical Coordinate + analogous

y-plane

P, =p; + qA, = Canonical Momentum

Here, A denotes the vector potential of the (static for cases of field models
considered here) applied magnetic field with:

B=Vx A

For the cases of linear applied magnetic fields in this section, we have:

25 (y? — 2%), Magnetic Quadrupole Focusing
A = { —xiB.oy + y3B.oz, Solenoidal Focusing
0, Otherwise
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For continuous, electric or magnetic quadrupole focusing without acceleration
(7p8p = const) , it is straightforward to verify that x,x" and y,y" are canonical
coordinates and that the correct equations of motion are generated by the
Hamiltonian:

1 1 1 1 qo
H, = -2+ =2 + —kpa® + = 2, 99
1 2:5 —1—2 +2I€SL‘ +2fiyy +m%‘fﬁfc3
d 8Hl d aHJ_
—_—r = — —r = —
ds ox' ds oy’
4 95 d ,__OHL
Giving the familiar equations of motion:
” ___a 9%
T+ Kg = 323 O
" q ¢
Y +RyY = ——5—55——
Y myp BEc? Dy
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For solenoidal magnetic focusing without acceleration, it can be verified that we
can take (tilde) canonical variables:
+ Tildes do not denote Larmor transform variables here !

j =X =
=y Byl = mypBpc
ille— BzOy z}’:y/—l- Bsz [ p}:T
2[Bp] 2[Bp]
With Hamiltonian:
> 1 B.o \° B.o _\’ q9
H, =- <fél+—ﬂ> +<ﬂ’— T + ——===
2 2(Bp] 2(Bp) my, By e
d _ 8]2@ d §= OH Caution:
— = — ——Y = —F= . .
~ d oy’ Primes do not mean d/ds in
ds oz’ 5 y tilde variables here: just
ij’ _ OH i A OH | notation to distinguish
ds” 0T ds Y oy “momentum” variable!
Giving (after some algebra) the familiar equations of motion:
"o ;0(5)y _ BZO(S) I _ q @
2(Bp)] (B my; By c? Ox
B.y(s) B.o(s) q 0]
" 4 20 x4+ == _
E 7 YT mgARe Dy
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Canonical angular momentum

One expects from general considerations (Noether's Theorem in dynamics) that
systems with a symmetry have a conservation constraint associated with the
generator of the symmetry. So for systems with azimuthal symmetry (0/96 = 0),
one expects there to be a conserved canonical angular momentum (generator of
rotations). Based on the Hamiltonian dynamics structure, examine:

Pp=xxP]l-z=[xx(p+q¢A)] -z

This is exactly equivalent to
+ Here 7 factor is exact (not paraxial)

Py = (xpy — ypz) + q(zAy — yAs)
=r(po + qAg) = myr*0 + qry

Or employing the usual paraxial approximation steps:

Py ~ myByc(xy’ — ya') + q(zA, — yAy)
= mypBpcr0 + qrig
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Inserting the vector potential components consistent with linear approximation
solenoid focusing in the paraxial expression gives:
+ Applies to (superimposed or separately) to continuous, magnetic or electric
quadrupole, or solenoidal focusing since Ay = ( only for solenoidal
focusing

B,
Py ~ mypBpc(zy’ — yx') + qTO(m2 + y2)

B
= m’ybﬁbcr29’ + 3220 ZZO r?

For a coasting beam (3, = const), it is often convenient to analyze:
+ Later we will find this is analogous to use of “unnormalized” variables used in
calculation of ordinary emittance rather than normalized emittance

P9 / / BZO 2 2 m’YbﬂbC
=xy —yxr + x© + Bp|= ———
mwhe Y 2[3/)]( v) (Bl q
B
2/ 20 2
=r0 + r
2[Bp]
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Conservation of canonical angular momentum

To investigate situations where the canonical angular momentum is a constant of
the motion for a beam evolving in linear applied fields, we differentiate Py with
respect to s and apply equations of motion

Equations of Motion:

Including acceleration effects again, we summarize the equations of motion as:
+ Applies to continuous, quadrupole (electric + magnetic), and solenoid
focusing as expressed
+ Several types of focusing can also be superimposed
- Show for superimposed solenoid

" (fo/Bb)/ ’ - B;O(S) . BzO(S) r_ q @
T ) T T RB Y T Bg Y T mphic ox
" (Vbﬁb)/ ’ ;0(8) BZO(S) r_ q @
VU e Y T T S T T B T T mepBe oy

k3, = const, Continuous Focus (k, = f.)

[Bp] = mysBec Ke(s) = %, Electric Quadrupole Focus (ky, = —kz)
%, Magnetic Quadrupole Focus (k, = —kK;)
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Employ the paraxial form of Py consistent with the possible existence of a
solenoid magnetic field:
+ Formula also applies as expressed to continuous and quadrupole focusing

Bz
Py = myfpc(ey’ —ya') + 52 (2% + y?)
Differentiate and apply equations of motion:
+ Intermediate algebraic steps not shown

iP@ =me(wfh) (zy' — yx') + me(w ) (xy” — ya”)

ds
B/
+ quo(xz +9?) + ¢B.o(z2’ + yy')
= mc(Vf) [k — Kylzy — 2q <x8—¢ - y@)
So IF: Nbe \ Oy o
o 9¢ 99 _ 0% _
l)liz Ry Z)xa_y_y%_ae_o

+ Valid continuous or solenoid focusing

+ Invalid for quadrupole focusing * Axisymmetric beam

d
— Py =0 == Py = const
ds
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For:
+ Continuous focusing
+ Linear optics solenoid magnetic focusing
+ Other axisymmetric electric optics not covered such as Einzel lenses ...

Py = mypBpc(zy’ — ya') + —qBQZO (22 + y?) = const

mYyBrc(zy’ — yx') = Mechanical Angular Momentum Term

quO (
2

In S2E we plot for solenoidal focusing :
+ Mechanical angular momentum o zy’ — yz'’
+ Larmor rotation angle z;
+ Canonical angular momentum (constant) P
Comments:
+ Where valid, Py = const provides a powerful constraint to check dynamics
+ If Py = const for all particles, then (Py) = const for the beam as a whole
and it is found in envelope models that canonical angular momentum can act
effectively act phase-space area (emittance-like term) defocusing the beam
+ Valid for acceleration: similar to a “normalized emittance”: see S10
SM Lund, USPAS, 2017

x? 4+ %) = Vector Potential Angular Momentum Term
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Example: solenoidal focusing channel

Employ the solenoid focusing channel example in S2E and plot:
+ Mechanical angular momentum o zy’ — yz’
+ Vector potential contribution to canonical angular momentum Bzo(zr2 + y2)
+ Canonical angular momentum (constant) P,
Py

mypBec

BzO

2[Bp]

xy —yx +

(2% + y?) = const = Canonical
Angular Momentum

— a2y — ya’ =20’ = Mechanical Angular Momentum
B, .

—_ %(ﬁ +12) = k(2% + 3?) = Vector Potential Component
[Bp Canonical Angular Momentum

5 .Xy,_yry ——
g

>

[mm-mrad]

# (scaled + shifted)
—10F — ]
_1 5 L L L L
0 1 2 3 4 5
s/L, [Lattice Periods]
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Comments on Orbits (see also info in S2E on 3D orbit):
+ Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up ( @ jumps) and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition in this example (initial x-plane motion)
+ Canonical angular momentum P, is conserved in the 3D orbit evolution
- Invariance provides a strong check on dynamics
- Py in example has zero value due to the specific (x-plane)
choice of initial condition of the particle. Other choices can give
nonzero values and finite mechanical angular momentum in drifts.
+ Solenoid provides focusing due to radial kicks associated with the “fringe” field
entering the solenoid
- Kick is abrupt for hard-edge solenoids
- Details on radial kick/rotation structure can be found in Appendix C
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Alternative expressions of canonical angular momentum

It is insightful to express the canonical angular momentum in (denoted tilde here)
in the solenoid focusing canonical variables used earlier in this section and
rotating Larmor frame variables:
+ See Appendix B for Larmor frame transform
+ Might expect simpler form of expressions given the relative simplicity of the
formulation in canonical and Larmor frame variables

Canonical Variables:

TI=x Y=y
- B.o - B.o
P = — z y /_y/+ 20 .
2[Bp] 2[Bp]
Py / / Bo 2 2
- —— =ay —yr + r° 4+
e =Y Y 2[Bp]( y)
=3y — 27

+ Applies to acceleration also since just employing transform as a

definition here
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Larmor (Rotating) Frame Variables:

Larmor transform following formulation in Appendix B:
+ Here tildes denote Larmor frame variables

x cos P } 0 —sinv,k 0 : T (s) = — / ds k,(3)
z' | _ | kpsing cosyp kpcosy —siny i si
Y | sin® 5 0 5 cos 5 0 ~ U (s) = B.o(s)
Y —krcosty sinty  kpsing cosy 7 L 2[Bp)
gives after some algebra:
2= 4P
xy'—yx'zfcgj’—gjzfc'— 50 (.%2_’_:&2)
: 2[Bp]
Showing that:
Py / / B.o 2 2
— =Yy —Yyr + o4y
m B¢ 2[Bp] ( )
=y —zy

+ Same form as previous canonical variable case due to notation choices.

However, steps/variables and implications different in this case !
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Bush's Theorem expression of canonical angular momentum
conservation

Take:

B°=Vx A

and apply Stokes Theorem to calculate the magnetic flux ¥ through a
circle of radius r:

\Ifz/d%;Ba.z :/d%(VxA).z:fA-dF

For a nonlinear, but axisymmetric solenoid, one can always take:
+ Also applies to linear field component case

A =04y(r,2)
aAg 1 8
—— a _ r— 7 7
B T +2z 3 (rdp)
Thus:
U = 271rAp
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/I Aside: Nonlinear Application of Vector Potential

Given the magnetic field components
Bi(r, z) Bi(r, 2)
the equations

0
Bi(r,z) = —aAg (ry2)

B¢(r,z) = %% [rAg(r, 2)]

can be integrated for a single isolated magnet to obtain equivalent
expressions for Ay

Ag(r, ) :f/z dz B (r, 3)

—00

1 T
Ag(r, z) = 7/ dr B¢(T, 2)
™ Jo
+ Resulting Ap contains consistent nonlinear terms with magnetic field
1
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Then the exact form of the canonical angular momentum for for solenoid
focusing can be expressed as:
+ Here 7V factor is exact (not paraxial)

Py = myr20 + qrAy

. %
= myr?6 + 1=
2w

This form is often applied in solenoidal focusing and is known as “Bush's
Theorem” with

Py = myr?0 + L% = const

+ In a static applied magnetic field, v = const further simplifying use of eqn

+ Exact as expressed, but easily modified using familiar steps for paraxial form
and/or linear field components

+ Expresses how a particle “spins up” when entering a solenoidal magnetic field
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Appendix A: Quadrupole Skew Coupling

Consider a quadrupole actively rotated through an angle % about the z-axis:

y A Transforms
T = xcosy+ysiny

Yy = —xsiny + ycosy

"Pole” Section
_ (Rotated Position)

N ,
7’//’ / "Pole” Section xTr = i COS 1/} — g Sin ¢

/! (Normal Position)
/

; y= Isiny + ycosy

T
o '
Z v

'
v

R"

Normal Orientation Fields

Electric Magnetic
E? =—-Gx B =Gy
E;= Gy Bl =Gx
G =G(s)
= Field Gradient (Electric or Magnetic)
Note: units of G different in electric and magnetic cases Al
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Rotated Fields
Electric

Ey = FEfcosy — Ejsing  Ef = -G =—-G( xcosy+ysiny)
Ey = Egsing + Ejcosyy Ej= Gy= G(—wzsing+ycosi))
Combine equations, collect terms, and apply trigonometric identities to obtain:
E2 = —Gcos(2¢)z — Gsin(2¢)y 2sin¢ cos ¢ = sin(2¢)
Ey = —Gsin(2¢)z + G cos(2¢)y cos® ¢ — sin” ¢ = cos(2¢)

Magnetic
By = Bjcosy — Bising  Bi =Gy =
By = Bisiny + Bjcosty Bj=Gi=

G(—zsiny + ycos))
G( xcost + ysiny)

Combine equations, collect terms, and apply trigonometric identities to obtain:

BS = —Gsin(2¢)x + G cos(2¢)y
By = Gcos(2¢y)x + G'sin(2¢)y

A2
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For both electric and magnetic focusing quadrupoles, these field component
projections can be inserted in the linear field Eqns of motion to obtain:
Skew Coupled Quadrupole Equations of Motion

q 09
mvb 332 my3B2c2 Ox

)
"y (%/)’b)/y — K cos(21)y + K sin(2)z = m,yqﬁ 2.2 gz
b

/a:’ + K cos(2¢)x + ksin(2y)y =

G

o — {W’ Electric Focusing
[Bol’

Magnetic Focusing

System is skew coupled:
* x-equation depends on y, y' and y-equation on x, X' for ¢y # nsr/2 (1 integer)
Skew-coupling considerably complicates dynamics
+ Unless otherwise specified, we consider only quadrupoles with “normal”
orientation with 1) = nm/2
+ Skew coupling errors or intentional skew couplings can be important
- Leads to transfer of oscillations energy between x and y-planes

- Invariants much more complicated to construct/interpret A3
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The skew coupled equations of motion can be alternatively derived by
actively rotating the quadrupole equation of motion in the form:

By g 09
N (7605) Zeganelz mvb,@bc2 or
n, (1Bs) ! arini NN 8¢
i ('Vbﬁb) 4 (S)y ¥ m'YbﬁbC2 ay

+ Steps are then identical whether quadrupoles are electric or magnetic

A4
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Appendix B: The Larmor Transform to Express Solenoidal
Focused Particle Equations of Motion in Uncoupled Form

Solenoid equations of motion:

"y ('Ybﬂb),x/ _ B;O(S)y _ B.o(s) y = q aQb
(755) 2[Bp] [Bp] - mApBe Ox
v (wB) B./zO (s) B.o(s) q aQb
+ + + =
(oBo)” " 2Bl " [Bpl T T magBRe Oy
B,o(s) = B(r =0,z = s) = On-Axis Field
Bp] = 2259 _ Rigidity

To simplify algebra, introduce the complex coordinate
- Note* context clarifies use of i
1=v-1 | (particle index, initial cond, complex i)

Then the two equations can be expressed as a single complex equation

(165)" w(s),  Bwo(s) , _ a <¢+ ¢)

2 +i z+1
(v8p) = 2[Bp] ~ [Bp] = my; By mg BEc? Ay -
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|§Ex+w

_l/ +

If the potential is axisymmetric with ¢ = ¢(r)

90,90 %0z _ Jyagp

+
oz (9y orr
then the complex form equation of motion reduces to:

" ('Ybﬁb)l ’ -B;O(s) ‘BZO(S) o q _¢
B E T aBa f T B 2 T g or

Following Wiedemann, Vol II, pg 82, introduce a transformed complex variable that
is a local (s-varying) rotation:

= R

y A

zZ= ge_“i’(s) =T 41y

¥ (s) = phase-function
(real-valued) D

i

B2
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Then: 2z= Ze“z’

g// _ (Z/ + 2“;/2/ + iqL//Z _ 1;/22) eiz[z

and the complex form equations of motion become:

~1 . B.o (’Yb/))b)/:| ~/
=T [( [Bp]) " e |2
a2 B 5, (”// B, (75)’ ”/):| 3
# 0 G 1 (5 g o)
q 8¢2
m’ybﬂbc2 arr

Free to choose the form of ¢ Can choose to eliminate imaginary terms in i( .... )
in equation by taking:

1[), Leg B.o o ,,20 B:o (’Ybﬂb)/
~ 2[By] 2[Bpl ~ 2[Bp] (1P5)
B3
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Using these results, the complex form equations of motion reduce to: B4
! B, \? d
z”+(%ﬁb)z’+< 20) 5= q 7 09z
(5) 2[Bp] m’yb 3p2c arr

Or using Z = ¥ + 1y , the equations can be expressed in decoupled
T, g variables in the Larmor Frame as:

i (wB) . q
v (765) +(s)7 = mvb ﬁb my332c2 Or r
~11 (’Yb/Bb)/ ~/ ~ q a¢ y

" (vo50) Trle)y = CmAP 2R or

B.o(s)  we(s) (Bp] = WByme
2[Bp]  2vfuc

= Larmor Wave-Number

Equations of motion are uncoupled but must be interpreted in
the rotating Larmor frame
+ Same form as quadrupoles but with focusing function same sign in each plane
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The rotational transformation to the Larmor Frame can be effected by integrating

the equation for 1[)/ — %
p
~ B s
b(s) = / ds [B(;]) —/. ds k()

Here, S; is some value of s where the initial conditions are taken.
+Take s = s; where axial field is zero for simplest interpretation
(see: pg B6)

Because
7;/ - BzO _ We
2[Bp]  2vBc
the local & — ¥ Larmor frame is rotating at ¥ of the local s-varying cyclotron
frequency

+If B,y = const, then the Larmor frame is uniformly rotating as is well
known from elementary textbooks (see problem sets)

B5
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The complex form phase-space transformation and inverse transformations are:

z=ze Z=ze
z/:(i"—i—i@z) b Z/:(él_h;/é)e—up
z=x+1y Z=2+1y zZ)/:_kL
g/:l‘/_"_iyl Z/:j/_f_ig/

Apply to:
+ Project initial conditions from lab-frame when integrating equations
+ Project integrated solution back to lab-frame to interpret solution

If the initial condition s =
B.o(s;) =0, then:

S; is taken outside of the magnetic field where

(s =s;) =x(s =s;) F(s=s;)=2(s=s;)
Y(s =si) =y(s = s1) J(s=s) =y (s=s)
Z(s=s)=2z(s=5;) Z(s=s)=2(s=s)

B6
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The transform and inverse transform between the laboratory and rotating frames
can then be applied to project initial conditions into the rotating frame for
integration and then the rotating frame solution back into the laboratory frame.

Using the real and imaginary parts of the complex-valued transformations:

T T T T
x ~ 7’ i’ -1 x
=M, (s|si) - | = | =M, (s]si) -

; (slsi)-| 2 (slso)- | 0
y 7 7 y'

[ cos } 0o fsindl 0 }
-~ kp siny cos® kpcosy —siny
M, ) = ~ o
rlsls) = | Gng 0 cosd 0
|l —kpcost sinty  kpsinyg costy
[ cosp 0 sin 0
~ -1 krsiny cost —kp costY siny
M, i) = 2 -
e (slsi) —siny 0 cos 0
L krcosy —siny  kpsiny cosy |

and it can be verified that:
= Inverse[M, ]

Here we used:

W = —kg M.

T

B7
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Appendix C: Transfer Matrices for Hard-Edge
Solenoidal Focusing

Using results and notation from Appendix B, derive transfer matrix for
single particle orbit with: + Details of decompositions can be found in: Conte
+ No space-charge and Mackay, “An Introduction to the Physics of

Particle Accelerators” (2nd edition; 2008)
+ No momentum spread

First, the solution to the Larmor-frame equations of motion:

T4 S Oub)’ ¥ +k(s)z=0 B 2
(75 ) — k2 = =0
(w5 B LD
- bb -
§'+ g 4 k(s)j = 0
()
Can be expressed as:
T T
.’i’l - .’i’l
ol =My(zla) - | T
p wlzlz) - | 5
7 7 ..
+ In this appendix we use z rather than s for the axial coordinate since there are
not usuall)z/ bends in a solenoid Cl
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Transforming the solution back to the laboratory frame:

From project of initial conditions
to Larmor Frame

=M, (zz) - ML(z \Zz) M (Z2|Zz -

SR

~

SRS

Y

= I Identity Matrix

+ Here we assume the initial condition is outside the maginetlc field so that there
is no adjustment to the Larmor frame angles, i.e., M,. " (z;z;) =1

= M, (2l2) - ML (2]z) -

~

x

x
= M(z|z) -

’

z z=2z; z=2z;

Ty R

T
T
Y
y/

M(z|z) = Mr(z|zi) . 1\~/IL(z|zi)

+ Care must be taken when applying to discontinuous (hard-edge) field models
of solenoids to correctly calculate transfer matrices
- Fringe field influences beam “spin-up” and “spin-down”

entering and exiting the magnet C2
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Apply formulation to a hard-edge solenoid with no acceleration [(0)" =01
Baolz)

—~

B. Buo(2) = B. [0(2) — 6(= ~ 1))
B\Z = const = Hard-Edge Field
¢ = const = Hard-Edge Magnet Length

\ Note coordinate choice: z=0 is start of magnet
z=0 2=t =

Calculate the Larmor-frame transfer matrix in 0 < z < £ :

~// kz‘% =0 quO Bz() B\z £
gl/ + k%y — 2’Yb[3bmc 2[Bp} Q[Bp} cons
0" <z< (" Subtle Point:
C S/kr 0 0 Larmor frame transfer
B —k.S C 0 0 matrix is valid both sides
ML (2(07) = 0 0 C S/kr, of discontinuity in
0 0 —kS C focusing entering and
exiting solenoid.
C =cos(krz) S =sin(kp2) C3
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The Larmor-frame transfer matrix can be decomposed as:
+ Useful for later constructs

e S/ky 0 0
VP kS C 0 0 F(z) 0
M(07) = | 77 c S/kp |~ [ 0 F(z)}
K 0 —kLS C
with
- [C) S(z)/k &[200
FRI=| ks o) ) } e { Os }

Using results from Appendix E, F can be further decomposed as:

F(z) = { f](é)s(z) g(é))/k,; }
) { (1) f%tan (I%Z) } . [ 1—kLSin(k'LZ) (1) } . [ (1) f%tan(kgz)
= Murife (2) - Minin-lens(2) - Marige (2)

C4
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Applying these results and the formulation of Appendix B, we obtain the rotation
matrix within the magnet 0 < z < ¢
* Here we apply M, formula with ¢) = —f, » for the hard-edge solenoid

C 0 S 0
kS C  kC S
=S 0 C 0
-k C =S —kiS C

Comment: Careful
with minus signs!
Here, C and S here
have positive
arguments as defined.

M, (]07) =

With special magnet end-forms:
+ Here we exploit continuity of MM,. in Larmor frame

Entering solenoid
1 00 0 sDirect plug-in from
M,.(0%]07) = 8 (1) IICL 8 formula above for M,
_ ot
kL0 0 1 at z =0
Exiting solenoid
1 00 0 *Slope of fringe field
_ is reversed so replace
MLty = | O 1 TR O ' :
0 0 1 0 in entrance formula:
kp 0 1 kp — ki C5
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The rotation matrix through the full solenoid is (plug in to previous formula for

M.,.(2/07) )

cos ¢ 0 sin® 0
_ 0 cos ¢ 0 sin ¢ Tcos® Isin @
M, (€+]07) = —sin® 0 cos® 0 [ —Isin® Icos® ]
0 —sin® 0 cos ¢
I= 1 0

and the rotation matrix within the solenoid is (plug into formula for M,.(z]07)
and apply algebra to resolve sub-forms):

C(z) 0 S(z) 0 1 00 0
~ _ C(z) 0 S(z) 0 1 kL O
MG = Zgy 0 e o | lo 01 o
0 —S(z) 0 C(») kL 0 0 1
_ |G ST | |1 K
,{_S(z)l C(z)I} [—K 1} KE[%L 8]
=M, (z0%) - M,.(0F[07) 0<z</

Note that the rotation matrix kick entering the solenoid is expressible as
M0 = | L 1

SM Lund, USPAS, 2017
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-K I

The lab-frame advance matrices are then (after expanding matrix products):

Inside Solenoid 0% <z < ¢~
M(2]07) = M, (2/07)ML(2]07)
cos? ¢ ﬁ sin(2¢) 3 sin(2¢) % sin? ¢
—kr, sin(2¢) coq(?qﬁ) kr cos(2¢)  sin(2¢)
—4sin(2¢) —-sin’¢  cos?o 35 sin(2¢)
—kr cos(2¢) —sin(2¢)  —krsin(2¢) cos(2¢)
o =kpz

7[9(2)1 S(z)I}[I K}[g(z)o ]

-K I F(z)
) C() K+ (z)I} [F(z) 0 }
C(z) K—S(z)I C(z)I-S(z»)K 0 F(z)
)

S(z)K - F(z) C(2)K-F(z) + S(2)F (z)}
C()K - F(2) - S()F(z) C(2)F(2) - S(:)K - F(2)

+ 2" forms useful to see structure of transfer matrix

C7
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Through entire Solenoid z = ¢+
M(£7107) = M,(€7]07)ML(¢F[07)

cos? @ i sin(2®) 1sin(29) ﬁ sin? @
_ f%" sin(2®) cos? ® —kpsin?® 1 9in(2(I>)
| —isin(29) —,% sin?®  cos? @ P s1n(2¢)
kz, sin? @ —1sin(2®) —%& sin(29) cos? P

o = kLé
_ | cos®I  sin®I | [ F({) O
T | —sin®I cos®I 0 F(¢)

B [ cos ®F()  sin ®F(¢) ]
| —sin®F({) cos PF(()

+ 2™ forms useful to see structure of transfer matrix

Note that due to discontinuous fringe field:

1 00 0
_ 0 1 kr O I K Frin
M(0+10-) = _ I ge going in
(07107) 0 01 0 [ -K I ] 7 kicks angles of beam
—kr, 0 O 1 C8
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M(£7]07) # M(£+|07) Due to fringe exiting
kicking angles of beam
In more realistic model with a continuously varying fringe to zero, all transfer
matrix components will vary continuously across boundaries
- Still important to get this right in idealized designs
often taken as a first step!

Focusing kicks on particles entering/exiting the solenoid can be calculated as:

et [0ty =2(0)  #(0%) ='(07) + kry(0)
y(0") =y(07) ' (07) =y (07) — kra(07)
BN —a) | 2 =2 () — k(€
() =y(t7) Y () =y (C7) + kpa(l”)

+ Beam spins up/down on entering/exiting the (abrupt) magnetic fringe field

The transfer matrix for a hard-edge solenoid can be resolved into thin-lens
kicks entering and exiting the optic and an rotation in the central region of

the optic as:

M(€£+]07) = M, (¢7]07) M (¢7]07)

[ cos® ® isin(?@) 1 sin(2®)
| —Esin(2@) cos? @ —kr sin? @
| —3sin(29) —% sin?®  cos® @
| kg sin®® —1sin(2®) —%& sin(29)
[1 00 0][1 gsine) 0
|10 1 —kr O 0 cos(29) 1
10 01 0 0 Asin®® 1
| ko 0 O 1 1 —sin(2®) 0

= M(£H[67) - M(6-|0%) - M(0+]07)

where ® = k¢

ki sin? @

'L
15in(29)
ﬁ sin(2®)
cos? @

é sin® & 1 0
sin(2®) 0 1
3t sin(2®) 0 0
cos(2®) 0

= o oo

+ Focusing effect effectively from thin lens kicks at entrance/exit of solenoid as
particle traverses the (abrupt here) fringe field

+ Sense of rotation changes with entry/exit of hard-edge field. 9 C10
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Thf.t transfer matrix for the ha.rd-edge solenoid is ex.act v&fithin Fhe context of linear Solve 1) and 2) for harde edge parameters By
optics. However, real solenoid magnets have an axial fringe field. An obvious z
need is how to best set the hard-edge parameters B, £ from the real fringe field. /\ f * dz Bgo (2)
_ J—0
B.o(2) Yy = eo——————
) f _ oz Bxo (2)
Real Magnet 9
en o0
7 Ha.rd-Edge and Real Magnets [ f ~dz By ( z)]
Hard—Fdge Magne axially centered to compare ! =
> dz B%(2)
f —00 z z0 z
a r=—£/2 z=4/2
Simple physical motivated prescription by requiring:
1) Equivalent Linear Focus Impulse o /dz k2 o /dzBfo
o0 2
— / dz B%)(2) = (B,
— 00
2) Equivalent Net Larmor Rotation Angle o / dz kp o« / dz Bo
© —_
— / dz B,o(z) ={B,
— 00
Cl1 Cl12
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Appendix D: Axisymmetric Applied Magnetic or Electric Field

Expansion
Static, rationally symmetric static applied fields E, B® satisfy the vacuum
Maxwell equations in the beam aperture:

Plugging ¢ into Laplace's equation yields the recursion relation for f,
(2v +2)* favs2 + f3, =0

Iteration then shows that

o0 2
V-E'=0 VxE'=0 V-B'=0 VxB*=0 d,m(m)zz(—l)”a”f(o’z)(3)2”
This implies we can take for some electric potential $°and magnetic potential ¢™: V=0 ()2 9z 2
Ea — 7v¢e Ba = _v¢m . a o 5’¢m(0,z) . .. . .
which in the vacuum aperture satisfies the Laplace equations: Using B3 (r =0,2) = Bzo(2) = — Oz and diffrentiating yields:
2 2
Vipc =0 Vg™ =0 " 0 = (-1)Y 97 IBg(z) (2l
We will analyze the magnetic case and the electric case is analogous. In Bl(r,z) = — = Z ] Y] 20—1 (‘)
; X ) or v -1 09z 2
axisymmetric (0/00 = 0) geometry we express Laplace's equation as: v=1
o2m 10 (o™ & _ Bi(r,z) = 0%m _ i (=1)” 9* Bao(2) ([)2”
™ (r,z) = rar \"or + 92 ” z Oz — w2 9 2
m i 1d impl B, =-—" . . . .o R
i r(f’ OZ g.can be expanded as (odd terms in r would imply nonzero or + Electric case immediately analogous and can arise in electrostatic Einzel
- . o0 . . .
m . w 2 4 lens focusing systems often employed near injectors
o(r2) = z% PG = Jo+ o+ far 4 + Electric case can also be applied to RF and induction gap structures in
v= . . . . .
where fo = ¢™(r = 0, 2) is the on-axis potential D1 the quasistatic (long RF wavelength relative to gap) limit. D2
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Appendix E: Thin Lens Equivalence for Thick Lenses
In the thin lens model for an orbit described by Hill's equation:
[ 2(s) + rals)a(s) = 0|

the applied focusing function () is replaced by a “thin-lens” kick described
by:

kg (s) = 15(5 — 50) so = Optic Location = const
f f = focal length = const

The transfer matrix to describe the action of the thin lens is found by integrating
the Hills's equation to be:

z | 1 0 T _ T
L VL e 5]

0 0

Graphical Interpretation:

Thin Lens

El
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For a free drift, Hill's equation is:
2" (s) =0

with a corresponding transfer matrix solution:

2ol R e 2,

We will show that the thin lens and two drifts can exactly replace
Case 1) Piecewise constant ~ focusing lens: k4 (s) = & = const > 0
Case 2) Piecewise constant defocusing lens: #,(s) = —k = const < 0
Case 3) Arbitrary linear lens represented by: #4(s)

This can be helpful since the thin lens + drift model is simple both to carry out
algebra and conceptually understand.

E2
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Case 1) The piecewise constant focusing transfer matrix M, for k; =K >0
can be resolved as:

i d 5 d ' generally,
E AL E | 5 bo2d> 55
S S F
N _ | Cs) S(s)/V/E
Mic(sls:) = [ —JRS(s) Cls)

S =

=[ f(s)]'{l—l/ﬂs) (1)H<1) ?(8)}
= Muarist - Migek - Marife

where C(s) = cos[V/k(s — )] d(s) = tan[V/k(s — s:)/2]/Vk
S(s) = sin[v/k(s — s;)] 1/f(s) = VKS(s)
This resolves the thick focusing lens into a thin-lens kick M. between two
equal length drifts Mgyis, upstream and downstream of the kick
+ Result specifies exact thin-lens equivalent focusing element
+ Can also be applied to continuous focusing (in interval) and solenoid focusing
(in Larmor frame, see S2E and Appendix C) by substituting appropriately for x

+ Must adjust element length consistently with composite replacement E3
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Case 2) The piecewise constant de-focusing transfer matrix M, for x, = —x <0
can be resolved as:

generally,

2d < 5 —5;

|

74 ; d

i i D

b
n

[ Ch(s) Sh(s)/\/k
M (slsi) = [ V#Sh(s)  Ch(s) }

=16 % L 1) 10 7]
= Marift - Miick - Marift

where
Ch(s) = cosh[vk(s — ;)] d(s) = tanh[/k(s — s;)/2]/VE
Sh(s) = sinh[vk(s — s;)] 1/f(s) = v/kSh(s)
+ Result is exact thin-lens equivalent defocusing element
+ Can be applied together with thin lens focus replacement to more simply
derive phase-advance formulas etc for AG focusing lattices
+ Must adjust element length consistently with composite replacement
SM Lund, USPAS, 2017
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Case 3) General element replacement with an equivalent thin lens

Consider a general transport matrix:
My, Mo ] detM = My Mag — MiaMs =1

M =
{ My Mo

+ Always true for linear optics, see Sec S5

A transfer matrix of a drift of length d1 followed by a thin lens of
strength f , followed by a drift of length dy gives:

1 dy 1 0 L d
Masitez-+thintariter = | g 1 |- —1/f 1| ]0 1

Setting M = Mayitos thinresi _ | 1=d2o/f di+dy—dida/f
drift2+thin+driftl |:—1/f 1—d1/f

di = (My — 1)/May
dy = (M1 — 1) /Moy
—1/f = Moy

+ M;5 implicitly involved due to unit determinant constraint

Discussions of this, and similar results can be found in older optics books

such as: Banford, The Transport of Charged Particle Beams, 1965. E5
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Comments:
+ Shows that any linear optic (thick or thin) can be resolved into an
equivalent thin lens kick + drifts
- Use requires element effective length in drift + thin-lens-kick + drift to be
adjusted consistently
- - Care must be taken to interpret lattice period with potentially different
axial extent focusing elements correctly
+ Orbits in thin-lens replacements may differ a little in max excursions
etc, but this shows simple and rapid design estimates can be made using
thin lens models if proper equivalences are employed
- Analysis of thin lens + drifts can simplify interpretation and algebraic steps
+ Construct applies to solenoidal focusing also if the orbit is analyzed in
the Larmor frame where the decoupled orbit can be analyzed with Hill's
equation, but it does not apply in the laboratory frame
- Picewise contant (hard-edge) solenoid in lab frame can be resolved into a
rotation + thin-lens kick structure though (see Appendix C)

E6
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S3: Description of Applied Focusing Fields
S3A: Overview
Applied fields for focusing, bending, and acceleration enter the equations of
motion via: R — Applied Electric Field
B® = Applied Magnetic Field

Generally, these fields are produced by sources (often static or slowly varying in
time) located outside an aperture or so-called pipe radius ” = 7, . For example,
the electric and magnetic quadrupoles of S2:

Electric Quadrupole Magnetic Quadrupole

Hyperbolic
material
surfaces outside
pipe radius

r=rp

@ : Conducting Beam Pipe: 7 — 7,
Electrodes Outsi s
Electrode:

SM Lund, USPAS, 2017

Poles: xy — -2
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The fields of such classes of magnets obey the vacuum Maxwell Equations within
the aperture:

anzo VBaIO
P 10
Ee — _ ~RB® B = — _E®
VX ot VX 2 ot

If the fields are static or sufficiently slowly varying (quasistatic) where the time
derivative terms can be neglected, then the fields in the aperture will obey the
static vacuum Maxwell equations:

V-E*=0
VxE*=0

V-B*=0
VxB*=0

In general, optical elements are tuned to limit the strength of nonlinear field terms
so the beam experiences primarily linear applied fields.
+ Linear fields allow better preservation of beam quality
Removal of all nonlinear fields cannot be accomplished
+ 3D structure of the Maxwell equations precludes for finite geometry optics
+Even in finite geometries deviations from optimal structures and symmetry
will result in nonlinear fields
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As an example of this, when an ideal 2D iron magnet with infinite hyperbolic
poles is truncated radially for finite 2D geometry, this leads to nonlinear focusing
fields even in 2D:

+ Truncation necessary along with confinement of return flux in yoke

Cross-Sections of Iron Quadrupole Magnets
Ideal (infinite geometry) Practical (finite geometry)

y A

Hyperbolic Iron Pole Sections
(infinite)

Shaped Iron Pole Sections
(finite)
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The design of optimized electric and magnetic optics for accelerators is a
specialized topic with a vast literature. It is not be possible to cover this topic in
this brief survey. In the remaining part of this section we will overview a limited
subset of material on magnetic optics including:

+(see: S3B) Magnetic field expansions for focusing and bending

+(see: S3C) Hard edge equivalent models

+(see: S3D) 2D multipole models and nonlinear field scalings

*(see: S3E) Good field radius

Much of the material presented can be immediately applied to static Electric
Optics since the vacuum Maxwell equations are the same for static Electric E*
and Magnetic B® fields in vacuum.
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S3B: Magnetic Field Expansions for Focusing and Bending
Forces from transverse (B2 = () magnetic fields enter the transverse equations
of motion (see: S1, S2) via:
Force: Fq =~ qfycz x BY
Field: 1 =xB; +yBy
Combined these give: — —
Fy ~ —qBycBy

Fy qPvcBs
Field components entering these expressions can be expanded about x; = 0
+ Element center and design orbit taken tobe at x| = 0

1

Sources of undesired nonlinear applied field components include:

+ Intrinsic finite 3D geometry and the structure of the Maxwell equations

+ Systematic errors or sub-optimal geometry associated with practical trade-offs
in fabricating the optic

+ Random construction errors in individual optical elements

+ Alignment errors of magnets in the lattice giving field projections in
unwanted directions

+ Excitation errors effecting the field strength

- Currents in coils not correct and/or unbalanced

B — 1Ba(0) +2 0B; (0)y +3 0B (0)z More advanced treatments exploit less simple power-series expansions to express
‘ ‘ oy Ox Nonlinear Focus symmetries more clearly:
192 B2 9 o? B 10B¢ ) Te@s: + Maxwell equations constrain structure of solutions
T3 02 (0)z* + D20y (O)zy + 2 0y2 O)y" + - ; I]\DIIPOIGIBend - Expansion coefficients are NOT all independent
1 2HBa 3B ’ Q(eriliaFocus + Forms appropriate for bent coordinate systems in dipole bends can become
a __ a Y Yy .
B y = B Yy (0) + ox (0)z + Oy 0y Nonlinear Focus 3: Skew complicated
: d Focus
1 623; 92 Be 1 0B | Qua
z 0)z? Y0 VO 4
t5 52 02+ awy( Jzy + 5 52 O)y” +
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S3C: Hard Edge Equivalent Models s
: L ! agnet Structure i '
Real 3D magnets can often be modeled with sufficient accuracy by 2D hard-edge ;
“equivalent” magnets that give the same approximate focusing impulse to the _ s
particle as the full 3D magnet ! D[ ofMagper

+ Objective is to provide same approximate applied focusing “kick” to particles
with different focusing gradient functions G(s)

See Figure Next Slide
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i
! Aperture
|
.
!
!

G(z) = 3D Field Gradient

G™(z) = Hard-Edge
Equivalent
Field Gradient

Mid—Flane Transverse ¥

Structure

Mid-Plane Strueture
Generating B
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Many prescriptions exist for calculating the effective axial length and strength of
hard-edge equivalent models

+See Review: Lund and Bukh, PRSTAB 7 204801 (2004), Appendix C
Here we overview a simple equivalence method that has been shown to work
well:

For a relatively long, but finite axial length magnet with 3D gradient function:
0B¢
dy

Take hard-edge equivalent parameters:
+ Take z = 0 at the axial magnet mid-plane

G(z) =

r=y=0

Gradient: G*=G(2=0)

1 [e )
Axial Length: ¢ = 70)/ dz G(z)

+ More advanced equivalences can be made based more on particle optics
- Disadvantage of such methods is “equivalence” changes with particle
energy and must be revisited as optics are tuned
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S3D: 2D Transverse Multipole Magnetic Fields

In many cases, it is sufficient to characterize the field errors in 2D hard-edge
equivalent as:

[ 1 o0
Bx(Iay) = Z/ dz Bg(malb Z)

— 1 o0
By(mvy):Z/ dz BZ(‘T,y,Z)

2D Effective Fields 3D Fields

oo
dz
Operating on the vacuum Maxwell equations with: —

14

yields the (exact) 2D Transverse Maxwell equations :

33_1(3579) _ 3B_y(a:,y) < From VxB=0

oy Ox
9B, (z,y) _ *3B_y(a?,y) < From V-B=0
Ox oy
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These equations are recognized as the Cauchy-Riemann conditions for a
complex field variable:

E*EB_w—iB_y

Notation:
Underlines denote
complex variables
where confusion

1=v-1
to be an analytical function of the complex variable:

ZE\/——1|

|g5m+w

may arise
Cauchy-Riemann Conditions 2D Magnetic Field
E:u(x,y)—&—w(a:/y) u:B_l‘ ’U:_B_y
ou v OB.(z,y) _  9B(z,y)
ox dy ox o dy
Ou _ _Ov . OBi(zy) _ 9B,(z,y)
dy Oox dy ox

F = u+ v analytic
func of z =z + 1y

F=B,— ZE analytic
func of z =z + iy

Note the complex field which is an analytic function of 2 = T + 1y is
B* =B, —iB, NOT B = B, +iB, . This is not a typo and is
necessary for B™ to satisfy the Cauchy-Riemann conditions.

+ See problem sets for illustration
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It follows that B*(2) can be analyzed using the full power of the highly
developed theory of analytical functions of a complex variable.

Expand B*(z) as a Laurent Series within the vacuum aperture as:

B*(2) = Bu(,y) — iBy(x,y) = Y b,z"""
n=1

b,, = const (complex)

n = Multipole Index
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The b, are called “multipole coefficients” and give the structure of the field.
The multipole coefficients can be resolved into real and imaginary parts as:

b, = A, —iB,
B,, = "Normal” Multipoles
A,, = 7Skew” Multipoles

Some algebra identifies the polynomial symmetries of low-order terms as:
Cartesian projections: B, — iB,, = (A, — iB,)(z + iy)" !

Index | Name Normal (A, =0) Skew (B, =0)

n Bm/B y/Bn Bx/An By/An

1 Dipole 0 1 1

2 Quadrupole | y T x -y

3 Sextupole 2zy 2% —y? 22 —y? —2xy

4 Octupole 32y — o3 2% — 3xy? 23 — 3ay? =322y + 3

5 Decapole dady — 4oy 2t — 622y + ot at — 622y +yt  —dady + day?
Comments:

+Reason for pole names most apparent from polar representation
(see following pages) and sketches of the magnetic pole structure
+Caution: In so-called “US notation”, poles are labeled with index n -> n -1
 Arbitrary in 2D but US choice not good notation in 3D generalizations
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Comments continued:
+Normal and Skew symmetries can be taken as a symmetry definition. But this
choice makes sense for n = 2 quadrupole focusing terms:
F¢ = —qByeB, = —qBpc(Baz — A2y)
Fg = qBycB. qBrc(Bay + Azx)
In equations of motion:
Normal = Bs:
Skew = As:

z-eqn, z-focus y-eqn, y-defocus
z-eqn, y-defocus  y-eqn, z-defocus

Magnetic Pole Symmetries (normal orientation):

Dipole (n=1) Quadrupole (n=2) Sextupole (n=3)

= s NUZA"
TIT /{ k DA

LY
?i\)t\— N
M AR
r’ a

+ Actively rotate normal field structures clockwise through an angle of 7 /(2n)

for skew field component symmetries
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Multipole scale/units
Frequently, in the multipole expansion:

i b, 2"~

n=1

B*(2) = Bu(z,y) -

the multipole coefficients b, are rescaled as
b, — Qnrg_ rp = Aperture ”Pipe” Radius
Closest radius of approach of magnetic
sources and/or aperture materials

oo . n—1
()
1 p

n=

so that the expansions becomes

B*(2) = Bi(v.y) —iB,

Advantages of alternative notaiton:
+ Multipoles b,, given directly in field units regardless of index n
+ Scaling of field amplitudes with radius within the magnet bore becomes clear
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Scaling of Fields produced by multipole term:
Higher order multipole coefficients (larger n values) leading to nonlinear focusing
forces decrease rapidly within the aperture. To see this use a polar representation

for Z, l_)n = \/m

arctan[y, x]

1, = Real Const

z=x+iy=re?

= Iy le

Thus, the nth order multipole terms scale as

n—1 n—1
= = [b,| r eln=1)0+4,]
AT AT

+ Unless the coefficient |Qn| is very large, high order terms in n will become
small rapidly as 7, decreases
+ Better field quality can be obtained for a given magnet design by simply
making the clear bore "p larger, or alternatively using smaller bundles (more
tight focus) of particles
- Larger bore machines/magnets cost more. So designs become trade-off
between cost and performance.

- Stronger focusing to keep beam from aperture can be unstable (see: S5)
SM Lund, USPAS, 2017
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S3E: Good Field Radius

Often a magnet design will have a so-called “good-field” radius 7" = 7'¢ that the
maximum field errors are specified on.
+In superior designs the good field radius can be around ~70% or more of the
clear bore aperture to the beginning of material structures of the magnet.
+ Beam particles should evolve with radial excursions with 7 < 1y

rp = Clear Bore Radius
~ Pole Radius Typical

rq = Good Field Radius
~ 70% r, Typical
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Comments:
+ Particle orbits are designed to remain within radius "9
+ Field error statements are readily generalized to 3D since:

V-B*=0
VxB*=0
and therefore each component of B¢ satisfies a Laplace equation within the

vacuum aperture. Therefore, field errors decrease when moving more deeply
within a source-free region.

— V’B*=0
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S3F: Example Permanent Magnet Assemblies
A few examples of practical permanent magnet assemblies with field contours are
provided to illustrate error field structures in practical devices

8 Rectangular Block Dipole 8 Square Block Quadrupole
¥ y

¥

s s

Rk
Bosi

SM Lund, USPAS, 2017

For more info on
permanent magnet design
see: Lund and Halbach,
Fusion Engineering Design,
32-33, 401-415 (1996)
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S4: Transverse Particle Equations of Motion with
Nonlinear Applied Fields S4A: Overview

In S1 we showed that the particle equations of motion can be expressed as:

! Ba
x//+('7b5b) X = q a q % x BY + qb; <" X%
U (wBe) T mmBEe T myBee L myBe
q 0 #
VBBEc? %

When momentum spread is neglected and results are interpreted in a Cartesian
coordinate system (no bends). In S2, we showed that these equations can be
further reduced when the applied focusing fields are linear to:

" ('Ybﬁb), / _ q 2
'’ + —(%ﬂb) '+ Ky(s)r = 7mfy§’ﬂ§c2 8x¢

! 0

"y ('begb) 4 _ q o

Y Y0b) Yty my; BEc? Oy

(
where ks (s) = z-focusing function of lattice
(

ky(s) = y-focusing function of lattice
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describe the linear applied focusing forces and the equations are implicitly
analyzed in the rotating Larmor frame when B? #0.

Lattice designs attempt to minimize nonlinear applied fields. However, the 3D
Maxwell equations show that there will always be some finite nonlinear applied
fields for an applied focusing element with finite extent. Applied field
nonlinearities also result from:

+ Design idealizations

+ Fabrication and material errors
The largest source of nonlinear terms will depend on the case analyzed.

Nonlinear applied fields must be added back in the idealized model when it is
appropriate to analyze their effects
+ Common problem to address when carrying out large-scale numerical
simulations to design/analyze systems

There are two basic approaches to carry this out:
Approach 1: Explicit 3D Formulation
Approach 2: Perturbations About Linear Applied Field Model

We will now discuss each of these in turn
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S4B: Approach 1: Explicit 3D Formulation

This is the simplest. Just employ the full 3D equations of motion expressed in
terms of the applied field components E*, B® and avoid using the focusing
functions Kz, Ky

Comments:
+Most easy to apply in computer simulations where many effects are
simultaneously included
- Simplifies comparison to experiments when many details matter
for high level agreement
+ Simplifies simultaneous inclusion of transverse and longitudinal effects
- Accelerating field Y can be included to calculate changes in 85, Vb
- Transverse and longitudinal dynamics cannot be fully decoupled in
high level modeling — especially try when acceleration is strong in
systems like injectors
+Can be applied with time based equations of motion (see: S1)
- Helps avoid unit confusion and continuously adjusting complicated
equations of motion to identify the axial coordinate s appropriately
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S4C: Approach 2: Perturbations About Linear Applied Field Model
Exploit the linearity of the Maxwell equations to take:

Tl + 0E]
B® =B*. + /B

where
E?|., B are the linear.field components Ky Ky
incorporated in
to express the equations of motion as:
w o (wB) q q /
+ T+ kyt = ———50E, — ———0B, + ———JBJy
(765) ’ mypBEc? My m'Yb/BbC
. q 99
my; 32 my3B2c2 Ox
(75)’ q q /
"y v kyy = ————0E!+ ——0BY — —— 6Bl
(76/5p) " m7b6§c2 Y myfee T m’YbBbC
g 09
my; B2 my3 322 3y
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This formulation can be most useful to understand the effect of deviations from
the usual linear model where intuition is developed

Comments:
+ Best suited to non-solenoidal focusing
- Simplified Larmor frame analysis for solenoidal focusing is only valid
for axisymmetric potentials ¢ = ¢(7) which may not hold in the
presence of non-ideal perturbations.
- Applied field perturbations 6E , dB® would also need to be projected
into the Larmor frame
+ Applied field perturbations SET, 6B will not necessarily satisfy the
3D Maxwell Equations by themselves
- Follows because the linear field components Ej_ |L7 B |L
will not, in general, satisfy the 3D Maxwell equations by themselves
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S5: Linear Transverse Particle Equations of Motion without
Space-Charge, Acceleration, and Momentum Spread
SS5A: Hill's Equation

Neglect:
+ Space-charge effects: 0¢/0x ~ 0
+ Nonlinear applied focusing and bends: E®, B* have only
+ Acceleration: Vb3 =~ const linear focus terms
+ Momentum spread effects: Vz; =~ By

Then the transverse particle equations of motion reduce to Hill's Equation:
2" (s) + k(s)z(s) =0

x=_ particle coordinate
(i.e., z or y or possibly combinations of coordinates)

s = Axial coordinate of reference particle

_d
 ds
k(s) = Lattice focusing function (linear fields)

/
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For a periodic lattice:
w5+ L) = w(s)
L, = Lattice Period

/I Example: Hard-Edge Periodic Focusing Function

"

0 1 2 3 4 5
s/ L, |Lattice Periods] ///

For a ring (i.e., circular accelerator), one also has the “superperiod” condition:

k(s +C) = k(s)

C = N'L, = Ring Circumfrance

N = Superperiod Number
+ Distinction matters when there are (field) construction errors in the ring
- Repeat with superperiod but not lattice period
- See lectures on: Particle Resonances
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/Il Example: Period and Superperiod distinctions for errors in a ring

* Magnet with systematic defect will be felt every lattice period
X Magnet with random (fabrication) defect felt once per lap

Lattice
Period
Sector -

One Lattice Period

Ring Lattice: 12 Periods Triplet

sk %k
(SIS-18, GSI) Quadrupoles B*;nding e,
Dipoles

"
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S5B: Transfer Matrix Form of the Solution to Hill's Equation

Hill's equation is linear. The solution with initial condition:

x(s = s;) = x(s;) s = s; = Axial location
2 (s = s;) = 2'(s5) of initial condition

can be uniquely expressed in matrix form (M is the transfer matrix) as:

[0 | e [ 255
_ [ Cl(s]si)  S(slsi) ] , { w(si) ]

C'(s|si) S'(s]s;) x'(s;)

Where C(8|$i) and S (8|S¢) are “cosine-like” and “sine-like” principal
trajectories satisfying:

C"(s]s;) + k(s)C(s]s;) =0 Clsilsi) =1 C'(sils;) =0

S" (s|si) + k(s)S(s|s;) =0 S(silsi) =0 S'(sils;) =1
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Transfer matrices will be worked out in the problems for a few simple focusing
systems discussed in S2 with the additional assumption of piecewise constant K(s)
1) Drift: K =0 " =0

M) = | o 3 ]

2) Continuous Focusing: k = k%o = const >0 " + kéox =0
M(s[si) = [ cos[km.(s —5;)] k%o sin[kgo(s — s;)] }
—kgosin[kgo(s — si)]  cos[kgo(s — ;)]

3) Solenoidal Focusing: k = A = const > 0 Iy
Results are expressed within the rotating Larmor Frame
(same as continuous focusing with reinterpretation of variables)

M(slsi) = [

cos[Vi(s — si)] ﬁ sin[v/A(s — s;)] ]
—\/Esin[\/z(s — 5i)] cos[V/i(s — s;)]
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4) Quadrupole Focusing-Plane: x = & = const > 0 '+ kr =
(Obtain from continuous focusing case)

Sls.) = cos[Vi(s — 5;)] \}; sin[v/&(s — s;)] ]
M(sls:) l —Visin[Vi(s — s3)]  cos[Vi(s — si)]

5) Quadrupole DeFocusing-Plane: k = —R = const < 0 2 —kr=0
(Obtain from quadrupole focusing case with /% — /& ¢=V—1)

cosh[V/i(s — s;)] ﬁ sinh[V7(s — ;)] ]
Visinh[vVi(s — s;)]  cosh[Vi(s — s;)]

M(sls,) = [
6) Thin Lens: k(s) = l5(5—5 ) a:"—i—lé(s—s Yz =0
) Thin Lens: = f 0 f 0)T =

so = const = Axial Location Lens
f = const = Focal Length
0(x) = Dirac-Delta Function

Missleg) = | Lo ] ]

~l=
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S5C: Wronskian Symmetry of Hill's Equation
An important property of this linear motion is a Wronskian invariant/symmetry:
Cl(slsi)  S(slsi)
C'(slsi)  S'(slsi)
= C(s]s;)S"(s]s;) — C"(s]s;)S(s|s;) =1
C =C(s|s;) ete.
Multiply Equations of Motion for C and S by -S and C, respectively:
—S(C" +kC)=0
+C(S" +kS) =0
Add Equations: 0
CS" —SC" + k(CS #8C)=0

% = %(05’ —(C'S)=CS" - 8C" =0

— W = const
Apply initial conditions:
W(s)=W(s;)=CiSi —ClS;=1-1-0-0=1 "
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W (s|s;) = det M(s|s;) = det

/// Proof:  Abbreviate Notation
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/// Example: Continuous Focusing: Transfer Matrix and Wronskian
k(s) = kgo = const > 0
Principal orbit equations are simple harmonic oscillators with solution:

C(sl|s;) = cos[kpo(s — si)] C'(s|s;) = —kposin[kgo(s — si)]

S(sls;) = W S'(s]s;) = coslkgo(s — s;)]

Transfer matrix gives the familiar solution:

[ x(s) ] _ l cosllao (s — 51)]

sin[kgo(s—s;)] .’L‘(S)

/ kgo : |: ! ’ :|
z'(s) —kgosin[kgo(s — si)]  cos[kao(s — s;)] ' (s;)
Wronskian invariant is elementary:

W = cos?[kgo(s — s;)] + sin?[kpo(s — s;)] = 1
"
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S5D: Stability of Solutions to Hill's Equation in a Periodic Lattice

The transfer matrix must be the same in any period of the lattice:
M(s + Lyp|s; + L) = M(s]s;)
For a propagation distance s — s; satisfying
NL,<s—s; <(N+1)L,
the transfer matrix can be resolved as
M(s|s;) = M(s — NLyp|s;) - M(s; + NLy|s;)
=M(s — NLpl|s;) - [M(s; + Ly|s;)]¥
Residual N Full Periods

For a lattice to have stable orbits, both x(s) and x'(s) should remain bounded on

propagation through an arbitrary number N of lattice periods. This is equivalent
to requiring that the elements of M remain bounded on propagation through any
number of lattice periods:

N=0,1,2,-

lim ’MNij < 0o = Stable Motion

N—o0
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Clarification of stability notion: Unstable Orbit

100
g 58 L,=05m
= - n=0.5
100
-150 -
0 10 15 2 2 oTC
s/ L, [Lattice Periods]| k= 8/m whero 20
0 otherwise
] 2(0) = 1 mm

2 2(0)=0

s/ L, [Lattice Periods]|

. 1 1
For energetic H = —2? + —ka? ~ Large, but # const
particle: 2 2

where |2/| small, |z| large
where |z| small, |2/| large
The matrix criterion corresponds to our intuitive notion of stability: as the

particle advances there are no large oscillation excursions in position and angle.
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To analyze the stability condition, examine the eigenvectors/eigenvalues of M for
transport through one lattice period:

M(s; + Lp|s;) - E= AE

E = Eigenvector

A = Eigenvalue

+ Eigenvectors and Eigenvalues are generally complex
+ Eigenvectors and Eigenvalues generally vary with s;
+ Two independent Eigenvalues and Eigenvectors

- Degeneracies special case

Derive the two independent eigenvectors/eigenvalues through analysis of the
characteristic equation:  Abbreviate Notation

C(SZ‘+LP|Si) S(Si+Lp|Si) _ c S
C'(si+ Lplsi) S'(si+Lplss) | | C" 5
Nontrivial solutions exist when:

det[ g,‘A g,_A } — X2 = (C + S+ (CS' — SC") =0
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M(s; + Ly|s;) = [
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But we can apply the Wronskian condition:
cSs' —8C' =1

and we make the notational definition
C+8 =TrM = 2cosoy

The characteristic equation then reduces to:

1
A —2\cosog+1=0 cosog = §TrM(s1;+Lp|s7;)

The use of 2¢08 0 to denote Tr M is in anticipation of later results
(see S6) where o is identified as the phase-advance of a stable orbit

There are two solutions to the characteristic equation that we denote At

Ay = cosag £ \/cos2 oy — 1 = cosay £ isinoy = eTi70

iE\/——l

E. = Corresponding Eigenvectors

Note that: AyA_ =1
)\+ = 1/)\_
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Consider a vector of initial conditions:

ExIE

The eigenvectors E+  span two-dimensional space. So any initial condition
vector can be expanded as:

Ly

|: 1"; :| :a+E+ + a_E_

a4+ = Complex Constants

Then using ME, = \LE.

MY (s; + Ly|s:) { i, ] —a A\YE, + a AVE_

K2

. N

im

Therefore, if N—oco is bounded, then the motion is stable. This will always
be the case if Ai| = |eiiao| < 1, corresponding to 00 real with| cos 00| <1

SM Lund, USPAS, 2017 Transverse Particle Dynamics 181

This implies for stability or the orbit that we must have:

1 1
3 |Trace M(s; + Ly|s;)| = §|C(si + Lpls:) + S'(si + Lp|si)]

= |cosop| <1

In a periodic focusing lattice, this important stability condition places restrictions
on the lattice structure (focusing strength) that are generally interpreted in terms
of phase advance limits (see: S6).
+ Accelerator lattices almost always tuned for single particle stability to
maintain beam control
- Even for intense beams, beam centroid approximately obeys single
particle equations of motion when image charges are negligible
+Space-charge and nonlinear applied fields can further limit particle stability
- Resonances: see: Particle Resonances ....
- Envelope Instability: see: Transverse Centroid and Envelope ....
- Higher Order Instability: see: Transverse Kinetic Stability
+We will show (see: S6) that for stable orbits 0¢ can be interpreted as the
phase-advance of single particle oscillations
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/Il Example: Continuous Focusing Stability
K(s) = kjo = const > 0
Principal orbit equations are simple harmonic oscillators with solution:
C(s|si) = cos[kgo(s — ;)] C'(s|s;) = —kposin[kgo(s — si)]

S(s|si) = Sin[k’ﬂt]);i— 5i)]

Stability bound then gives:

S'(s]s;) = coslkgo(s — ;)]

N | =

|C(si + Lyp|si) + S (si + Lypls;)|

| cos[kgo(s —s;)]| <1

1
3 | Trace M(s; + Ly|s;)|

* Always satisfied for real kgo
+Confirms known result using formalism: continuous focusing stable

- Energy not pumped into or out of particle orbit Jl/

The simplest example of the stability criterion applied to periodic lattices will be
given in the problem sets: Stability of a periodic thin lens lattice
+ Analytically find that lattice unstable when focusing kicks sufficiently strong
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More advanced treatments

+ See: Dragt, Lectures on Nonlinear Orbit Dynamics, AIP Conf Proc 87 (1982)
show that symplectic 2x2 transfer matrices associated with Hill's Equation have
only two possible classes of eigenvalue symmetries:

1) Stable 2) Unstable, Lattice Resonance
-
III] ?ut j + = ’Yi &
Re },
i, 3 .
+ ) —in
-ia, ]x’?\._'_: (]/'}'+ Je
Ay, =1/, =e¢ - -
h - Occurs in bands when focusing
Occurs for:

strength is increased beyond

0 < 09 < 180° /period oo = 180° /period

+ Limited class of possibilities simplifies analysis of focusing lattices
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Eigenvalue structure as focusing strength is increased
Weak Focusing:

+ Make ~ as small as needed (low phase advance o)
+ Always first eigenvalue case: |[A\x| =1, A =1/A_=\*
Tmi.

Weak, Stable

-
1 JReX
\\ A 0 1 2 3 4

. /L [Latice Periods|
Stability Threshold:
+ Increase k o stability limit (phase advance oo = 180°/Period )
# Transition between fir]st fmd second eigenvalue case: A+ = —1
m - A

2 / \ Threshold
A/ \ - - - - -
Al \ 1 ) R:)‘t Weak, Stable

\J o 1 2 3 4

s/ L, [Lattice Periods|

Instability:
+ Increase  beyond threshold (phase advance o9 = 180° /Period )

+ Second eigenvalue case: [Ay|#1, A =1/A_ AL both real and negative
Im), 4

Unstable

/’ \ ' o ___ Threhold o o

=

e o - - - -—-- -

A 1 ReX 0 1 3 4 5
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Comments:
+ As K becomes stronger and stronger it is not necessarily the case that
instability persists. There can be (typically) narrow ranges of stability within
a mostly unstable range of parameters.
- Example: Stability/instability bands of the Matheiu equation
commonly studied in mathematical physics which is a special case of
Hills' equation.
+ Higher order regions of stability past the first instability band likely make little
sense to exploit because they require higher field strength (to generate
larger ) and generally lead to larger particle oscillations than for weaker
fields below the first stability threshold.
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S6: Hill's Equation: Floquet's Theorem and the
Phase-Amplitude Form of the Particle Orbit
S6A: Introduction

In this section we consider Hill's Equation:
2" (s) + k(s)z(s) =0
subject to a periodic applied focusing function
k(s + Lp) = K(s)

L, = Lattice Period

+ Many results will also hold in more complicated form for a non-periodic K(s)
- Results less clean in this case
(initial conditions not removable to same degree as periodic case)
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S6B: Floquet's Theorem

Floquet's Theorem (proof: see standard Mathematics and Mathematical Physics Texts)

The solution to Hill's Equation x(s) has two linearly independent solutions that
can be expressed as: i=v=1

r1(s) = w(s)e™” Tr M(s; + Ly|s;) = cos g

1
_ —ius H= 2
za(s) = w(s)e -~
= const = Characteristic Exponent

Where w(s) is a periodic function:

w(s + Ly) = w(s)

+ Theorem as written only applies for M with non-degenerate eigenvalues. But
a similar theorem applies in the degenerate case.
+ A similar theorem is also valid for non-periodic focusing functions
- Expression not as simple but has analogous form
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S6C: Phase-Amplitude Form of Particle Orbit

As a consequence of Floquet's Theorem, any (stable or unstable) nondegenerate
solution to Hill's Equation can be expressed in phase-amplitude form as:

x(s) = A(s) cos)(s)
Als + Ly) = A(s)

A(s) = Real-Valued Amplitude Function
1(s) = Real-Valued Phase Function

Derive equations of motion for A, ¥ by taking derivatives of the
phase-amplitude form for x(s):

x = Acosvy
' = A’ cosyp — Ay sinep
z = A" costp — 24" sinth — A" sinp — Ay’ cosp

then substitute in Hill's Equation:

2+ kr = [A” + kA — A¢/2] costp — [2A"Y + Ay | sinep =0
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o’ + Kz = [A" + KA — AY"?] cosp — [2A"Y + AY”|siny =0

We are free to introduce an additional constraint between A and ¥ :
+Two functions A, % to represent one function x allows a constraint
Choose:

Eq. (1) | 2A4'Y" + Ay" =0

—  Coefficient of sin zero

Then to satisfy Hill's Equation for all Y| the coefficient of cOS ¢ must also
vanish giving:

Eq.(2) | A"+ kA—AY? =0

—  Coefficient of cos zero
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Eq. (1) Analysis (coefficient of sin ):
Simplify:

2A/wl+AwlI — 0

(AQu]l) Assume for moment:

i
AN + A = e =0 A#0
o N Will show later

- (A 1/1/) =0 that this assumption

Integrate once: met for all s

A%y = const

One commonly rescales the amplitude A(s) in terms of an auxiliary amplitude
function w(s):

A(s) = Ajw(s)

A; = const = Initial Amplitude

such that Note:
2, = + [[4:]] = [[w]] = sqrt(meters)
wy =1l + [[A]] = meters and [[A]] # [[4: 1]

This equation can then be integrated to obtain the phase-function of the particle:

5 ds
Y(s) = i + / wQ—(g) 1; = const = Initial Phase

S
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Eq. (2) Analysis (coefficient of cos® ). A” + kA — Ay =0

With the choice of amplitude rescaling, 4 = A;w and w?)' =1, Eq.(2)
becomes:

1
w"+/€w——3:0
w

Floquet's theorem tells us that we are free to restrict w to be a periodic solution:

w(s+ Ly) = w(s)

Reduced Expressions for x and x":
Using A = A;w and wy =1

x = Acosvy

2’ = A’ cosyp — Ay sinvp

x = A;wcos Y

A
2’ = A;w costp — — sinp
w
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S6D: Summary: Phase-Amplitude Form of Solution to Hill's Eqn

x(s) = Ajw(s) cos(s)
7' (s) = Aaw'(s) cos ¥(s) — Ai sin ¢)(s)

w(s
where w(s) and ¥ () are amplitude- and phase-functions satisfying:

Amplitude Equations Phase Equations

" 1 _ ,8 :L
w (s)—i-fi(s)w(s)—w?,—(s)—o Y’ (s) () .

v =vi+ [ o
9(5) = i + Au(s)

A; = const = Initial
Amplitude
1p; = const = Initial Phase

w(s + Ly) = w(s)
w(s) >0

Initial ( 8 = S; ) amplitudes are constrained by the particle initial conditions as:
x(s = s8;) = A;w; cos;

/ ! i .
or (s = 8;) = Ajw; cosp; — o sin ;

Ajcosth; = x(s = si) /w;

A;sing; = (s = s;)w) — 2'(s = s;)w;

w; = w(s =s;)

w,=w'(s=s;)
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S6E: Points on the Phase-Amplitude Formulation
1) w(s) can be taken as positive definite
w(s) >0

//] Proof: Sign choices in w:

Let w(s) be positive at some point. Then the equation:

1
w” + kw — — =0
w

Insures that w can never vanish or change sign. This follows because whenever w
becomes small, w” ~ 1 / w® >0 can become arbitrarily large to turn w before
it reaches zero. Thus, to fix phases, we conveniently require that w > 0. )

*Proof verifies assumption made in analysis that A = A;w # 0

+Conversely, one could choose w negative and it would always remain negative
for analogous reasons. This choice is not commonly made.

+ Sign choice removes ambiguity in relating initial conditions l‘(Si), l‘/(Si)

to A;, Y
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2) w(s) is a unique periodic function
+ Can be proved using a connection between w and the principal orbit functions
C and S (see: Appendix A and S7)
+ w(s) can be regarded as a special, periodic function describing the lattice
focusing function £(s)

3) The amplitude parameters
w; = w(s = s;)
w; = w'(s;)
depend only on the periodic lattice properties and are independent of the particle

initial conditions x(s;), x'(s;)

4) The change in phase

5 ds
Ny
Si wz(s)
depends on the choice of initial condition s; .
through one lattice period

AY(s; + L) = /

s wi(3)

However, the phase-advance

sithe dg
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is independent of S; since w is a periodic function with period Ly,
+ Will show that (see later in this section)
AY(s; + L) = 09

is the undepressed phase advance of particle oscillations

5) w(s) has dimensions [[w]] = Sqrt[meters]
+ Can prove inconvenient in applications and motivates the use of an alternative
“betatron” function 3
B(s) = w(s)

with dimension [[£]] = meters (see: S7 and S8)

6) On the surface, what we have done: Transform the linear Hill's Equation to a
form where a solution to nonlinear axillary equations for w and ¢ are needed via
the phase-amplitude method seems insane ..... why do it?
+ Method will help identify the useful Courant-Snyder invariant which will
aid interpretation of the dynamics (see: S7)
+ Decoupling of initial conditions in the phase-amplitude method will help
simplify understanding of bundles of particles in the distribution
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S6F: Relation between Principal Orbit Functions and
Phase-Amplitude Form Orbit Functions

The transfer matrix M of the particle orbit can be expressed in terms of the
principal orbit functions C and S as (see: S4):

[0 | [0 | - [0 5 )[4

Use of the phase-amplitude forms and some algebra identifies (see problem sets):

C(sls;) = w(s) cos Ath(s) — wiw(s) sin Arp(s)
S(sls) = waw (s)smAw
C'(s|s;) = ( ” ) cos At)(s (wzw#(s) + wiw' (s )) sin A(s)
S'(s]si) = w(s )COSAT#( + wiw'(s) sin At (s)
5 ds w; = w(s = ;)
Ay(s) = /Sl w2(3) w, =w'(s = s;)
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/Il Aside: Alternatively, it can be shown (see: Appendix A) that w(s) can be
related to the principal orbit functions calculated over one Lattice period by:

L - S(s|s;)
w*(s) = B(s) _s1n00m

S(s; + Lypls;) L, cosag — C(s]si) _
* sin o Cllsi) + S(s; + Lypls;) Ssls:)

sithe ds
opg = _—
’ / w?(3)

i

The formula for 00 in terms of principal orbit functions is useful:
+ 00 (phase advance, see: S6G) is often specified for the lattice and the
focusing function k() is tuned to achieve the specified value
+ Shows that w(s) can be constructed from two principal orbit integrations over
one lattice period
- Integrations must generally be done numerically for C and S
- No root finding required for initial conditions to construct periodic w(s)
- S; can be anywhere in the lattice period and w(s) will be independent
of the specific choice of s;
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+ The form of w?(s) suggests an underlying Courant-Snyder Invariant
(see: S7 and Appendix A)
sq? = [ can be applied to calculate max beam particle excursions in the
absence of space-charge effects (see: S8)
- Useful in machine design
- Exploits Courant-Snyder Invariant
+ Techniques to map lattice functions from one point in lattice to another are
also presented in Appendix A and S7C
- Include efficient Lee Algebra derived expressions in S7C

"
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S6G: Undepressed Particle Phase Advance

We can now concretely connect 0 for a stable orbit to the change in particle
oscillation phase A1) through one lattice period:

From S5D:

1
cosog = §Tr M(s; + Ly|s;)

Apply the principal orbit representation of M

Tr M(SZ' + Lp|si) = C(Si + Lp|$i) + S,(SZ‘ + Lp|$i)

and use the phase-amplitude identifications of C and S' calculated in S6F:

1 (w(s; +Lp) w;
5 ( " Wit Lp)> cos AY(s; + Ly)

1

1
+ 3 (wiw' (s; + Lp) — wiw(s; + Lyp)) sin AY(s; + Ly)
By periodicity:

w(s; + Lp) = w(s;) = w;

w'(si+ Ly) = w'(s;) = wj

coefficient of cos Ay =1

coefficient of sin Ay =0
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Applying these results gives:

1
cosog = cos AY(s; + L) = §Tr M(s; + Lyp|s;)

Thus, 90 is identified as the phase advance of a stable particle orbit through one
lattice period:

s;,+L
it ds
0o = Ad}(si + LIJ) = / ’(1]2(8)

+ Again verifies that 0 is independent of S; since w(s) is periodic with period
Ly
+ The stability criterion (see: S5)

1
§|Tr M(s; + Lp|si)| = |cosop| < 1

is concretely connected to the particle phase advance through one lattice
period providing a useful physical interpretation

Consequence:

Any periodic lattice with undepressed phase advance satisfying
oo < m/period = 180° /period

will have stable single particle orbits.

Discussion:

The phase advance 00is an extremely useful dimensionless measure to
characterize the focusing strength of a periodic lattice. Much of conventional
accelerator physics centers on focusing strength and the suppression of resonance
effects. The phase advance is a natural parameter to employ in many situations to
allow ready interpretation of results in a generalizable manner.

We present phase advance formulas for several simple classes of lattices to help
build intuition on focusing strength:

1) Continuous Focusing

2) Periodic Solenoidal Focusing

3) Periodic Quadrupole Doublet Focusing
- FODO Quadrupole Limit

+ Lattices analyzed as “hard-edge” with piecewise-constant /()
and lattice period Ly,
+ Results are summarized only with derivations guided in the problem sets.
4) Thin Lens Limits
- Useful for analysis of scaling properties

Several of these
will be derived
in the problem sets
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1) Continuous Focusing Rescaled Principal Orbit Evolution:
“Lattice period” L, is an arbitrary length for phase accumulation L,=05m Cosine-Like Sine-Like
P , o I: 2(0)=1mm  2: 2(0) =0 mm
arameters: o9 =7/3 =060

k(s) = kéo = const > 0
L,, = Lattice Period

k%o = Strength

A 2 1
to ()] (e = Ky = kﬂo = const)§ 2
! ! 60
s
- L, -
Lattice Period
Apply phase advance formulas: 1
w =
1 /
’LUH—I-]C%OU}—E:O e kﬂO
si+Lp ds
_ o) =/ — =kgoL
opg = k@oLP 8; w2 P

+ Always stable
- Energy cannot pump into or out of particle orbit
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2'(0) = 0 mrad 2'(0) = 1 mrad

kgo = (7/6) rad/m

10
g o5
8 oo
ey 05
10 , , , , ,
0 1

3 4 5 6

2
s/ L, [Lattice Periods]

=
8
=
= |
0 1 2 3 4 5 6
s/ L, [Lattice Periods]
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Phase-Space Evolution (see also S7):
* Phase-space ellipse stationary and aligned along x, x' axes
for continuous focusing

w = 4/1/kpo = const

w =0

1
v = = kgo = const
a=—-ww =0
B =w? = 1/kgo = const
kgoz® + 2'%/kpo = € = const

' A
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2) Periodic Solenoidal Focusing

Results are interpreted in the rotating Larmor frame (see S2 and Appendix A)

Parameters:
ra() | (ke = 15,) X L, = Lattice Period
I R n € (0,1] = Occupancy
% = Strength
| . " Characteristics:
dj2 i L b2 df2 d=(1-n)L, 1L, = Optic Length
I =k, _ — Dri
e (1 —n)L, = Drift Length
Calculation gives:
_ 1—-ng5 N =
cos oy = cos(20) — O sin(20) o= 5\/ELP
n
+Can be unstable when A becomes large
- Energy can pump into or out of particle orbit
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Rescaled Larmor-Frame Principal Orbit Evolution Solenoid Focusing:
L —05m Cosine-Like Sine-Like
P : . o L 2(0) =1mm 2: #(0) =0 mm
70 = 3/53 = 60 (x = 8.558 m™) #(0) =0mrad 7'(0) = 1 mrad
n=>u. . .

s/ L, |Lattice Periods]

. . . . ~ ~/ . .
+ Principal orbits in 4 — ¥ phase-space are identical
SM Lund, USPAS, 2017
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Phase-Space Evolution in the Larmor frame (see also: S7):
+ Phase-Space ellipse rotates and evolves in periodic lattice
§ — 4’ phase-space properties same as in z — '
- Phase-space structure in x-x', y-y' phase space is complicated
vi? — 2023 + BE'? = € = const

0.8 1.0

0.0 0.2 0.4 0.6

s/L, [Lattice Periods|

N P S

€ = const x O‘ T W T Pf z
Horizontal Diverging Upright Converging  Horizontal
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Comments on periodic solenoid results:
+ Larmor frame analysis greatly simplifies results
- 4D coupled orbit in x-x', y-y' phase-space will be much more
intricate in structure
+ Phase-Space ellipse rotates and evolves in periodic lattice
+ Periodic structure of lattice changes orbits from simple harmonic
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3) Periodic Quadrupole Doublet Focusing

Kx(s)‘l (K, =-%,) A Parameters:
K- L, = Lattice Period
dy L2, dp n € (0,1] = Occupancy
F Quad » « € [0,1] = Syncopation
D Quad § k= Strength
NL,/2
LI Characteristics:
Lp d1=0!(1*n)Lp 77Lp/2 = F/D Len
Lattice Period dy = (1-a)(1-N)L, a(l —n)L, = Drift Len d;

(1 —a)(1 —mn)L, = Drift Len d

Calculation gives:

cos og = cos © cosh © + 1;179(005 O sinh © — sin O cosh O)
n

_ N =
1— 2 ) ) @ = — |K,|Lp
—20[(1—&)#@2 sin © sinh © 2
n
+ Can be unstable when 4 becomes large
- Energy can pump into or out of particle orbit
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Comments on Parameters:

+ The “syncopation” parameter @ measures how close the Focusing (F) and
DeFocusing (D) quadrupoles are to each other in the lattice

dy = (1=n)Ly
a=1 o di=(1-nL, da=0

The range o € [1/2,1] can be mapped to « € [0,1/2]
by simply relabeling quantities. Therefore, we can take:

a €10,1/2]

=0 d =0
a€0,1] “ — @

* The special case of a doublet lattice with & = 1/2 corresponds to equal drift
lengths between the F and D quadrupoles and is called a FODO lattice

a:1/2 _— dldeEd:(l—T])Lp/2

Phase advance constraint will be derived for FODO case in
problems (algebra much simpler than doublet case)
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Special Case Doublet Focusing: Periodic Quadrupole FODO Lattice
Parameters: Characteristics:
L, = Lattice Period nL,/2 ={=F/D Len

n € (0,1] = Occupancy (1 —n)L,/2 = d = Drift Len

k = Strength
b, !
Kz (s) B (ke = _”y) 777777777777777777 1 o )
d 14 d
F Quad - »
- D Quad s
¢
B ,,,,,,,,J} ,,,,,,,,,,, _’,{ e
L, | d=(1—n)L,/2
Lattice Period | 0 TEL /,7,7> o/
=nL,/2

Phase advance formula reduces to:

1—
cos og = cos © cosh © + —n@(cos O sinh © — sin © cosh O)
n

N
1—n)2 O =—-/|k|L
—#@2Sin@smh@ 2 IFIE
2n
+ Analysis shows FODO provides stronger focus for same integrated field
gradients than doublet due to symmetry
SM Lund, USPAS, 2017

Transverse Particle Dynamics 212




Rescaled Principal Orbit Evolution FODO Quadrupole:

L,=05m Cosine-Like Sine-Like

00 = /3 = 60° (k= 39.24 m~2)1: #(0) =1mm 2: 2(0) =0 mm
2’(0) = 0 mrad

n=0.5 2'(0) = 1 mrad

z [mm]|

0 1 2

s/ L, [Lattice Periods]

— 5F
e

]

—
£
R 10 — — — — — —

0 1 2 3 4 5 6
s/ L, |Lattice Periods]
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Phase-Space Evolution (see also: S7):

yx? — 20z’ + fa’* = € = const

NS T T T
06 1 1 -
[l 0_4/?\‘,8\5_’/
p— 1 1 1
\i 02 _ ! ]
— E 1 1 1
— 00— 1 —_—t " 1 —
Il 1 1 1
-0.2 1 1 1 1 I e——— —— |
o 0.0 02 ! 04 | 06 o8 10
- 15 1 4 1
1 1 1
S 10 1 1
S 05 I | I
I =5 00k c - m e e e ¥ e b oS- —— -]
I -os | |
— | 1
a 10 1 1
-1.5 t t
! 0.6 1 08 10

s/ L, [Lattice Periods]: i

S

1
1
1
1
0.0 02 1 0.4
1
1
1
1
1

Area
€ = const &‘ *

T T T T
Diverging Horizontal ~ Converging Upright Diverging
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Comments on periodic FODO quadrupole results:

+ Phase-Space ellipse rotates and evolves in periodic lattice

- Evolution more intricate for Alternating Gradient (AG) focusing
than for solenoidal focusing in the Larmor frame
+ Harmonic content of orbits larger for AG focusing than
solenodial focusing

+ Orbit and phase space evolution analogous in y-y' plane

- Simply related by an shift in s of the lattice
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Contrast of Principal Orbits for different focusing:
* Use previous examples with “equivalent” focusing strength o9 = 60°
+ Note that periodic focusing adds harmonic structure

1) Continuous Focusing

10

= os 2

g o

2w >i\ -

1.0 —
o 1

Simple Harmonic Oscillator

2 3 4 5 6
s/ T, [Lattice Periods]

2) Periodic Solenoidal Focusing (Larmor Frame)
— 0sp S 2 1

Simple harmonic oscillations

g oo T . . .

g -os ] modified with additional
— -10 K . . .
g -15 _ — — — — harmonics due to periodic

W= e e — =
0 1 3 4 5 6 focus

2
s/ L, [Lattice Periods]
3) Periodic FODO Quadrupole Doublet Focusing

Simple harmonic oscillations
more strongly modified due
to periodic AG focus

2 3 4 5
s/L, |Lattice Periods|
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4) Thin Lens Limits
Convenient to simply understand analytic scaling

1
f

8o = Optic Location = const
f = focal length = const

d(s — s0)

Kz(8) =

Transfer Matrix:

I VR H

0

Graphical Interpretation:

X
Thin Lens

e
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The thin lens limit of “thick” hard-edge solenoid and quadrupole focusing lattices
presented can be obtained by taking:

1 .
“ds- k= then take lim
Solenoids: K= /Ly 10

2 .
. k= then take lim
Quadrupoles: K = /L, 10

This obtains when applied in the previous formulas:
- %%, thin-lens periodic solenoid

cosog =

2
1—-5(1- @) (pr) , thin-lens quadrupole doublet
a=g = FODO

These formulas can also be derived directly from the drift and thin lens transfer
matrices as

Periodic Solenoid

1 1 L, 1 0} 1L,
COSUO_?TY[O 1}{_% 1}_ “37F

Periodic Quadrupole Doublet

2
o [ L 0] ()
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Expanded phase advance formulas (thin lens type limit and similar) can be useful
in system design studies

+Desirable to derive simple formulas relating magnet parameters to 70
- Clear analytic scaling trends clarify design trade-offs

+For hard edge periodic lattices, expand formula for cOs 0 to leading order
in © =+/|&|nLy/2

/I Example: Periodic Quadrupole Doublet Focusing:

Expand previous phase advance formula for syncopated quadrupole doublet to
obtain:

e - D12 (o 0]

where:

Magnetic Quadrupoles .

el
k= { [B% ’ ' G = Hard-Edge
FoelBr] Electric Quadrupoles Field Gradient

SM Lund, USPAS, 2017 Transverse Particle Dynamics 219

Using these results, plot the Field Gradient and Integrated Gradient for
quadrupole doublet focusing needed for g = 80° per lattice period

Gradient ~  |R|L2 ~ G
Integrated Gradient ~ 77|/%|L12) /2~ Gt
oo = 80° /(Lattice Period) Quadrupole Doublet

60. 6

w
_ . 3
% \\\ o=0,01,02,03, 04 0.5 :
<Q) -
) = 40. \\\ E =
el \ a=0 2 o
T 30 \\\\‘/ RS
=3 j \\\i\ & <i
ZLE 20 ), e
6] / S RS
O ¢=0s5 B
0 i a2
0. 0.2 0.4 0.6 0.8 1. 0. 02 0.4 0.6 0.8 1.

7, Oceupaney [1] 7, Oceupancy [1]

+Exact (non-expanded) solutions plotted dashed (almost overlay)

+ Gradient and integrated gradient required depend only weakly on syncopation
factor & when « is near or larger than ¥2

+ Stronger gradient required for low occupancy 7 but integrated gradient varies
comparatively less with 77 except for small & /]
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Appendix A: Calculation of w(s) from Principal Orbit Functions
Evaluate principal orbit expressions of the transfer matrix through one lattice
period using

w(s; + Lp) = w;

w'(s; + L) = w;
and

s;+L
TP ds
Atp(s; + Lp) = / ) o0

to obtain (see principal orbit formulas expressed in phase-amplitude form):
C(s; + Ly|si) = cos 0g — w;w] sin o

S(si+ Lpls;) = wf sin og

1
C'(s; + Lp|si) = — <F + wzw;> sin o
i

S'(s; + Lyp|s;) = cos og + w;w, sin o

Al
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Giving:

S(si + Ly|si) Apply C(sls;) Eqn.
sin o
_ cosag — C(s; + Lyls;)

c \/S(S, + Lp|si) sin o

Apply S(s|s;) Eqn.
+ w; Result Above

Or in terms of the betatron formulation (see: S7 and S8) with
B =w? f =2wu

B; = w2 = S T Lplsi)
! t sin o
2[cos g — C(s; + Lyp)si)]
{: 2 A : P17
fi = 2wiw; sin g

Next, calculate w from the principal orbit expression in phase-amplitude form:

= sin A
w;w
. S = S(s|s;) ete.
w;j w;
—C + —£8 =cos A
w w A2
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Square and add equations:

S \? w;C  wiS 2
+ + =1
w; W w w

+ This result reflects the structure of the underlying Courant-Snyder invariant
(see: S7)

Gives:

2 S 2 7 2
w®={— | + (w;C+wS)

wy
Use w;, w; previously identified and write out result:
S2(sls:)
S(si + Ly|si)

S(Si + LP|SZ)
+ —
S og

w?(s) = B(s) = sin g

2

cosog — C(s; + Lypls;) S(slsi)

S(si + Lyp|si)

[C(sm) +

+ Formula shows that for a given 00 (used to specify lattice focusing strength),
w(s) is given by two linear principal orbits calculated over one lattice period
- Easy to apply numerically
A3
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An alternative way to calculate w(s) is as follows. 1% apply the phase-amplitude
formulas for the principal orbit functions with:
Si — S
s—s+1L,
C(s+ Ly|s) = cosog — w(s)w'(s) sin o

S(s+ Lyls) = w?(s) sin oy

S(s+Lyls) _ Mua(s + Lyls)
sin oy B sin o

w?(s) = B(s) =

*» Formula requires calculation of S(s + L,|s) at every value of s within
lattice period

* Previous formula requires one calculation of C'(s|s;), S(s|s;)
for s; < s < s; + L, and any value of s;

A4
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Matrix algebra can be applied to simplify this result:
| | |

! ! !

w

: s Sz'+LP 3+Lp
M(s + Lp|s) = M(s + Lyp|si + Lp) - M(s; + Lyp|s)
M(ss:) - M(s; + Lp|s) - [M(ss;) - M (s]s;)]

M(s|s;) - M(s; + Lp|s;) - M_l(s|si)

M(s + Lp|s) = M(s]s;) - M(s; + Lyp|s;) - M~ (s]s;)

+ Using this result with the previous formula allows the transfer matrix to be
calculated only once per period from any initial condition

+ Using: Applly.Wronskian
c S 4 S’ -5 condition:
M={¢ s ME={_¢ ¢ det M = 1

The matrix formula can be shown to the equivalent to the previous one

+ Methodology applied in: Lund, Chilton, and Lee, PRSTAB 9 064201 (2006)

to construct a fail-safe iterative matched envelope including space-charge A5
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S7: Hill's Equation: The Courant-Snyder Invariant and
Single Particle Emittance
S7A: Introduction

Constants of the motion can simplify the interpretation of dynamics in physics
+ Desirable to identify constants of motion for Hill's equation for improved
understanding of focusing in accelerators
+ Constants of the motion are not immediately obvious for Hill's Equation due
to s-varying focusing forces related to <(8) can add and remove energy from
the particle
- Wronskian symmetry is one useful symmetry
- Are there other symmetries?
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/Il NMustrative Example: Continuous Focusing/Simple Harmonic Oscillator
Equation of motion:
2"+ kZpr =0

Constant of motion is the well-know Hamiltonian/Energy:

k%o = const > 0

1 2 1 2 2
H= 2% + Ekﬁox = const
which shows that the particle moves on an ellipse in x-x' phase-space with:
+ Location of particle on ellipse set by initial conditions
+ All initial conditions with same energy/H give same ellipse

Question:
For Hill's equation:
2"+ k(s)z =0

does a quadratic invariant exist that can aid interpretation of the dynamics?
Answer we will find:
Yes, the Courant-Snyder invariant

Comments:
+ Very important in accelerator physics

- Helps interpretation of linear dynamics
e + Named in honor of Courant and Snyder who popularized it's use in
Max/Min[z] & 2’ =0 ////// \\\\ tAccel.eraltor physiis( wl(liile co-dliscovc;ring alternating gradient (AG) focusing
. / D — 1n a single seminal (and very elegant) paper:
Max/ Mln[x] =+ 2H/ k%O 7\/W\’/ WETE gCourant and Snyder,r;/"heorgy of thpe Elternating Gradient Synchrotron,
Max/Min[z'] € z =0 N % ’ Annals of Physics 3, 1 (1958).
Max/Min[z'] = +V2H T~ | - Christofolos also understood AG focusing in the same period using a
e more heuristic analysis
/I + Easily derived using phase-amplitude form of orbit solution
- Can be much harder using other methods
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S7B: Derivation of Courant-Snyder Invariant

The phase amplitude method described in S6 makes identification of the invariant
elementary. Use the phase amplitude form of the orbit:

z(s) = Ajw(s) cos(s) Ay i = P(si)
, , A; . set by initial
z'(s) = Ajw'(s) cosp(s) — w(s) sin(s) at s —=s;

where . 1
w” + K(s)w — i 0

Re-arrange the phase-amplitude trajectory equations:
T
— = A;cosv
w

wr' —w'z = A;sin

square and add the equations to obtain the Courant-Snyder invariant:

Comments on the Courant-Snyder Invariant:
+ Simplifies interpretation of dynamics (will show how shortly)
+Extensively used in accelerator physics
+ Quadratic structure in x-x' defines a rotated ellipse in x-x' phase space.
+Because 2 ( T )’ , ,

w|—) =wr —wx
w
the Courant-Snvder invariant can he alternatively expressed as:

(2)"+ [ (2] o

+ Cannot be interpreted as a conserved energy!

The point that the Courant-Snyder invariant is not a conserved energy should be
elaborated on. The equation of motion:

2"+ k(s)z =0

T\ 2 , , o ) 5 5 Is derivable from the Hamiltonian d O0H
(E) + (wa’ —w'z)® = A3 (cos” ¢ + sin” 1)) 1, 1 5 ds”~ Oz’ "
H=-2214 ~kr — g OH — 2 +Kkx=0
= A? = const 2 2 "= =
i ds° = “or ™
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H is the energy: T— 193,2 — Kinetic ”Energy” /Il Aside: Only for the special case of continuous focusing (i.e., a simple

1, 1 8y Harmonic oscillator) are the Courant-Snyder invariant and energy simply related:

H=—-2"4+-kx*=T+V 1
2 9 V= 5 kx? = Potential ”Energy” Continuous Focusing: £(s) = k%o = const

Apply the chain-Rule with H = H(x,x';s):

dH OH  O0Hdx  OH dx'

ds ~ Os * o dx ds = Oz ds
Apply the equation of motion in Hamiltonian form:
d 8H d , 8H

ds
dH aH dx _OH -
7/ d7/éds R

= | H # const

+ Energy of a “kicked” oscillator with x(s) # const is not conserved
+ Energy should not be confused with the Courant-Snyder invariant
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1 1
= H= 51‘/2 + §k?,0x2 = const

1
w” + kjow — — =0

w3
1
— w =4/ — =const
kgo

. x\2
Courant-Snyder Invariant: (—) + (wm’ — w'a:)z = const
w

w equation:

T2 37/2
= (—) + (wz’ — w'z)? = kgoz® + —
w k’/;o

2 1 2 >
+ = k’ T
" kso < 70

= —— = const
kgo 1
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Interpret the Courant-Snyder invariant:

2
(£> + (wa' — w'z)* = A? = const
w

by expanding and isolating terms quadratic terms in x-x' phase-space variables:
1
{—2 + w'Q] 22 + 2[—ww'|zr’ + [w?]z? = A? = const
w
The three coefficients in [...] are functions of w and w' only and therefore are

Sfunctions of the lattice only (not particle initial conditions). They are commonly
called “Twiss Parameters” and are expressed denoted as:

yx? + 20xx’ + Bx'? = AZ = const

— 1 w's 2:1+a2(5)
B(s) = w(s)
a(s) = —w(s)w'(s)

+ All Twiss “parameters” are specified by w(s)
+ Given w and w' at a point (s) any 2 Twiss parameters give the 3rd
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The area of the invariant ellipse is:
+ Analytic geometry formulas: yz? 4 2axa’ + fa'? = TA? — Area = A2/\/45 — a®
+ For Courant-Snyder ellipse: 73 =1+ o

Phase-Space Area = / drds’ = J

ellipse vV ’}/B — a2

Where ¢ is the single-particle emittance:
+ Emittance is the area of the orbit in x-x' phase-space divided by 7

[1/w? + w?)2? + 2[~ww']zr’ + [w?]z? = ¢ slope = ~a/f

ya? + 20xa’ + fz'? = € = const

See p?(?blem ;ets [ e i
for critical point
calculation Negative Quadrant
Critical Points Symmetrical
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/Il Aside on Notation: Twiss Parameters and Emittance Units:

Twiss Parameters:
Use of a, 3, - should not create confusion with kinematic relativistic factors

+ B, 7 are absorbed in the focusing function

+ Contextual use of notation unfortunate reality .... not enough symbols!

+ Notation originally due to Courant and Snyder, not Twiss, and might be more

appropriately called “Courant-Snyder functions” or “lattice functions.”

Emittance Units:
x has dimensions of length and X' is a dimensionless angle. So x-x' phase-space
area has dimensions [[ € ]] =length. A common choice of units is millimeters
(mm) and milliradians (mrad), e.g.,

€ = 10 mm-mrad

The definition of the emittance employed is not unique and different workers use
a wide variety of symbols. Some common notational choices:
TE — € €— ¢ e~ FE

Write the emittance values in units witha 7, e.g.,

€ = 10.5 7 — mm-mrad (seems falling out of favor but still common)

Use caution! Understand conventions being used before applying results! I/
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Emittance is sometimes defined by the largest Courant-Snyder ellipse that

will contain a specified fraction of the distribution of beam particles.

Common choices are: .
+ 100% .
* 95%
* 90%

>

+ Depends emphasis
100 % Ellipse

Comment:

Figure shows scaling of concentric ellipses 90
for simplicity but can also define for Hal
smallest ellipse changing orientation

Beam Core

We will motivate (problems and later lectures) that the statistical measure

_ 2\ /. 12 n211/2
frms = [<<$ )(@"%) = (za') ] (--+) = Distribution Average
= rms Statistical Emittance

provides a weighted average measure of the beam phase-space area.
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Properties of Courant-Snyder Invariant:

+ The ellipse will rotate and change shape as the particle advances through the
focusing lattice, but the instantaneous area of the ellipse ( me = const )
remains constant.

+ The location of the particle on the ellipse and the size (area) of the ellipse
depends on the initial conditions of the particle.

+ The orientation of the ellipse is independent of the particle initial conditions.
All particles move on nested ellipses.

+ Quadratic in the x-x' phase-space coordinates, but is not the transverse particle
energy (which is not conserved).
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S7C: Lattice Maps

The Courant-Snyder invariant helps us understand the phase-space evolution of
the particles. Knowing how the ellipse transforms (twists and rotates without
changing area) is equivalent to knowing the dynamics of a bundle of particles.
To see this:

General s:

ya? + 2oxa’ + fr’? =€

Tnitial s = 5; Bi=PB(s=s) z=a(s=s)
= p— . / = 4 — .
Viw} + 20 + Bl = € v =als=si) 2 =a(s=s)
Yi = '7(3 = sz)

Apply the components of the transport matrix:
x | _ x| | C(slsi) S(s|ss) x;
= [ 5= (G0 S ] L
Invert 2x2 matrix and apply det M = 1 (Wronskian):
i . S’ -5 . Z
= o | T | —c C o

SM Lund, USPAS, 2017

C = C(s|s;), ete.
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Insert expressions for x;, ; in the initial ellipse expression, collect factors of
1:2, zz’ z'?and equate to general s ellipse expression:

[7:S? = 20;8'C" + B;C"?] 2
12758 + i (CS' + SC') — B,CC"|aa
+[7:8% = 204, SC + B;C%z"
= ya? + 20z’ + Ba’?

Collect coefficients of X%, xx', and x” and summarize in matrix form:

v S/Q _20/5/ 0/2 Vi
a|=| -89 CS+SC —-CC | | o
6 S? -2CS C? Bi

This result can be applied to illustrate how a bundle of particles will evolve from
an initial location in the lattice subject to the linear focusing optics in the machine
using only principal orbits C, S, C', and S'
+ Principal orbits will generally need to be calculated numerically
- Intuition can be built up using simple analytical results (hard edge etc)
+ Can express C, S, C', S' in terms of CS-ellipse functions using S6F results and

definitions for 3, «
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/Il Example: Ellipse Evolution in a simple kicked focusing lattice

Y=
Drift: { g/ g; } = { (1) i_si } a=—y(s—s)+a

5=l — 50 — 205 — 52) +
Thin Lens: ¢ s 1 01 Y=vt2a/f+Bi/f
focal length f { c s } B { -1/f 1 } gig,ﬂi/erai

Focus

Drift /\ Drift
U )
x' x' x' x'

AN . 7
. x . 2,

Diverging Converging

Upright Ellipse Diverging

(Beam Waist)

For further examples of phase-space ellipse evolutions in standard lattices,

see previous examples given in: S6G m
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Rather than use a 3x3 advance matrix for 7, @, 53, we can alternatively derive an
expression based on the usual 2x2 transfer matrix M which will help further
clarify the underlying structure of the linear dynamics.
Recall in S6F
x(s) | _ N | w(si) Cl(slsi)  S(slsi) (s:)
|25 | =t { o) | LGl s ][ 260

jw(s) sin Ay (s)

C(sl|si) = wu()s) cos A)(s) —
S(s]s;) = ww ( )smAd;

C'(s|s;) = ( w ) cos A(s (m%(s) +w§w'(s)> sin Ay(s)
S'(slsi) = w( ] COSA?/)( + wiw'(s) sin Adp(s)
so= [l I
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Using this and

w B
B =w? Wi Bi
— /
a=—ww , w B
—wiw = (—wjw;)— = qy 2
K2 K]
.. etc.
After some algebra, we obtain the expression
y— | Clslsi)  S(slsi)
M(S|Sz) = [ C,(S‘Si) S’(8|Si)
B [cos At (s) + a; sin Avp(s)] VBB sin Av(s)
B T/(?T(a’) cos Ap(s) — HZ\/HL((S) sin A (s) ﬁ’?;) [cos Ath(s) — arsin Arp(s)]

+ Transfer matrix now expressed in terms of Courant-Snyder ellipse functions,
their initial values, and the phase advance from the initial point.
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For the special case of a periodic lattice with an advance over one period
5 s+ L,

| |
[ \

a(s;) =a(s) B(si) =B(s) (si) =7(s) A =09

this expression for M reduces to

S

cosog + asinog  fsinog
M(s; + Lp|3i) e . .
—~ysin og cosop — asin gy

=Tcosog + J(s)sinog

o N T

01 —(s)  —als)

I A
"":/s. B(3)

i

It is straightforward to verify that:

detd = —a® +98 =1 7V = Tcosth(s) + Isint(s)
J.-J=-1
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An advance s; — s+ L, through any interval in a periodic lattice can be
resolved as:

\ \ \ -

|
| |
S; s s+ Ly s+ L,
Giving for M(s + Lyls;) :
M(s + Lyls) - M(sls) = M(s + Lyls; + L,) - M(s; + Ly|s:)
Or: = M(s[s;) - M(s; + Ly|s;)

M(s]s;) - M(si + Ly|si) - M~ (s]s;)

W

M(s+Lyls) =
Using:
M(s + Lp|s) = Icos oo + J(s)sinog

M(s; + Lp|s;) = Icosog + J(s;) sinog

% ]

+ Simple formula connects the Courant Synder functions 7, ¢, 8 at an initial
point § = S; to any location s in the lattice in terms of the transfer matrix M.
+ Result does NOT require the lattice to be periodic. Periodic extensions can be

used to §enerahze arguments employed to work for any lattice interval.
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- J(s) = M(s|s;) - J(s;) ~M_1(s|si) J




S8: Hill's Equation: The Betatron Formulation of the Particle
Orbit and Maximum Orbit Excursions S8A: Formulation

The phase-amplitude form of the particle orbit analyzed in S6 of
x(s) = A;w(s) cos)(s) = ew(s) cosh(s)

is not a unique choice. Here, w has dimensions sqrt(meters), which can render it
inconvenient in applications. Due to this and the utility of the Twiss parameters
used in describing orientation of the phase-space ellipse associated with the
Courant-Snyder invariant (see: S7) on which the particle moves, it is convenient
to define an alternative, Betatron representation of the orbit with:

z(s) = Vey/B(s) cos ()

[[w]] = (meters) 1/2

Betatron function: B(s) = w?(s)
Single-Particle Emittance: € = A? = const
® ds
Phase: o) =i+ [ o =+ Adi(s)

s B(3)

+ The betatron function is a Twiss “parameter” with dimension [[ 3 ]] = meters

Comments:
+ Use of the symbol 3 for the betatron function should not result in confusion
with relativistic factors such as 3 since the context of use will make clear
- Relativistic factors often absorbed in lattice focusing function
and do not directly appear in the dynamical descriptions
+ The change in phase A1) is the same for both formulations:

S ds 5 ds
A“s):/sm—@ AE)
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From the equation for w: . . . .
. 1 S8B: Maximum Orbit Excursions
w' (s K(s)w(s) — =0 . .
(5) + K(s)w(s) w3(s) From the orbit equation
ws + L) = w(s) w(s) > 0 = /eficosy

the betatron function is described by:

w :/);1/2
w18
251/2

- 5251/2 o 153/2

SB)B"(5) = 367(9) + n(9)%(s) = 1
Bls+ L) = 5(s)

4
ps) >0

+ The betatron function represents, analogously to the w-function, a special
function defined by the periodic lattice. Similar to w(s) it is a unique function
of the lattice.

+ The equation is still nonlinear but we can apply our previous analysis of w(s)

(see S6 Appendix A) to solve analytically in terms of the principle orbits
SM Lund, USPAS, 2017
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the maximum and minimum possible particle excursions occur where:

cost) =+1 — Max[z] = \/ef(s) = Vew(s)

costh = —1 — Min[z] = —\/eB(s) = —V/ew(s)
Thus, the max radial extent of all particle oscillations Max [x] = X, inthe beam
distribution occurs for the particle with the max single particle emittance since the

particles move on nested ellipses: In terms of Twiss parameters:

Max[e] = €, T = VEmW = \/ €0
Tm(8) = VemB(s) = Vemw(s) o = e = —\/%a

+ Assumes sufficient numbers of particles to populate all possible phases
* Xy, corresponds to the min possible machine aperture to
prevent particle losses
- Practical aperture choice influenced by: resonance effects due to
nonlinear applied fields, space-charge, scattering, finite particle lifetime, ....
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From: 1
w”(s) + Kk(s)w(s) — (5)

w(s) >0

ws + L) = w(s)

We immediately obtain an equation for the maximum locus (envelope) of radial
particle excursions x,, = /€, W as:

2" () + K(8)Zm(s) — xgﬂgs) =0
Tm (s + Lp) = Tm(s) Tm(s) >0

Comments:

+ Equation is analogous to the statistical envelope equation derived by J.J.
Barnard in the Intro Lectures when a space-charge term is added and the max
single particle emittance is interpreted as a statistical emittance

- correspondence will become more concrete in later lectures

+ This correspondence will be developed more extensively in later lectures on
Transverse Centroid and Envelope Descriptions of Beam Evolution and
Transverse Equilibrium Distributions

SM Lund, USPAS, 2017 Transverse Particle Dynamics 249

S9: Momentum Spread Effects in Bending and Focusing
S9A: Formulation

Except for brief digressions in S1 and S4, we have concentrated on particle
dynamics where all particles have the design longitudinal momentum at a value of
s in the lattice:

| ps = mypPyc = same for every particle

Realistically, there will always be a finite spread of particle momentum within a
beam slice, so we take:

ps =po + 0p
pPo = mpPyc = Design Momentum

op = Off Momentum

Typical values of momentum spread in a beam with a single species of particles
with conventional sources and accelerating structures:

1P| 19-2 - 1p-0

Po
The spread of particle momentum can modify particle orbits, particularly when
dipole bends are present since the bend radius depends strongly on the particle

momentum
SM Lund, USPAS, 2017
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To better understand this effect, we analyze the particle equations of motion with
leading-order momentum spread (see: S1H) effects retained:

1 1-6 e o 1

1 =
T+ T T aror | T T 155 R
Ky (s
')+ ) =0
Magnetic Dipole Bend
R(s) = Local Bend Radius 1 B2 |dipole
for design momentum py =
(R — oo in straight sections) R(s) [Brl
Po
= 5_p Kg,y = Focusing Functions [Bp] = ?
Po (using design momentum)

_J 1, Magnetic Quadrupoles
B 2, Solenoids, Electric Quadrupoles

Neglects:
+ Space-charge: ¢ — 0
+ Nonlinear applied focusing: E*, B contain only linear focus terms
+ Acceleration: pg = mcyBp = const
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In the equations of motion, it is important to understand that BZ of the magnetic
bends are set from the radius R required by the design particle orbit
(see: S1 for details)

+ Equation relating R to fields must be modified for electric bends (see S1)

+ y-plane bends also require modification of eqns (analogous to x-plane case)
The focusing strengths are defined with respect to the design momentum:

—49__ G =-9E*/0x = OEg /0y = Electric Quad. Grad.

my i c?’
Ky = #%bc, G = 0Bg /0y = 0By /0x = Magnetic Quad. Grad.
ﬁ%? B,y = Solenoidal Magnetic Field

b, Pp calculated from pg

Terms in the equations of motion associated with momentum spread (¢ ) can be
lumped into two classes:

S.9B: Dispersive -- Associated with Dipole Bends

S.9C: Chromatic -- Associated with Applied Focusing (<)
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S9B: Dispersive Effects

Present only in the x-equation of motion and result from bending. Neglecting
chromatic terms:

) 1 1-5 s
T+ me s W) = TS R
Term 1 Term 2

Particles are bent at different radii when the momentum deviates from the design
value ( § # 0 ) leading to changes in the particle orbit
+Dispersive terms contain the bend radius R

Generally, the bend radii R are large and § is small, and we can take to leading
order:
11-9

Term 1: |:ﬁ1<|»—6

+ nz} z~ Kz + O(1/R?) 4+ O(5/R?)

Careful if R not large as

o 1 9 might be th i
~ ¢ 2 g € the case 1n
Term 2: m R R +00 / R) low-energy beam lines
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The equations of motion then become:
4]
R(s)

y"(s) + ky(s)y(s) =0

+The y-equation is not changed from the usual Hill's Equation

"(s) + ki (s)a(s) =

The x-equation is typically solved for periodic ring lattices by exploiting the linear
structure of the equation and linearly resolving:

2(s) = n(s) + p(s)

xp = Homogeneous Solution

x, = Particular Solution

where Zh is the general solution to the Hill's Equation:

4 (8) + Ka(s)zn(s) =0

and Tp is the periodic solution to:

1
xp=0-D D"(s) + ky(s)D(s) = ——
o . R(s)
D = Dispersion Function D(s+ Lp) = D(s)
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This convenient resolution of the orbit x(s) can always be made because the
homogeneous solution will be adjusted to match any initial condition

Note that ), provides a measure of the offset of the particle orbit relative to the
design orbit resulting from a small deviation of momentum (¢ )

x(s) = 0 defines the design orbit

[[D]] = meters

¢ - D = Dispersion induced orbit offset in meters

Comments:
+ It can be shown (see Appendix B) that D is unique given a focusing function K
for a periodic lattice provided that ;ﬁ £ integer
T

- In this context D is interpreted as a Lattice Function similarly to the
betatron function
- Consequently, 6D gives the closed orbit of an off-momentum particle in a
ring due to dispersive effects
+ The case of how to interpret and solve for D in a non-periodic lattice (transfer
line) will be covered
- In this case initial conditions of D will matter
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Extended 3x3 Transfer Matrix Form for Dispersion Function
Can solve D in

1
D// + KZID = E
by taking
DD D Dy, = Homogeneous Solution
=Pnt by D,, = Particular Solution

Homogeneous solution is the general solution to
+ Usual Hill’s equation with solution expressed in terms of principle functions in 2x2
matrix form

Z—FHID}L:O

D )
FAR RS
S L Si

B [ g%ﬁ?) g'(flfiz?) } ' [ 32 }
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Particular solution take to be the zero initial condition solution to
+ Homogeneous part used to adjust for general initial conditions: always integrate from
zero initial value and angle

1 Denote solution as fi initial val
D'+ k.D. = — enote solution as from zero initial value
p PR and angle at s = s; as Dy (s) = D,(sl|s;)

Dy(si) =0= D;(Si)

Can superimpose the homogeneous and particular solutions to form a generalized
3x3 transfer matrix for the Dispersion function D as:
+ Initial condition absorbed on homogeneous solution

D [ C(slsi) S(s|si) Dy(s|si) D
D' = | C'(sl|si) S'(sls:) D'p(s\si) D'
1 s | 0 0 1 1 s,
[ [M(slis)] Dyslsi) ] [ D D
= D! (s|s;) D’ = Ms(s|s;)- | D’
| 0 0 1 1 . 1 s
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For a periodic solution:
D(s; + Lp) = D(s;)
D/(Si + Lp) = D/(Si)

This gives two constraints to determine the needed initial condition for periodicity
+ Third row trivial

D(SZ) — C(Sz + LMS,)D(SI) — S(Sl + Lp|57.)D/(52) = Dp(Si + Lplsz)
D'(si) = C'(si + Ly|si)D(s:) — S'(si + Ly|si) D' (si) = Dy, (si + Ly|si)

Solving this using matrix methods (inverse by minor) and simplifying the result
with the Wronskian invariant (S5C)

W = C(s|s;)S (s|s:) — S(s|s8:)C’(s|s;) = 1

and the definition of phase advance in the periodic lattice (S6G)

—_

1
COS 0oy = §Tr M(s; + Lyp|s;) = §[C(s$ + Lpls;) + S'(si + Lyplsi))
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Yields:

1 —S/(S’i-f—Lp'Si) S(GZ-FLp'GZ)

D _ 1 . Dy(si + Ly|si)
D' |, 20=cosaoa) | O'(si 4 Lylsi) 1—C(si + Lylsi) D,

(si + Lp|5i)

+ Resulting solution for D from this initial condition will have the periodicity of
the lattice. These values always exist for real oo, (09, < 180°)

* Values of D(s;), D’(s;) depend on location of choice of $; in lattice period

+ Can use 3x3 transfer matrix to find D anywhere in the lattice

+ Formulation assumes that the underlying lattice is stable with g, < 180°

Alternatively, take s; = s to show that

(L= §'(s + Ly|s)) Dy(s + Lyls) + S(s + Lyls) Dy (s + L, |s)
2(1 — cosogz)

C'(s+ Lyls)Dy(s + Lyls) + [1 = Cls + Lyls)] Di(s + Lyls)
2(1 — cosogy)

D(s) =

D'(s) =
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Particular Solution for the Dispersion Function in a Periodic
Lattice

To solve the particular function of the dispersion from a zero initial condition,

1
R
A Green’s function method can be applied (see Appendix A) to express the
solution in terms of projection on the principal orbits of Hill’s equation as:

Dy(s) = / s %G(s,é)
G(s,8) = S(s]s;)C(8]s;) — C(s]s:)S(8]si)

D;,’ + ke Dp = Dp(si) =0= D;)(Si)

C(s|s;) = Cosine-like Principal Trajectory
S(s|s;) = Sine-like Principal Trajectory

Cosine-Like Solution
C"(s]s;) + K(s)C(s|s;) =0
C(silsi) =1

C'(s4]s:) =0
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Sine-Like Solution

8" (s|s:) + k(s)S(s|s;) =0
S(si|s;) =0

S'(si]s8:) =1
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Discussion:
+ The Green’s function solution for Dy, together with the 3x3 transfer matrix
can be used to solve explicitly for D from an initial value
+ The initial values D(s;), D'(s;) found will yield the unigue solution for D
with the periodicity of the lattice

The periodic lattice solution for the dispersion function can be expressed in terms
of the betatron function of the periodic lattice as follows:

From S7C:
N _ | C(slss)  S(s]si)
M(s|s;) = [ C’'(s|si)  S'(s|s:) }

1/ %[cos At)(s) 4 a sin A (s)] VBiBsin At (s)
= 0\1/(;2;7(& S_') cos Ap(s) — H#% sin Ay(s) 4/ % [cos Ap(s) — asin Agp(s)]

and using

S B 1 B
D, (s) :/5 ds %G(s,s)

i

G(s,8) = S(s|s:)C(8|si) — C(s]s:)S(3]s;)

along with periodicity of the lattice functions 3, «

SM Lund, USPAS, 2017 Transverse Particle Dynamics 261

along with considerable algebraic manipulations show that the dispersion function
D for the periodic lattice can be expressed as:

s stLp 3
D(s) = ﬁij/z) / d Rfé)) cos[AW(E) — Ab(s) — 50s/2]
D'(s) — %D(s)
_ 1 T 3 A(5) sin §) — s)—o
SENC O / 5 Ve sinfAU(3) ~ Av(s) — 00./2

+ Formulas and related information can be found in SY Lee, Accelerator
Physics and Conte and MacKay, Introduction to the Physics of Particle
Accelerators

+ Provides periodic dispersion function D as an integral of betatron function
describing the linear optics of the lattice

SM Lund, USPAS, 2017 Transverse Particle Dynamics 262

Full Orbit Resolution in a Periodic Dispersive Lattice

Taking a particle initial condition,
z(s=s;) =y (5:%
2 (s=s;) =, Po
and using the homogeneous (Hill’s Equation Solution) and particular solutions
(Dispersion function) of the periodic lattice, the orbit can be resolved as

x(s) =z, + xp = 2;C(s|s;) + ;S (s|s;) + 6[D(s) — D;C(s|s;) — DiS(s|s;)]
o' (s) = @y, + xp, = 2;C" (s]s;) + 25" (s]s:) + [ D' (s) — D;C"(s]s;) — DS (s]s:)]

here,
D(s=s;)=D;

D'(s=s;)=D;
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Transfer Matrices for Dispersion Function

In problems, will derive 3x3 transfer matrices:
+ Summarize results here for completeness
+ Can apply to any initial conditions D;, D)
— Only specific initial conditions will yield D periodic with lattice
— Useful in general form for applications to transfer lines, achromatic bends, etc.

D D
D' = M;3(s|s;) D’
1 S 1 S

Drift: #.(s) =0

1 (s—s;) O
M3 (8|Sz‘) = 0 1 0
0 0 1
Thin Lens: located at s = s; with focal strength f (no superimposed bend)
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Thick Focus Lens: with £; = & = const > 0 (no superimposed bend)

cos[vVi(s — ;)] ﬁ sin[vi(s —s;)] 0]
M;(slsi) = | —Vasin[Va(s —s;)]  cos[VA(s — s;)] 0
0 0 1 ]
Thick deFocus Lens: with k, = —& = const < 0 (no superimposed bend)
cosh[V&(s — si)] ﬁ sinh[Vi(s — ;)] 0]
Mj;(slsi) = | Vasinh[Va(s —s;)] cosh[v/A(s — s;)] 0
0 0 1 ]

Bend with Focusing: R = const, &, = k = const > 0

cos[Vi(s — s)] ﬁ sin[v/&(s — s;)] 1 {1 — cos[VA(s — sz)]}

—VEsin[Vi(s —s;)]  cos[VE(s — s;)] ﬁ sin[v/&(s — s;)]

0 0 1

Bend with deFocusing: R = const, x; = —& = const < 0

cosh[VA(s — 5;)] ﬁ sinh[V&(s — s;)] 2= {—1 + cosh[VA(s — s,)]}

Visinh[Vi&(s — s;)]  cosh[Vi(s — s;)] R+ﬂ sinh[v/&(s — 5;))]
0 0 1
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Ms(s|s;) =

M;(s]si) =
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For the special case of a sector bend of axial length ¢ the bend with focsusing
result reduces for transport through the full bend to:

{=RA, 6=DBend Angle

cosf  Rsinf R(1—cos0)
M; = —% cos 6 sin 0
0 0 1

For a small angle bend with |#| < 1 this further reduces to:

1 ¢ 00)2
Ms~ |0 1 0
00 1
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/I Example: Dispersion function for a simple periodic lattice

For purposes of a simple illustration we here use an imaginary FO (Focus-Drift)
piecewise-constant lattice where the x-plane focusing is like the focus-plane of a
quadrupole with one thick lens focus optic per lattice period and a single drift with
the bend in the middle of the drift
+ Focus element implemented by x > ( x-plane quadrupole transfer matrix
in S5B.
L,=05m K= 20/m2 in Focusing

// Example: Dispersion broadens the distribution in x

Same Bundle of particles D nonzero
+ Gaussian distribution of momentum
spread distorts the x-y distribution
extents in x but not in y

Uniform Bundle of particles D =0

n=20.5 R =15 m, in bend, 25% Occupancy
2.0 T T "
N 1‘5-_,/”\_/”\
=RE; D K :
S 05 _ 0 3
= 00, /R
N R N
-1.5 : : : D=0 extent
0.0 0.5 1.0 1.5 2.0
s/ L, [Lattice Periods|
/ /l
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// Example: Continuous Focusing in a Continuous Bend
Kz(s) = k%o = const
R(s) = R = const

Dispersion equation becomes:

1
i 2 _
With constant solution:
D = const

1
~ 12 p
k ﬁoR
From this result we can crudely estimate the average value of the dispersion
function in a ring with periodic focusing by taking:
R = Avg Radius Ring
L, = Lattice Period (Focusing)
00z = 2-Plane Phase Advance
2
)
Ly, ogR /I
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Many rings are designed to focus the dispersion function D(s) to small values in
straight sections even though the lattice has strong bends
+ Desirable since it allows smaller beam extents at locations near where D = 0
and these locations can be used to insert and extract (kick) the beam into and
out of the ring with minimal losses and/or accelerate the beam
- Since average value of D is dictated by ring size and focusing strength
(see example next page) this variation in values can lead to D being
larger in other parts of the ring
+ Quadrupole triplet focusing lattices are often employed in rings since the use
of 3 optics per period (vs 2 in doublet) allows more flexibility to tune D while
simultaneously allowing particle phase advances to also be adjusted

Lattice
 Period
i Sector ;

One Lattice Period

Triplet I .

Quadrupoles ““ “ilfnf"

Ring Lattice: 12 Periods
(SIS-18, GSI)

sles
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Dispersive Effects in Transfer Lines with Bends

It is common that a beam is transported through a single or series of bends in
applications rather than a periodic ring lattice. In such situations, dispersive
corrections to the particle orbit are analyzed differently. In this case, the same
particular + homogeneous solution decomposition is used as in the ring case with
the Dispersion function satisfying:

D" (s) + k4(s)D(s) =

1
R(s)
However, in this case D is solved from an initial condition. Usually (but not

always) from a dispersion-free initial condition s = s; upstream of the bends
with:

D(SL> =0= DI($i>

If the bends and focusing elements can be configured such that on transport
through the bend (s = s4) that

D(Sd) =0= D,(Sd)

Then the bend system is first order achromatic meaning there will be no final orbit
deviation to 1" order in § on traversing the system.
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This equation has the form of a Driven Hill's Equation:

" rz— D
2"+ k(s)x = p(s)
p—1/R
The general solution to this equation can be solved analytically using a Green
function method (see Appendix A) based on principle orbits of the homogeneous
Hill’s equation as:

os) = #(s0)C(sls0) + ' (5)(sls0) + [ d5 (s, 5p(3)

Si

G(s,8) = S(s|s:)C(8]si) — C(s|s:)S(5]s;)

Cosine-Like Solution
C"(s]s;) + K(s)C(s|s;) =0
C(sils;) =1

C'(si|s;) =0

Sine-Like Solution
8" (s]s;) + K(s)S(s|s;) =0
S(si|si) =0
S/(Si|5i) =1
z(s;) = Initial value z
2’ (s;) = Initial value 2’
Green function effectively casts driven equation in terms of homogeneous solution

projections of Hill’s equation.
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Using this Green function solution from the dispersion-free initial condition gives

D(S) = S(S|si) /sd§ %C(ﬂsl) — C($|5i) /sd§ %5(5‘81)

C(s]s;) = Cosine-like Principal Trajectory
S(s|

s;) = Sine-like Principal Trajectory

+ Alternatively, the 3x3 transfer matrices previously derived can also be applied
to advance D from a dispersion free point in the the linear lattice

The full particle orbit consistent with dispersive effects is given by

z(s) = x(s:)C(s]s;) + 2'(s:)S(s|s;) + 6D(s)
7/ (s) = x(s;)C(s|s;) + a/(s:)S'(s|s;) + dD'(s)
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For a 1* order achromatic system we requite for no leading-order dispersive
corrections to the orbit on transiting the lattice ( s; — sq). This requires:

0— /ds %C(Zﬂsi)
0:/5 ds -1 R() S(5]s:)

Various lattices consisting of regular combinations of bends and focusing optics
can be made achromatic to 1* order by meeting these criteria.
+ Higher-order achromats also possible under more detailed analysis. See, for
examples: Rusthoi and Wadlinger, 1991 PAC, 607

Examples are provided in the following slides for achromatic bends as well as
bend systems to maximize/manipulate dispersive properties for species separation.
Further examples can be found in the literature
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Symmetries in Achromatic Lattice Design
Input from C.Y. Wong, MSU
Symmetries are commonly exploited in the design of achromatic lattices to:

+ Simplify the lattice design

+ Reproduce (symmetrically) initial beam conditions downstream
Example lattices will be given after discussing general strategies:
Approach 1: beam line with reflection symmetry about its mid-plane

Plane of reflection

/\f f /\ i : initial
i - middl
\/ E v n; : ﬁmrial )

S = Sm 5 =38y

If ¢'(sm) =0, then g(s;) = g(ss), ¢'(s;) = —g'(sy)
where g can be 3., 8, or D

After the mid-plane, the beam traverses the same lattice elements in reverse order.

So if the lattice function angle (d/ds) vanishes at mid-plane, the lattice function
undergoes “time reversal” in the 2™ half of the beam line exiting downstream at

the symmetric axial location with the same initial value and opposite initial angle.
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Approach 2: beam line with rotational symmetry about the mid-point:

0

Note that the dipoles bend
in different directions

Origin of rotation  Trajectory in red: ideal
off-momentum particle

x(s;) = D(s;)0 #0
' (s;) = D'(s)d =0

Focusing properties of dipoles are independent of bend direction (sign §).
Same reasoning as Approach 1 gives:

If /8;71/ (Sm) =0, then Bmy(sz) = ﬁx,y(sf) ﬁz y(sz) =—0; y(sf)

Dispersive properties of dipoles change with bend direction. See Appendix C.
If D(s,,) = 0 (instead of D'), then D(s;) = —D(sy), D'(s;) = D'(sy)
If D vanishes at mid-plane, the dispersive shift of an off-momentum particle also

exhibits rotational symmetry about the mid-point
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Example: Achromatic Bend with Thin Lens Focusing
Input from C.Y. Wong, MSU
Apply Approach 1 with simple round numbers:

p, 0 /\f . /\ §=r/6
,,,,,, E p=6/mm
a \/ b I b \/ a
g ' a=1m
s:/si s =5y b=1m
Bend Focus Focus Bend
MAD-X 5.02.00 05/08/16 16.42.25 Dl (sl )7

10. Achromatic Bend 20

. 0
P18 D'(sy) =0 if f=ptan=+a
/1.6 2
[ 14 (see next slide)
= P12 = f=151lm
= Lo €
& L ss = The bending system is achromatic,
Los but the betatron functions are
L o4 asymmetric due to insufficient
[ 02 lattice parameters to tune.
0 I 3 3 4 % & 3 b0 @ Add more elements to address
(m)
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For incident beam with D(s;) =0 = D’(s;), the dispersion function only evolves
once the beam enters the dipole

D 1 b 0 D 1 b6 0 0
D’ =10 1 0 D’ =10 1 0J]M]|O
1 . 0 0 1 1 b 0 0 1 1
where
1 00 1 a 0 cosf psin® p(1—cosb)
M= —% 10 0 1 0 —Sirlje cos 0 sin 0
0 01 0 01 0 0 1

Note that the drift b after the thin lens focus does not affect )/
D'(sy) = D'(8y —b) =0 if Moz =0

Solution gives:

0
== f:ptan§+a
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Discussion:
+ Only have to design half the beam-line by exploiting symmetries:
* One constraint at mid-point satisfies two constraints at the end of the beam
line if an asymmetric design approach was taken
» Symmetric lattic easier to set/tune: strengths in 1* half of the beam line
identical to mirror pair in the 2" half
+ It is possible to achieve the same final conditions with an asymmetric beam
line, but this is generally not preferred
+ There should be more lattice strength parameters that can be turned than
constraints — needs more optics elements than this simple example
+ Except in simplest of cases, parameters often found using numerical
procedures and optimization criteria
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Discussion Continued:
+ Usually Approach 1 and Approach 2 are applied for transfer line bends with

D(si) = 0= D(sg), D'(si) = 0= D'(sy)

However, this is not necessary

+ Common applications with D(s;) = 0 = D’(s;) for linacs and transfer lines:

e Approach 1: fold a linac, or create dispersion at mid-plane to collimate /
select species from a multi-species beam
» Approach 2: translate the beam

+ Common applications for rings:

» Approach 1: Minimize dispersion in straight sections to reduce aberrations
in RF cavities, wigglers/undulators, injection/extraction, etc.

+ Not only is it desirable to minimize the dispersion at cavities for acceleration
purposes, an accelerating section has no effect on the dispersion function up to
1" orderonly if D = D' =0
« Consider an off-momentum particle with #, = 6D’ =0, xp =D # 0

undergoing purely longitudinal acceleration
0 changes while Zp does not, while entails that D changes
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Example: Simplified Fragment Separator
Input from C.Y. Wong, MSU
Heavy ion beams impinge on a production target to produce isotopes for nuclear
physics research. Since many isotopes are produced, a fragment separator is
needed downstream to serve two purposes:

+ Eliminate unwanted isotopes

+ Select and focus isotope of interest onto a transport line to detectors

Different isotopes have different rigidities, which are exploited to achieve isotope
selection

Rigidity [Bp] = £ = "%

5— Ap _ A[Bp] Deviation from the reference rigidity treated
“\p /) [Bob as an effective momentum difference
+ Applied fields fixed for all species

ref particle (isotope) sets parameters
in lattice transfer matrices

Dispersion exploited to collimate off-rigidity fragments

SM Lund, USPAS, 2017 Transverse Particle Dynamics 281

NSCL A1900 Fragment Separator: Simplified Illustration
A1900 schematic

Show only dipoles D QT
and quadrupoles P ==

e o

TA ~ EN Pr FP
“,QT Quadrupole
TR D D %13 Triplet Focus

= 0'QT
»
. J [https://groups.nscl.msu.edu/al
900/overview/schematic.php]

D = Dipole Bend

Further Simplified Example: 2 segment version

OOX Xobf

Producti x Replace quadrupole triplets
. by thin lens doublets & Focal
target
plane
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Design Goals:
+ Dipoles set so desired isotope traverses center of all elements
+ Dispersion function D is: large at collimation for rigidity resolution
small elsewhere to minimize losses
+ B+ By should be small at collimation point and focal plane

Apply Approach 1 by requiring D’ = 3, = le/ = 0 at mid-plane
Mid-Plane

Production Focal Plane

Target p,0 fs _f4§ p, 0
5 00D 4
S % : f S
D large
%(\ D=0 /
Br=8,=0

s
Dy =0=0D By, B, small D, =0=D,
B=0=4, B.=0=3,
B =By =Po Bo is determined by the initial spatial and Bs =By = Bo

angular distribution of the fragment beam
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Supplementary: Parameters for Simplified Fragment Separator
i —f2 p.b fs —fa —fa fa3 PO —f

0.6m Im Im 2m Im 2m Im 2m Im Im 0.6m

1.4m 1.4m
Desired isotope: 3'S'®* from “*Ar(140 MeV/u) on Be target

Initial conditions at production target:

v {(x'?) = 10 mrad

Energy: 120 MeV/u

Rigidity:  3.15 Tesla-m (#2) = 1 mm
€; = 10 mm-mrad
Dipole p, 0 are fixed

Impose constraints and solve f’s numerically:
p=178m 0==/4

=1.12 drupol G =139T
Thus B, (0) is uniquely h m Srl:clliéﬁ?so ¢ ! /m
determined by [Bp] fo=rfi G2 =13.9T/m
By(0) = 1.7 Tesla fs=179m  forlengths G3 =87 T/m
fi=4.17m t=20cm g, =3.7T/m

For other isotopes:
If initial <x2> , <a¢'2> are same, scale all fields to match rigidity [Bp]
If not, the f’s also have to be re-tuned to meet the constraints
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Lattice functions and beam envelope

) L] . L + Slits at mid-plane where dispersion large to
)0. Linear Achromat MAD-X 5.02.00 16/07/16 17.34.46 S0 . . . A .
B. B D collimate unwanted isotopes and discriminate
30.

momentum

+ x-envelope plotted for 3 momentum values:

4.0
3.
0. KXy
0. 2-»‘qu Teny = £/ B +0D
30. 2.(Q
50. 1! . . .
0 |, *Aperture sizes and D (properties of lattice),
: 0: \‘\\ 0;, determine the angular and momentum
20 [ o acceptance of the fragment separator

f
/
/
/’
00 2. 4 6 8 10. 12 14 6
s (m)

B, By [m]

slits

1y

g

i op/p = 2.5%
op/p=10
dp/p = —2.5%

z—envelope|mm)|
.
S

°
¥ vuvuupop
°

2 4 o 11 k) 14 16 o 2 4 6 8 10 12 14 16
N ;
s Imi s fml

Example: Charge Selection System of the FRIB Front End
Input from C.Y. Wong, MSU
An ECR ion source produces a many-species beam
A charge selection system (CSS) is placed shortly downstream of each source to
select the desired species for further transport and collimate the rest

+ The CSS consists of two quadrupole triplets

and two 90-degree sector dipoles ‘ ARTEMIS
+ The dipoles have slanted poles applied to Charge selection

4
increase x-focusing to enhance dispersion in
the CSS /

FRIB CSS

VENUS-like ECR
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Parameters for the CSS Lattice Functions of CSS
p,0,k k1 k3 k3 k1 p b,k Large dispersion and small beam size in x at mid-plane facilitates the collimation
I_l I_l : I_I I_I of unwanted species
a b el e did ¢l ]c b a 1N N
S R e B
H 2 8 CSS' i . i . M,4ID-X§.02.QO 15(/08/1‘(5 10.‘13.13 30
Dipole: Mid-plane conditions: B B D

0:71'/2 p:2/7rm
Ky = 0.1/p2 Ky = 0.9/,02

where field index n = 0.9 from : 2" + kpx = 2" +

az(8m) = ay(sm)=D" =0

z=0

n
y"+fiyy:y"+ﬁy:0

Quadrupoles:
Drifts: Initial Conditions:

lquad = 0.2 m

) a=04m Bz(si) = By(s;) =3.971 m
K1z = —K1y = 8.30 m™ b—0.35

2 = Uoom ag(s;) = oy(s;) = —0.380
K2e = —HKgy = —15.60 m ¢c=0.13m
!

Kge = —Kgy = 7.5 m ™ d=0.19m D(si) = D'(s:) =0
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Y00 T ro 20 30 40 so0 | 6o
s (m)
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S9C: Chromatic Effects

Present in both x- and y-equations of motion and result from applied focusing
strength changing with deviations in momentum:

K (8)
T g =0 R o
iy (s) i
y"(s) + q j_ R y(s) =0 to neglect bending terms
kz,y = Focusing Functions
with v, 8y calculated from pg

+ Generally of lesser importance (smaller corrections) relative to dispersive
terms (S9C) in linacs except where the beam is focused onto a target (small
spot) or when momentum spreads are large

+ Can be important in rings where precise control of tunes (betratron
oscillations per ring lap) are needed to avoid resonances: see Transverse
Particle Resonances

+ J.J. Barnard in Application Lectures: Heavy Ion Fusion and Final Focusing
will overview consequences of chromatic effects on the achievable beam spot
in his analysis on final focus optics
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Can analyze by redefining kappa function to incorporate off-momentum:

Kz (8)
(1+0o)m
However, this would require calculating new amplitude/betatron functions for

each particle off-momentum value d in the distribution to describe the evolution
of the orbits. That would not be efficient.

— "im,new(s)

Rather, need a perturbative formula to calculate the small amplitude correction to
the nominal particle orbit with design momentum due to the small amplitude
correction due to the off-momentum § .
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Either the x- and y-equations of motion can be put in the form:

" k(s) _
Expand to leading order in ¢ :

2" (s) 4+ k(s)(1 —nd)z(s) =0

Set:

xo(s) = Orbit Solution for § =0

2(#) = zo(s) +n(s) n(s) = Orbit Correction to ¢ for d # 0

Giving:

xy + kxo =0

(zo +n)" + k(1 —nd)(zo +n) =0

Insert 1* equation in 2™ equation and neglect 2™ order termin § -7 to obtain a
linear equation for 7 :

| 0" 4+ kn = nékxg |
SM Lund, USPAS, 2017
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This equation has the form of a Driven Hill's Equation:
” =
"+ k(s)x = p(s)

p — noKI

The general solution to this equation can be solved analytically using a Green
function method (see Appendix A) as:

o) = as)C(sls) + @' (s)S6ls) + [ 5 Gls,p(6)

G(s,8) = S(s]s;)C(8]s;) — C(s]s:)S(8]s;)

Cosine-Like Solution
C"(s|s;) + K(s)C(s|s;) =0
C’(si|si) =0

Sine-Like Solution

8" (s]s;) + k(s)S(s|s;) =0
S(si|si) =0

8/(Si|8i) =1

z(s;) = Initial value z

2’ (s;) = Initial value 2’
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Using this result, the general solution for the chromatic correction to the particle
orbit can be expressed as:

n(s) = n(s;)C(s|s;) +n'(s;)S(s]s;) + nd f:’id§ G(s, 5)k(8)xo(5)

G(s,5) = S(s|s:)C(8]si) — C(s|s:)S(8]s:)
n(s;) = Initial value n
7' (s;) = Initial value 7’
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Chromatic orbit perturbations are typically measured from a point in the lattice
where they are initially zero like a drift where the orbit was correct before
focusing quadrupoles. In this context, can take:

n(si) =0=1'(si)

n(s) =nd [ d3 G(s,3)k(3)z0(3)

The Green function can be simplified using results from SOF:

C(s|s;) = wzf;f) cos A(s) — wiw(s) sin Azp(s)

S(s|si) = ww(s) sin Ap(s) w; = w(s =s;)

Giving after some algebra:

G(s,5) = S(s|s;)C(5s;) — C(s]s:)S(5]si)
= w(s)w(3)[sin A)(s) cos Ay(8) — cos Ag)(s) sin A(8)]
= w(s)w(8) sin[A¢(s) — Aip(3)]
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Using this and the phase amplitude form of the orbit:
zo(s) = Aiw(s) cos[ih(s)]
= Vew(s) cos[Av(s) + 1]

+ Initial phase ¢; implicitly chosen (can always do) for initial amplitude A4; > 0

the orbit deviation from chromatic effects can be calculated as:

n(s) =nd /Sdé G(s, 8)k(8)xo(3)

= ndy/ew(s) /Sdé w?(3) sin[Av(s) — Arh(3)] cos[A(8) + 1]

7

Formula applicable to all types of focusing lattices:
+ Quadrupole: electric and magnetic
+ Solenoid (Larmor frame)
+ Linac and rings

Add examples in future editions of notes ...
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Comments:

+ Perturbative formulas can be derived to calculate the effect on betatron tunes
(particle oscillations per lap) in a ring based on integrals of the unpreturbed
betatron function: see Wiedemann, Particle Accelerator Physics

+ For magnetic quadrupole lattices further detailed analysis (see Steffen, High
Energy Beam Optics) it can be shown that:

- Impossible to make an achromatic focus in any quadrupole system.
Here achromatic means if

n(si) =0 =n'(s:)
there is some achromatic point $ = Sy post optics with
n(sy) =0=n'(ss)

+ More detailed analysis of the chromatic correction to particle orbits in rings
show that a properly oriented nonlinear sextupole inserted into the periodic
ring lattice with correct azimuthal orientation at a large dispersion points can
to leading order compensate for chromatic corrections. See Wille, The
Physics of Particle Accelerators for details.

- Correction introduces nonlinear terms for large amplitude
- Correction often distributed around ring for practical reasons
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Appendix A: Green Function for Driven Hill's Equation

Following Wiedemann (Particle Accelerator Physics, 1993, pp 106) first, consider more
general Driven Hill's Equation

2" + k(s)x = p(s)

The corresponding homogeneous equation:

2" +k(s)z=0

has principal solutions
x(s) = C1C(s|si) + C28(s|s:)

where
Cosine-Like Solution

C" 4+ k(s)C=0
Cs=s;)=1 S(s=s;)=0
C'(s=s)=0 S'(s=s;)=1
Recall that the homogeneous solutions have the Wronskian symmetry:
+ See S5C

W(s) =C(s)S'(s)
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C1,Cy = constants

Sine-Like Solution

S+ k(s)8=0

—C'(s)S(s) =1 C(s) =C(s|s;) etc.
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A particular solution to the Driven Hill's Equation can be constructed using a
Greens' function method:

2(s) = / 45 G(s, 5)p(5)

G(s,8) = S(s|s:)C(8]si) — C(s]s:)S(5]s;)
Demonstrate tshis works by first taking derivatives:
v =8(s) / d3 C(5)p(3) — C(s) / 43 SEp(3)

Si

2 =8'(s) SdéC( p(8) — C’(s)/ ds S(3)p(3)
49 5()006) #S(5)(s
_5'(s) / ds C(3)p(3) — C'(s) / 5 S(E)p(3)

i

" =8"(s) /sdé' C(3)p(3) — C"(s) ds S(3)p(3)

s)[S'(s)C 7/2’ (s)S(s)]

w@+y@/ﬁam®—W@/kaW®

Si Si
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Insert these results for x, =" in the Driven Hill's Equation:
Definition of Principal Orbit Functions

O s O s
2"+ k(s)r = p(s) + [S"/(?S] / ds C(3)p(3) — [C"/ZiC] / ds S(3)p(3)
= p(s)

Thereby proving we have a valid particular solution. The general solution to the
Driven Hill's Equation is then:

M@=x@WQM)+rWMﬂﬂw—%/25@&@M9

Si

G(s,8) = S(s5:)C(3]s:) — C(s[5:)S5(8]s:)

+ Choose constants C7, C5 consistent with particle initial conditions at s = s;
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Appendix B: Uniqueness of the Dispersion Function in a
Periodic (Ring) Lattice

Consider the equation for the dispersion function in a periodic lattice

1 Kz (s + Lyp) = Ka(s)
R R(s + L) = R(s)

D" 4+ k,D =

It is required that the solution for a periodic (ring) lattice has the periodicity of the
lattice:

D(s+Lp) = D(s)

Assume that there are two unique solutions to D and label them as D;. Each must
satisfy:

1

Dj+#.Dj == Djls+L)=Di(s) =1 2

Subtracting the two equations shows that D1 — Dy satisfies Hill’s equation:

(D1 - DQ)// + Hw(D1 — DQ) =0
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The solution can be expressed in terms of the usual principal orbit functions of
Hill’s Equation in matrix form as:

{ %1_*%2)' ] N { g'(ié"i;z)) g/(fli;)) ] ' { Z;l_*DDZ)' LZ

Because C and S do not, in general, have the periodicity of the lattice, we must
have:
ave D1 (87) = DQ(Si)
Di(si) = Dj(si)

which implies a zero solution for Dy — Dy and:

| D;(s) = Da(s) == D us unique for a periodic lattice

The proof fails for o, /(27 = integer, however, this exceptional case should
never correspond to a lattice choice because it would result in unstable particle
orbits.

An alternative proof based on the eigenvalue structure of the 3x3 transfer matrices
for D can be found in “Accelerator Physics” by SY Lee.
+ Proof helps further clarify the structure of D
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Appendix C: Transfer Matrix of a Negative Bend
Input from C.Y. Wong, MSU
For a clockwise bend (derived in the problem set):

D D T
D' =M |D \/’
> S
1), 1/, >
cosf psin® p(1—cosb)
Mg = *% cos 6 sin 6 p>0 \9,
0 0 1 6>0 N

This definition of the X,y,s coordinates is right-handed

The transfer matrix for a negative (anti-clockwise) bend is obtained by making the
transformation p — —p, 0 — —0

cos |6 Iplsinlé] o] (1~ cos |o])

in 10 .
_% cos |6 —sin |6
0 0 1
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If one finds the result counterintuitive, it can be derived as follows:
j Define T = —x

(The new set of coordinates is not right-handed,

"'\,_ > but this does not affect the reasoning)
The dispersion functions in the two coordinate systems are related by
D D -1 0 0
D'|=R|[D where R=R'=[|0 -10
1 1 0 0 1

The anti-clockwise bend is effectively clockwise in the primed coordinate system:

D D D D
D) =Mp | D —> R(D| =MR|D
1 f 1 i 1 I 1 i
Transfer matrix of anti-clockwise bend in normal coordinates:
cos || |p|sin]d] —|p| (1 —cos|f|)
M_p =R 'MpR = —%}fl cos |6 —sin |6
0 0 1
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S10: Acceleration and Normalized Emittance
S10A: Introduction

If the beam is accelerated longitudinally in a linear focusing channel,
the x-particle equation of motion (see: S1 and S2) is:

’ 9 Analogous
2 + Q) &'+ Kpx = —3#22 —¢ equation holds
(705) myy Bye? Ox iny

Neglects:
+Nonlinear applied focusing fields
+*Momentum spread effects

Comments:
* Yo, Bb are regarded as prescribed functions of s set by the
acceleration schedule of the machine
*Variations inVs, Bb due to acceleration must be included in
and/or compensated by adjusting the strength of the optics via optical
parameters contained in Kz, Ky
- Example: for quadrupole focusing adjust field gradients (see: S2)
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Acceleration Factor: Characteristics of
Relativistic Factor

Y, Relativistic Limit 1
Vo =

By, Nonrelativistic Limit /11— B2

Beam/Particle Kinetic Energy:

Ey(s) = (75 — 1)mc? = Beam Kinetic Energy

+Function of s specified by Acceleration schedule for transverse dynamics
+See S11 for calculation of &, and V5 from longitudinal dynamics
and J.J. Barnard lectures on Longitudinal Dynamics

Approximate energy gain from average gradient:

51) 25i+G(S—$i)

&; = const = Initial Energy
G = const = Average Gradient
Real energy gain will be rapid when going through discreet acceleration gaps

< '7bm02,
b =~ e s P
impBZc?, Nonrelativistic Limit, |3, < 1

*

Relativistic Limit, vy, > 1

SM Lund, USPAS, 2017 Transverse Particle Dynamics 305

Comments Continued:

+In typical accelerating systems, changes in /3, are slow and the fractional
changes in the orbit induced by acceleration are small

- Exception near an injector since the beam is often not yet energetic
+The acceleration term:

(7))’
("763)

will act to damp particle oscillations (see following slides for motivation)

>0

Even with acceleration, we will find that there is a Courant-Snyder invariant
(normalized emittance) that is valid in an analogous context as in the case without
acceleration provided phase-space coordinates are chosen to compensate for the
damping of particle oscillations
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Identify relativistic factor with average gradient energy gain:
Relativistic Limit: 7 > 1
& &
b —s = —F5 + —5
PEmE T mE T me

—~

Wwh) N 1 1
(Whs) — W G+(s—s) s—si

—

Nonrelativistic Limit: |8s| < 1
G

& _\/ &;
f”b—\/?@— 2 T2nats )

(wB)" By _ 1/2 1
e (wBe) B HE+(s—si) 25— s)

5]

+Expect Relativistic and Nonrelativistic motion to have similar solutions

- Parameters for each case will often be quite different
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/1 Aside: Acceleration and Continuous Focusing Orbits with K, = k%o = const
Assume relativistic motion and negligible space-charge:

whe)” w1 ¢
("753) Vb (% - si) + s ox
Then the equation of motion =" + (%ib)x/ + ke =0 reduces to:
(78)
o + k3 =0
CEMER

This equation is the equation of a Bessel Function of order zero:

d? 1d =kgos + k
_z_i___x_i_aj:o é- BO BO
de? " g de ¢ = ks

K2

G

Si

Ci1 = const Cy = const

v = C1Jo(€) + C2Yo(€) Jn = Order n Bessel Func

(1st kind)
a' = —CikgoJ1(€) — CakpoYi(€) Y, = Order n Bessel Func
dJo(x)/dx = —Ji(z) and same for Yj (2nd kind)
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Solving for the constants in terms of the particle initial conditions:
zi | _ | Jo(&) Yo (&) |G
i —kpoJ1(&)  —kpoY1(&:) Ca

xT.:
x; =x(s = s;) &

&= kBOE =&(s=s;)

Invert matrix to solve for constants in terms of initial conditions:

v, =12'(s = s;)

= [a]-z[emey W] [2]
A = kpo[Yo (&) J1(&) — Jo(&:)Y1(&)]
Comments:

+ Bessel functions behave like damped harmonic oscillators
- See texts on Mathematical Physics or Applied Mathematics
+ Nonrelativistic limit solution is not described by a Bessel Function solution
- Properties of solution will be similar though (similar special function)
- The coefficient in the damping term oc 2’ has a factor of 2 difference,
preventing exact Bessel function form
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Using this solution, plot the orbit for (contrived parameters for illustration only):

kgo = 22 o0 = 90° /Period & = 1000 MeV
Ly L,=0.5m G =100 MeV/m

zrl(O)—lOmm 5 =0 | 1

(m)(())m: 0 mrad \/—/ % = AT
x(s '. ~ A Ve / Ve
] i'mmmlllllllllllllllllllmmlmmlmv

TRV H T AT T
s/ L, [Lattice Periods]

2'(s) 38
[mrad]w

s/ L, |Lattice Periods]
#Solution shows damping: phase volume scaling ~ 1/(755) =~ 1/ 1
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S10B: Transformation to Normal Form

“Guess” transformation to apply motivated by conjugate variable arguments

(see: J.J. Barnard, Intro. Lectures)  Here we reuse tilde variables to

denote a transformed quantity we

T= mx choose to look like something
Then: familiar from simpler contexts
— 1 I~
T = mx
7 = 1 3 _ 1 (v66)’ 7
VP 2 ()32
oL o (wB) Ik (wB)” 1 ()" 5
V7B ()3/2 4 (WwB)>2 2 (1)3/?

The inverse phase-space transforms will also be useful later:

T = /b
1 i
7 = \/Bor’ + = (75) -

2 \/B)
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Applying these results, the particle x- equation of motion with acceleration
becomes:

1 (15)"”
4 (0)?

AN P —%(%Bb)}jz a9

(6) - myE Byc? o

Note:
*Factor of b/ difference from untransformed expression in the space-charge
coupling coefficient

It is instructive to also transform the Possion equation associated with the space-
charge term:

0? 0? p
(@*a—yzﬁ"a

Transform:
P _(0soN (0N _ . &
922~ \ 9z 07 = WPz

T 0T
02 dj 0 i 0 o?
535 = |\ 3 5= = A= | = ’Ybﬁb—~2
Jdy dy 0y y 0y 9y
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Using these results, Poisson's equation becomes:

0? 0? p
<@ " 3_2?2) = " Beo

Or defining a transformed potential ¢

b = VB
0? PN~ p
(@*a—w)d’*;

Applying these results, the x-equation of motion with acceleration becomes:

1 1(wB)* 1B g 09
T+ [Iim + m7§B§C2 0%

1
4 (whs)2 2 (Wwh)

+Usual form of the space-charge coefficient with 75’ ﬁf rather than mf Bb
is restored when expressed in terms of the transformed potential ¢
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An additional step can be taken to further stress the correspondence between the
transformed system with acceleration and the untransformed system in the
absence of acceleration.

Denote an effective focusing strength:

o 1(wB)” 1 (wh)"
o = T T B 2 (B

K incorporates acceleration terms beyond~y,, () factors already included in the
definition of Kz (see: S2):

ﬁggcm G =—-0E%/0x = 8EZ/8y = Electric Quad. Grad.
Ky = m’gb(;ﬁbc7 G = 0B3 /0y = 0By /0x = Magnetic Quad. Grad.
7477%%230252 , B.o = Solenoidal Magnetic Field
b™~b

The transformed equation of motion with acceleration then becomes:

¢ 9

a my; BEc? 0%

~ 1/ ~ o~
T+ KX =
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The transformed equation with acceleration has the same form as the equation in
the absence of acceleration. If space-charge is negligible ( 9¢/0x ) ~ 0) we

have:

Accelerating System Non-Accelerating System

3+ Ry =0 — 2 + kpx =0
Therefore, all previous analysis on phase-amplitude methods and Courant-Snyder
invariants associated with Hill's equation in x-x' phase-space can be immediately

applied to & — &’ phase-space for an accelerating beam

We (s + Lp) = Wg(s)

m€ = Area traced by orbit = const
in Z-7' phase-space

+ Focusing field strengths need to be adjusted to maintain periodicity of K in
the presence of acceleration
- Not possible to do exactly, but can be approximate for weak acceleration
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S10C: Phase Space Relation Between Transformed and
UnTransformed Systems

It is instructive to relate the transformed phase-space area in tilde variables to the
usual x-x' phase area:

di ® dz’ = |J|dz @ da’

where J is the Jacobian: Inverse transforms

derived in S10B:
oz oz .
J=det| 2z, oz T = /nb
N % & L (wby)
ox ox’ = Vbﬁbx, + 5 Yb9b =
det [ VPe 0 ] oy )
= 1 (b)) / = ToPb
2 VB ’Ybﬁb
Thus:
dz ® d¥’ = P dr ® dz’
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Based on this area transform, if we define the (instantaneous) phase space area of
the orbit trance in x-x' to be 7€z “regular emittance”, then this emittance is
related to the “normalized emittance” €, in & — 2’ phase-space by:

gm - 'Ybﬁbem
= Normalized Emittance = ¢,,,

+Factor 70 compensates for acceleration induced damping in particle orbits
+Normalized emittance is very important in design of lattices to transport
accelerating beams
- Designs usually made assuming conservation of normalized emittance
+Same result that J.J. Barnard motivated in the Intro. Lectures using alternative
methods
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S11: Calculation of Acceleration Induced Changes in
gamma and beta
S11A: Introduction

The transverse particle equation of motion with acceleration was derived in a
Cartesian system by approximating (see: S1):

d dXL 1 8¢
— — | ~ qE§ z X B9 Biv| X7 —q———
di (m dt > ABL a2 X BL A aBve X2 —ag s
using
d dX¢> 2 2 |: " ('Vbﬂb)l ’ :|
m— | y—— | @ myfBic” |x| + X
dt ( dt b L (wBy) Tt
to obtain:
! B(l
X/I + (f)/b/gb) Xl — q Ea q 2 X Ba + q z XI % 2
L (wB) Tt mBRE T myBie L myBee
q 0
73 55 c? 0x
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To integrate this equation, we need the variation of 3, and 7 = 1/4/1 — Bz

as a function of s. For completeness here, we briefly outline how this can be done
by analyzing longitudinal equations of motion. More details can be found in JJ
Barnard lectures on Longitudinal Dynamics.
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S11B: Solution of Longitudinal Equation of Motion

Changes in 7;/3;, are calculated from the longitudinal particle equation of motion:
+ See equation at end of S1D

d dz 0¢
—my— )~ qE? — q(v.B}—v,BS —q=—
dt( 7dt) B =By By —ag
Term 1 Term 2 Term 3 Neglect Rel to Term 2
Using steps similar to those in S1, we approximate terms:
d [ dz dz _ ~
Term 1: T (’ya) o~ CQﬁb(%ﬁb)' T v~ Be YW
d 3 d
a — =~ PDpC——
Term 2: iEg ~_4 ¢ dt ds
m m s |,_, g

®” is a quasi-static approximation accelerating potential (see next pages)

dx dy
a ay\ __ a a | ~
—Q(”:cBy —vyBy) = —¢q <_dt By % Bx> ~0
+Transverse magnetic fields typically only weakly change particle energy and

terms can be neglected relative to others
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Term 3:
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The longitudinal particle equation of motion for 3, [ then reduces to:

By(ypB) =~ — L9

mc2 0s

r=y=0

Some algebra shows: .
1 By
’ b 3 /
T = = = BB
<«Tf@> (1= 5p)72
First apply chain rule, then use the result above twice to simplify results:
= Bo(wB) = By + WPy

= (L +9BD)wBsBy = Vi BBy

Giving: =%
7,_____2_3¢“
=
me? 9s |,_,_

Which can then be integrated to obtain:

q

———5¢"(r =0,z = s) + const
me

Yo =
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We denote the on-axis accelerating potential as:

V(s)=¢*(x=y =0,z

= s)

+Can represent RF or induction accelerating gap fields
See: J.J. Barnard lectures for more details

Using this and setting Yo(s = si)

= Vi gives for the gain in axial
kinetic energy &, and corresponding changes in 7y, [ factors:

v =1 +€bi/(mc )

Bo=1/1—1/%

& = (= mc? = q[V(s;) = V()] + Ei
Evi = (Vs — )me

These equations can be solved for the consistent variation of Y3 (s), 8y(s)
to integrate the transverse equations of motion:

’ a
b5b . B .
X/JI_‘I'(/-Yﬁ)XIJ_: q22 a ZXBj_—}—q—Z IJ_XZ
(76b) myfByc mYpBpc mYpBpc
q 0

55—

75’ BEc? 0x.
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Nonrelativistic limit results

In the nonrelativistic limit:
1 1
v~ 1+ 565 B <1 E = (v — )mc? ~ imﬂgcQ
and the previous (relativistic valid) energy gain formulas reduce to:

~ SmBE =gV () - V)] +En
Epi = 5mﬁ§c2

Yo~ 1
2&,
mc2

By =

Using this result, in the nonrelativistic limit we can take in the transverse particle
equation of motion:

(wBe) B, _1& 1 qV'(s)
(WwBs)  Bp  2& 2q[V(si) = V(s)] + &
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Ultra-relativistic limit results

In the ultra-relativistic limit:

By~ 1 & = (7 — 1)me? =~ ypymc?

and the previous (relativistic valid) energy gain formulas reduce to:

By ~1

&~ yymc® = q[V(s;) — V(s)] + Ei

Using this result, in the ultra-relativistic limit we can take in the transverse particle

equation of motion:
/ /!
W& _

WB) b _
WwB) W &

—~

qV'(s)

q[V(si) —

V(s)] + Ei

+ Same form as NR limit expression with only a factor of %2 difference; see also

S10A
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S11C: Longitudinal Solution via Energy Gain

An alternative analysis of the particle energy gain carried out in S11B can be
illuminating. In this case we start from the exact Lorentz force equation with time
as the independent variable for a particle moving in the full electromagnetic field:

dp = Comments:

dt = ¢E+qfex B + Formulation exact in context
. > = of classical electrodynamics

Y=1/\y1-5-8 + 7, B not expanded

+ E, B electromagnetic

p = ymfc

Dotting ch into this equation:

0
mefi - (1) = wﬂE+m7@xm
y
bf i+ 88 =-L3-E

mc

1 [3-3] =1-1/7
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Inserting these factors:

1- 1/ +4/2 =L G.E
. A =17 +9/v" = =B

’}/ = ig. E

mc
Equivalently'
d S
—5— — [(vy = 1)me?] = qcf - E
7€ = 2 (1 = Dme?] = qcB

+ Only the electric field changes the kinetic energy of a particle
+ No approximations made to this point within the context
of classical electrodynamics: valid for evolving E, B consistent with the

Maxwell equations.
Now approx1mat1ng to our slowly varying and paraxial formulation:

d_d B~ B~ By 2
t st k) =& = (p—1)me
and approximating the axial electric field by the applied component then obtains
d dt d 9
PRI (v — D)mc?] ~ qE?

which is the lonig]ltudlnal equation of motion analyzed in S11B.
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S11D: Quasistatic Potential Expansion

In the quasistatic approximation, the accelerating potential can be expanded in the
axisymmetric limit as:
+See: J.J. Barnard, Intro Lectures; and Reiser, Theory and Design of Charged
Particle Beams, (1994, 2008) Sec. 3.3.
+See also: S2, Appendix D

We take:
a °
EY = ——
ox

and apply the results of S2, Appendix D to expand ¢“in terms of the on-axis

potential
>, 82”(15‘1(7" =0,2) 2v
Z 0z% (5)

Denote for the on-axis potential

P (r=0,2z) =V(z)

1 0? 1 o0t
a _ v - V 2 i v 2 2\2 .
o =ve) -2 v ) + 2 DVt +
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The longitudinal acceleration also result in a transverse focusing field

ol
EY =E¢ - —
€ € |foc X,

9 lfoc = Fields from Any Applied Focusing Optics
_ 09t 1 0?
8XL 2 82’2

——V(2)x, = Focusing Field from Acceleration

+Results can be used to cast acceleration terms in more convenient forms. See
J.J. Barnard, Intro. Lectures for more details.

+RF defocusing in the quasistatic approximation can be analyzed using this
formulation

+FEinzel lens focusing exploits accel/de-acell cycle to make AG focusing
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S12: Symplectic Formulation of Dynamics Andy Wolski,
S12A: Expression of Hamiltonian Dynamics  y. Liverpool

Following Lectures by:

/I Review Transverse Hamiltonian formulation: for coasting beam
(7585 = const)
1) Continuous or quadrupole (electric or magnetic) focusing:

Canonical variables:

Hamilton's form of the equations of motion for a coasting beam (no accel): ’ ’
. . . . . . T, x Yy
+ For solenoid focusing, will need to employ appropriate canonical variables
d 0H d , OH | (see S2G) Hamiltonian:
—X) = —X| = —
d ox’ d 0 1 1 1 1
S X' S X Hl:—x'2+—y'2+—l€x$2+—ﬁyy2+ q¢ e
. i 2 2 2 2 my; Be
can be equivalently expressed as: b7b
d d _ OH €L d = OH 1
Ef:S-Vle ds” Oz ds” Oy
SE[SQ 0 ] ix': 0H d , OH,
Where x s 0 S ds o’ ! T oy
- z’ V.= Oyt
T = y T = 0, 0 1 Giving the familiar equations of motion:
y/ 8y/ -1 0 2 4 Ky = — q — ¢
. . . my; Bic oz
+ Immediately generalizable to 3D dynamics o
+ Formulation applies in general cononical variables Yy’ + Kyl = — q ¢
s—t T —q ' —p etc. my; By m; Bc? ay
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Solenoidal magnetic focusing: Symplectic Matrix
Canonical variables:
T=x =1y Definition: o
Bol = mpByc An 2n x 2n symplectic matrix M satisfies
gl B B (BA= T
2[Bp] 2[Bp] MT.sM=S§
Hamiltonian where S has the n-dimensional block diagonal structure:
2 2
- 1 B:o B 99 So
Hy = (:z’+ 2 y> +(y— i
2 2[Bp] 2[Bp] mpBRc? 0 S [ 0 1 }
. - = 2=
d . O0OH, i _OHL Caution: S . -1 0
Ew = 07 ds? 7 Primes do not mean 'd/ds in 0
OH tilde variables here: just So
ii" _ OH ig/ _ L notation to distinguish
ds o7 ds Oy’  “momentum” variable! The matrix S satisfies:
Giving (after some algebra) the familiar equations of motion: + Follow direct from definition
2 — 2o(s) _ B:o(s) y = q a¢ T
2(Bp] © [Bpl T mapBi o S =-8
B! B 2= -
y' + ZO(s)m+ ZO(S):E/:—_ 3q2 2% > '
2[Bp] (Bp] m By ¢? Oy
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[lustrative Example: Linear Dynamics with constant applied fields

For a general 2™ order Hamiltonian that generates linear dynamics we have:
VzH, =J-% with Jr—=3

+ Transpose symmetry result of expected physical forces

Hamilton's equation of motion become:

if:S-Vle:Su]-f
ds
If J has no explicit s variation, then this equation can be solved as

+ Applies to piecewise constant focusing systems within each element/drift
- In context coupled motion ok

- Transitions between elements need to be analyzed separately
Z(s) =M(s — s;) - Z(s;) = exp|(s — 8;)S - J] - Z(s;)
M(s — s;) = exp[(s —s;)S - J] M = Transfer Matrix

+ M is a potentially higher-dimensional generalization of the previous 1D (2x2)
matrix used for Hill's equation and the 2D (4x4) solenoid phase-space transfer
matrices employed

Because (see proof on next page):
S-exp(sS-J)=exp(sJ-S)-S
J'=3 sT"=-s
and for any matrices A and B the transpose property :
[A-B]T =BT. AT

The transfer matrix M is symplectic:

M(s —s;) = exp[(s —s;)S - J]

M7 (s)-S-M(s) = [exp (sS-J)]" - S-exp (sS-J)
=exp (s[S-J]") -exp(sJ-S)-S
= exp (SJT . ST) -exp (sJ-S)-S
=exp(—sJ-S)-exp(sJ-S)-S
=S

— M'(s)-S-M(s) =S Satisfies symplectic condition
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/| Aside Proof of formula applied: Comments:
Definition of the exponential of a matrix A: + Example presented illustrating symplectic structure of Hamiltonian dynamics
(A) Z An only applies to piecewise constant linear forces
ex = TR . . I .
p n! g2 I + Generalizations show that the symplectic structure of Hamiltonian dynamics
n=0 = -

Then:
1
S-exp(sS-J)=S8S- <1—|—SS'J+5525'J'S'J+"'>

1
:—S~<1+SS~J+§SQS~J-S~J+--~>~82

= ([—SQ]+s[—SQ}~J~S+%SQ[—S]2~J~S~J'S+--->

:(1+SJ-S+%52J~S-J-S+--~>-S

=exp(sJ-S)-S
/
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persists into fully general cases with s-dependent Hamiltonians and nonlinear
effects. Showing this requires development of more formalisms beyond the
scope of this course. See for more info:

A. Dragt, Lectures on Nonlinear Orbit Dynamics, in
“Physics of High Energy Accelerators,”
(AIP Conf. Proc. No. 87, New York, 1982), p. 147

2300 page book distributed freely:

Alex Dragt, Lie Methods for Nonlinear Dynamics with Applications
to Accelerator Physics (2015)
http://www.physics.umd.edu/dsat/dsatliemethods.html

+ The symplectic structure of Hamiltonian dynamics is important in numerical
codes for long-term tracking of particles in rings
- Special map-based movers preserve symplectic structure
- Insures no artificial numerical growth or damping in particle orbits over
very long evolution
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S12.B: Symplectic Dynamics = Phase-Space Area Preservation

Why the emphasis on the symplectic structure of Hamiltonian dynamics?

Because symplectic dynamics implies that that phase-space area is preserved in the
particle evolution.
Ilustration: Consider the phase-space area A bounded by two vectors €1, €2
which evolve according to symplectic dynamics
+ Area calcuated using cross-product: sketch 1D phase space but works 2D, 3D
A(si) = |€1(si) @ €2(si)] A(s) = |e1(s) ® éx(s)]
I
= €1 (si) - S - x(si) =¢{(s)-S-&(s)
= Initial Area = Evolved Area

Als)
Als)
Evolution P

—_—

@ @
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With reference to the same constant field, linear dynamics formulation used to
illustrate symplectic dynamics:

Since the vectors evolve according to Hamiltonian dynamics:
51(8) = M(S — Si) . 51 (Sl)
ég(s) = M(S — Si) . gQ(SZ)

Thus, since the dynamics is symplectic with M” .S .- M = S

Evolved Area = A =L (s)-S - & (s)
= [M(s — 5:) - &2(s:)]" - S - [M(s — s;) - €1(s1)]
= ég(sz) ‘ [MT(S —5i)-S-M(s —s;)] - €1(si)
=& (si)-S--@i(si)
= A(s;) = Initial Area

Giving the important results:

Symplectic dynamics implies conservation of phase-space area !
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Comments:

+ [llustration only applies to linear constant applied fields, but more advanced
treatments (see Dragt refs in previous sub-section) show this property persists for
s-varying Hamiltonians and nonlinear dynamics.

+ IMPORTANT: conservation of phase-space area in nonlinear dynamics in the
sense given does NOT imply that measures of statistical beam emittance
calculated by averages over an ensemble of particles remain conserved in
nonlinear dynamics

> Statistical measures of phase space area (see lectures on Centroid and
Envelope Descriptions and Kinetic Stability) impact beam focusability and
can evolve in response to nonlinear effects with important implications
- Effectively phase-space filaments with coarse grained
measures of phase space area evolving
> This will be treated more in lectures on Kinetic Stability

+ Acceleration can be dealt with by employing a 3D Hamiltonian formulation with
a full set of proper canonical variables or using normalized variables in 4D
transverse phase-space as outlined in S10

+ In numerical analysis of particle orbits in rings it is very important to advance
particles that preserve the symplectic structure of the dynamics in the presence of
numerical approximations/errors

Characterlstlcs then faithful with those expected in real machine over many laps
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S13 Self-Consistent Models and Liouville's Theorem
Follow formulations in:

+ Nicholson, Introduction to Plasma Physics, Wiley, 1982
+ JJ Barnard, Introductory Lectures

Note are included here for completeness. We return to a more complete (3D)
formulation of the beam description in this section. Only an outline is given:
plasma physics texts such as Nicholson should be consulted for more details.

Material in this section help motivate the collective (Vlasov) evolution models
employed in later lecture notes that we often employ to describe the self-conistent
evolution of intense beams. These models will typically be expressed in variables
appropriate for paraxial beam models. Here, we outline the more complete setup
for better orientation.
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S13.A: Klimontovich Equation for Self-Consistent Description
of Beam/Plasma Evolution
Consider the evolution of N particles coupled to the Maxwell equations and

describe the evolution in terms of a singular phase-space density function F
evolving in 6D phase space:

N
F(x,p,t) = Z d[x — x;(1)]6[p — pi(t)]

x;(t) = Position of ith particle
pi(t) = Mechanical momentum of ith particle

t = Time

+ F is highly singular: infinite at location of classical point particles and zero
otherwise.

+ Here we implicitly assume a single species with charge g and mass m for
simplicity. If there are more than one species, the formulation can be
generalized by writing a separate density function for each species: F' — Fy
> Most steps carry through with little modification outside of changes (sum over

species) in coupling to the Maxwell equations. See discussion at end of section.
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Note that:

/d3:c/d3p F(x,p,t) = N = const

Particles evolve consistent with electromagnetic forces of “microscopic” classical
point particles according to the Lorentz force equation:

dcgi =F,=¢q [Em (Xiat) + d;;i x B™ (Xi,t)} Initial conditions
ax; p2 1/2 Xi(t - O)
m%d—tz =Pi ; V= [1+W] pi(t =0)

Comments:
+ Here we do not consider quantum mechanical effects in scattering but classical
scattering and radiation is allowed consistent with electromagnetic forces
> Ionizations, internal atom excitations, .... would require changes in F
+ As written the system applies to one species (i.e., single g, m values) but easy
to generalize by writing the same form of F for each species
+ Denote superscript m on field components denote “microscopic” fields
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And couple to the full set of microscopic fields (superscript m) via the Maxwell
equations:

Charge Density
X, t) = pext (X, 1) + Olx — x;(t
o.g L P, 1) = pext (%, 1) qg: [x — xi(t)]
€0
vxgn=-2B" = Pext (X, 1) + q/d3p F(x,p1)
ot \ AN
. external particle
Current Density (applied) ¥ beam
V-B"=0 d

ﬁ%h—&@]

m

0
V xB™ = ud + Hoo—5,~

J(x,t) = Jext (%, 1) +QZ

= Jext (X, t) +4q dsp VF(Xa p; t)
P p/m

+ boundary conditions on E™, B™ Y om T L p?/(me?) 2

Comments:
+ Full form of Mawell equations allow classical electromagnetic radiation
+ Coupling to beam charge and current is shown for one species, but easy to

generalize by summing contributions from all species
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Derive an evolution equation for F:

i=1
dXi (t)
dt

N
roxp ==Y 209 Pl xlolp - pito)
(1) | Vx +q {Em(xi., pit) +

dt dt
N
-3 [=
> %
i=1

8[x — x;(t)]6[p — pi(t)]

X ]3”1()(1‘7 Pi, t):| . Vp:|

But:
xd[x — x;(t)|6[p — pi(t)] = x:(t)d[x — x;(¢)]d[p — pi(t)] etc.
o P __ pm
ym  [1+p?/(mc)?]!/?
Giving, after some manipulation, the Klimontovich equation describing the
classical collective evolution of the beam as:

{2 4+ v Vi+qE™x,p,t) +vxB"x,p,1)] - Vp] F(x,p,t) =0

F(x,p, t) = Y 0[x — x;(1)}0[p — pi(1)]
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The derivative operator is recognized as acting along a particle orbit:
+ Apply Lorentz force equation

{3V Vart B put) +v X B put)] - Vo | Flopt)

ot
_ [0 dxi(t) dpi(t)
d
- E orbit F(X7p7t)

Showing that the Klimontovich equation can be alternatively expressed as :

d _
E‘orbit F(x,p,t) =0

+ Shows F is advected along characteristic particle orbits and is conserved
> Orbits in this sense are trajectories of “marker” particles (same g/m as physical
particles) evolving in the beam
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Alternatively, some manipulations show that the Klimontovich equation can be
expressed in the form of a higher dimensional relativistic continuity equation:

F =¢[E™(x,t) + v x B™(x,t)]

v P _ p/m

ym  [1+p?/(mc)?]/?
= Vp-F=0

Giving:

0

&F(x, p.t) + Vx - [VF(x,p,t)] + Vp - [FF(x,p,t)] =0

+ Shows F is conserved in sense probability flows rather than created/destroyed

+ Can apply analogy with familiar continuity equation in fluid mechanics (see
Aside next page) to help interpret
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/I Aside: Analogy with the familiar continuity equation of a local fluid density n:

0
an(x, t) + Vyx - [71()(7 HV(x, t)] —0

n(x,t) = Fluid number density
V(x,t) = Fluid flow velocity

+ Shows fluid density n flows somewhere consistent with the fluid flow V and is
not created/destroyed

+ nis conserved in this sense and the continuity equation is the proper
expression of local conversation

+ Implies fluid weight not created or destroyed. Integrate over some volume V
containing all fluid (n = 0 on surface)

/d3x {%n(x, t) + Vx - [n(x,1)V(x, t)]} =0
9 ’ 0
E/Vd% n(x,t) + +/avd2:c n(}(/fl‘)V(x, t)-n(x) =0

0V = Surface bounding V'

applied Divergence Theorem: n(x) = Local unit normal to 9V

9 Prn(xt) =0 = [ d®zn(x,t) = const
ot Jy v 1l

SM Lund, USPAS, 2017 Transverse Particle Dynamics 347

Comments on the Klimontovich formulation:
+ Solved as an initial value problem: initial particle phase-space coordinates of
particles specified and then solved with coupled Maxwell equations
> Classically exact, but practically speaking intractable
> Really just a restatement of classical point particles evolving consistently with the
Maxwell equations: mostly just notation at this point
+ Klimontovich equation is essentially a statement that local density in phase-
space is conserved in the classical evolution of a charged particle system
> Quantum theory of matter can change expression since collisions of particles can
cause effects like ionization, internal atom excitations, ....
> Klimontovich equation can be modified by including appropriate terms on the RHS
of equation to model such classical and quantum scattering effects: would result in
non-conservation of probabilities associated with quantum effects in “collisions”
+ Sometimes called Liouville's theorem in micro-space
+ Not particularly useful in this form other than conceptual grounding. Need an
expression in terms of a smoothed statistical measure of the particle
distribution. We construct this next section.
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S13.B: Vlasov's Equation and the Liouville's theorem

Average of the singular (micro) Klimontovich distribution f to obtain a smooth 6D
phase-space distribution

Ax = Position width
Ap = Momentum width

1
= — a3 d&p F t) = (F t
f(x,p,t) AP /Ma ar/Aps p F(x,p,t) = (F(x,p,t))

+ Average taken about local phase-space coordinates x, p
so after averaging, dependence of distribution remains in X, p
+ Average is essentially a coarse-graining to reduce detail

Arguments can be involved in taking appropriate coarse-grain measurements.

Logic from plasma physics suggests: n = Characteristic number density

1/2
n~1/3 < Az < Ap Ap = (ﬂ) = Thermal debye length

>n

1/2
0< Ap < muy v = (%) = Thermal velocity
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Better defining some of these measures:
+ Take a nonrelativistic perspective here for simplicity

T = Characteristic kinetic temperature (energy units)

2 2

+ Kinetic temperature removing local flow measures (beam frame) of beam
and measures strength of random spread of particle momentum
> Relativity introduces some subtleties on how to best do this. See Reiser
textbook for a thorough discussion.

1.1 T\'?
=T = —mu} = = (—) = Thermal velocity
m

T /i) /2 T\ /2
A\p = (T/m)"* Y _ (%) = Debye length
q*n

Wp Wp

+ Characteristic screening/shielding distance within a plasma

q2’I’L 1/2
Wy = () = Plasma frequency
€Eom

+ Characteristic collective oscillation frequency of electrostatic restoring
forces in a plasma
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Examine the local deviations of the distribution from the smoothed average:

F=f+6f
f=(F) —

(0f) =0

+ Dependence of all distribution terms (x, p,t)

And make similar definitions for smoothed field components:
E"™ =E + /E E=(E™) (0E) =0
B =B+ /B B =(B™) (6B) =0

+ Dependence of all field terms (x,t)

Averaging over the Kilmontovich equation in S13A then obtains:

ox
— ¢([0E(x,t) + v x 0B(x,t)] 0 f(x,p, t))

{%nLv-£+Q[E(X,t)+VXB(X7t>] : %}ﬂxvpat) =
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Averaging over the microscopic Maxwell equations then gives the Maxwell
equations for the smoothed fields:
+ Equations are linear, so average is trivial. But coupling form to beam charges and
currents changes to average form representing smoothed charge and current densities

voE-L p(%,8) = poxe(x,1) + ¢ / Ppf(x,p.1)
0
0B
E=-2
V x 9
V-B=0

E .
V x B = puod +,U05086_t J(X7 t) = Jext(X7 t) + q/dsp Vf(X, | o t)

+ boundary conditions on E;, B

The fields can also be given, as usual, with potentials ¢, A
+ Specific form of potential equations and coupling to p, J depend on the gauge
choices made: consult classical electrodynamics textbooks for details

0A
E=-Vo+ o

B=VxA
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In this averaged equation:

LHS: {%—i—v%—l—q[E(x,t)-l—vXB(x,t)]%}f(x.p.t)

+ Represents the smoothly (continuum model theory) varying part
> No scattering effects but retains self-consistent collective effects
> Appropriate to model many (fluid like) particles interacting

RHS: -q([OE(x, 1) +v x 0B(x, 1)] 6f(x, P, 1))

+ Represents an averaged interaction over rapidly varying quantities
+ Retains information from classical discrete particle effects and collisions
> In form given has no quantum mechanical effects such as ionizations, internal
atom excitations, .... Model must be further augmented to analyze such effects
+ Extensive treatments in plasma physics involve making approximations for
this classical “collision operator” to statistically model scattering effects in
plasmas
> Beyond scope of this course: see treatments and references in Nicholson and
other plasma physics texts
+ Will outline arguments that classical scattering effects associated with this
term are negligible in many cases relevant to intense beam physics
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When scattering effects on the RHS can be neglected, the evolution equation is
approximated by the Vlasov equation:

{% v L 4 q[E(x,t) + v x B(x,t)] - %}f(x,pnf) =0

Here, v = P = p/ m

o~ 0 el

+ Describes the evolution of the system in a classical continuum model sense
> Includes collective effects
> Does not include scattering and quantum mechanical effects
+ Solved as an initial value problem with f(x,p,¢ = 0) specified and the
fields given by the smoothed Maxwell equations
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Simple estimates on when scattering can be neglected
+ For more details consult plasma physics texts
+ Take a nonrelativistic perspective for simplicity
+ Use previous scales employed in coarse grain averages used to obtain f

Heuristically, on the RHS scattering term take:
RHS = —q([6E + v x 6B] §f) ~ vof

v, ~ onv; = Collision frequency

o ~ mr? = Collision cross-section
Estimate cross section by considering a large angle scatter where the thermal
energy of the incident particle is of order the electrostatic potential energy at
closest approach:
¢ 2

T - — .~
4dmegre ¢ dmeg

2 \2 1/2
9 q T 1 v
= V.~ ~ — ~N —
Ve~ (mre)nve ~ 7 (47reoT) " (m) 16w Ahn

1 Ut
167 /\‘lljn

= collision radius

RHS = _q<[6E + v X 5B} 0f) ~vef ~
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Heuristically, on the LHS collective term expect for electrostatic effects:

LHS = { & +v- & +a[E+vxBl- & ~wf

€Egm
The relative order of the LHS (collective) and RHS (classical scattering)
terms are:

2 1/2
wp = <ﬂ> = Angular frequency of plasma oscillations

RHS _ Collisions i vt i _ 1 l
LHS = Collective 167 Abn wy - 16mALn A
dm 4 .
A= ?)\ ‘pn = Particles per Debye sphere

> 1 for intense beams

We expect scattering effects to be weak relative to collective effects for typical
intense beams
+ Special situations can change this: very cold beams near source ....
+ Arguments here on ordering are somewhat circular but show consistency. To
more rigorously motivate, usually careful comparisons with more complete
models are necessary.

> Many studies in field motivate Vlasov model typically good for intense beams
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Interpretation of Vlasov's Equation

The Vlasov Equation is essentially a continuity equation for an incompressible
“fluid” in 6D phase-space. To see this, cast in standard continuity equation form
i 0
using 9 B _ g
op
To express the Vlasov equation equivalently as
of 0 0
=Ly 2 — - (q|E x B|f)=0
5 ok (V) g BV xBIp)
+ Manifestly the form of a continuity equation in 6D phase-space, i.e.,
“probability” fis not created or destroyed
Alternatively, we note that the total derivative along a single particle orbit in the

continuum model is

0 0 0 d
- L E Bl . — = —
8t+v E)x+q[ +v > B op  dt| it
So the Vlasov equation can be equivalently expressed as
d
— x,p,t) =0
dt orbit f( P )

+ Expresses that fis advected along characteristic particle orbits in the

continuum and is therefore manifestly conserved
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Liouville's Theorem
These prove Liouville's theorem:

The density of particles in 6D phase-space is invariant when measured

along the trajectories of characteristic particles

Comments:

+ Although density in phase-space remains constant by Liouville's theorem, the
shape in phase-space can vary in response to evolution and nonlinear effects
> Distortions and Filamentation

+ Consequently, coarse-grained or statistical measures of beam phase-space area
such as rms emittances can evolve
> Rms emittances provide important measures of statistical beam focusability
> (see lectures on Transverse Centroid and Envelope Descriptions)

+ Proved here using position-mechanical momentum phase space (X, p): later
will show valid for all choices of canonical variables

+ Valid in continuum mechanics approximation with average (mean field) self-
consistent effects. Both classical scattering and quantum mechanical scattering
processes result in violations of Liouville's theorem
> Classical scattering tends to decrease density in phase-space

+ Numerous versions in literature: often simplest case given for non-interacting particles

evolving in reslgonse to prescribed forces
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Phase-space area measures and Liouville's theorem

A recurring theme in this course is that nonlinear forces acting on a beam can tend
to filament phase space. Schematically:

s=0.0 3.0

.

T
Although phase-space area is conserved in such processes under Liouville's

theorem, statistical projection measures of beam phase-space area such as rms
beam emittances can evolve and tend to increase under the action of such effects.

1/2

4

Projected Statistical Emittance ~ [(z?) 1 (p2) 1 — (zps)?]
(rms measure)

+ Much more on this topic in lecture sets on: Transverse Equilibrium
Distributions, Transverse Centroid and Envelope Descriptions, and Transverse
Kinetic Stability

SM Lund, USPAS, 2017 Transverse Particle Dynamics 359

Canonical Variables, Vlasov's Equation, and a Generalized

Expression of Liouville's Theorem
Louiville's theorem derived for a distribution expressed as a function of position-
mechanical momentum variables (x,p) Here we will show that the same
statement holds for any proper set of canonical variables to generalize the
interpretation of the Liouville Theorem.

+ Note that (x, p) variables are not necessarily a proper canonical pair in all relevant

focusing systems considered: e.g., solenoid focusing, see the discussion in S12

Consider a proper set of canonical variables from which a Hamiltonian H describes
the continuum model trajectories consistent with the mean field model
potentials ¢, A

¢; = Canonical Coordinate iqi _ a_H

p; = Canonical Momentum dt Opi H = H({a:} {pi}.1)
_ i o _8H
i=1,2,3 i’ = "

Next, we take the Vlasov model distribution f to be a function of the canonical
variables

f=r{atApi} 1)
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On general grounds, the distribution should evolve consistent with a continuity
equation expressed in the canonical variables. We form this as:

— + Ve (U6f) =0

ot
where q.l V.. A = i [aAi " 8Ai:|
6 A =
Z; —~ | 0q  Op
v D2 A} = 6-vector in obvious notation
g3 _d
D3 =7

Then using Hamilton's equations of motion of the characteristics:

L aqi 3pi . 82H 82H —
Vorls =D, {a% * 8pz} =2 {9%‘8% opoa) "

i=1 i=1
0
So: of of
S Ve (Tsf) = = + Ve Fof +Ts - Vef =0
5 6 (Vsf) ot 6 ﬂ({f 6 Vef
of d Expected incompressible
= | - +7U- Vef = =0
ot 6 6f dt | i f flow form
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This shows that the distribution f evaluated along characteristic trajectories in any
set of canonical variables remains invariant in the Vlasov model
+ Liouville's theorem remains valid in any set of canonical variables

It is useful to also express the incompressible Vlasov equation in canonical
variables: of

ot
f ~~{.0f .0f\ _
§+;{q18_%+p18_]9i =0

Of <~ [OHOf OHOIf| _
= aﬁz{apiaq@- aqiapi} 0

=1

+Us - Vef =0

Canonical form of
Vlasov's equation

+ See electrodynamics texts for form of H with (mean field) potentials
¢, A and various canonical variable choices

In the literature, sometimes

— JOH Of _ 9H Of
{H’f}:{apiafh _aQiapi}

is called a Poisson Bracket
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Further insight can be obtained on the canonical form of the Vlasov distribution
by transforming from one set of canonical variables to another. Since fd>qd®p
is the physical number of particles (counting) and invariant with the choice of
variables used to describe the problem, we have under canonical transform:

fdPqd®p = fd>qd>p

G; = Transformed canonical coordinate

p; = Transformed canonical momentum
H = H({G,}, {p:},1) = Transformed Hamiltonian

+ Canonical form is maintained in the transformed variables

In classical mechanics texts, canonical transform generating functions are used to
prove that phase space area measures are invariant under canonical transform:

d*qd’p = d*Gd°p

Therefore, the Vlasov distribution fis invariant under canonical transform:

f{ai} Api},t) = fN({QNi}a{ﬁi}vf)
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Comments:

+ Pure transverse theories of an accelerating beam cannot be cast in terms of a
Hamiltonian theory. This is due to the acceleration induced damping terms like:

(768)’ o

(755s)

in transverse particle equations of motion.
> For a coasting beam without acceleration or solenoid magnetic focusing
x,x'y,y' form a convienient canonical set: these are used extensively in this context
in following lecture sets
+ Use of normalized variables (see S10) can approximately bypass this limitation in
transverse paraxial theories
+ The canonical variables used in the 3D formulation here can include acceleration effects
and can be thought of as “normalized” 3D variables
# Dimensionality and the scope of what is included (acceleration etc) in the Hamiltonian
can cause confusion!
> Clear concept of context, scope, and limitations can help clarify
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Multispecies Generalizations for Vlasov Formulation

Subscript species with s. Then in the Vlasov equation replace:

f— s

m — mg

q—>4s

and there is a separate Vlasov equation for each of the s species.
+ Species Vlasov equations couple through self-field terms

Replace the charge and current density couplings in the Maxwell Equations with

and appropriate form to include charge and current contributions from all species:

p(X, t) = Pext (X, t) + qu /dgp fs(x,p,t)

J(x,t) = Jext (%, 1) +qu/d3pvfs(x,p,t)

Comment:
+ Analogous replacements apply to Kilmontovich formulation and if scattering
terms are retained on the RHS of Vlasov's equation
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future
editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2017

Redistributions of class material welcome. Please do not remove author credits.
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References: For more information see:

These course notes are posted with updates, corrections, and supplemental material at:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2017
Materials associated with previous and related versions of this course are archived at:
JJ Barnard and SM Lund, Beam Physics with Intense Space-Charge, USPAS:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2015 2015 Version
http://hifweb.1bl.gov/USPAS_2011 2011 Lecture Notes + Info
http://uspas.fnal.gov/programs/past-programs.shtml (2008, 2006, 2004)
JJ Barnard and SM Lund, Interaction of Intense Charged Particle Beams with
Electric and Magnetic Fields, UC Berkeley, Nuclear Engineering NE290H
http://hifweb.1bl.gov/NE290H 2009 Lecture Notes + Info
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References: continued (2)

Basic introduction on many of the topics covered:
M. Reiser, Theory and Design of Charged Particle Beams, Wiley
(1994, revised edition 2008)

Hill's Equation, Floquet's theorem, Courant-Snyder invariants, and dispersion functions:

H. Wiedemann, Particle Accelerator Physics, Third Edition, Springer (2007)

Particle equations of motion with bends and momentum spread:
D.A. Edwards and M.J. Syphers, An Introduction to the Physics of High
Energy Accelerators, Wiley (1993)
Original, classic paper on strong focusing and Courant-Snyder invariants applied to
accelerator physics. Remains one of the best formulated treatments to date:
E.D. Courant and H. S. Snyder, Theory of the Alternating Gradient
Synchrotron, Annals Physics 3, 1 (1958)

Mathematical treatment of transfer matrices and stability:
A. Dragt, Lectures on Nonlinear Orbit Dynamics, in “Physics of High
Energy Accelerators,” edited by R.A. Carrigan, F.R. Hudson, and M. Month
(AIP Conf. Proc. No. 87, New York, 1982), p. 147
A very extensive (~2400 pages) “new” (many years prep) book, A. Dragt,
Lie Methods for Nonlinear Dynamics with Applications to Accelerators

is available free online:http://www.physics.umd.edu/dsat/dsatliemethods.html
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References: continued (3)

Phase-amplitude methods, Larmor frame:
J.D. Lawson, The Physics of Charged Particle Beams, Oxford University
Priess (1977)

Solenoidal focusing and the Larmor frame:
H. Wiedemann, Particle Accelerator Physics II: Nonlinear and Higher
Order Beam Dynamics, Springer (1995)

Extensive review articles with a similar perspective to the notes by S.M Lund and
coauthors further clarifies material on phase advances, lattice focusing strength, etc.

S.M. Lund, T. Kikuchi, and R.C. Davidson, “Generation of initial kinetic distributions
for simulation of long-pule charged particle beams with high space-charge intensity,” Phys.
Rev. Special Topics — Accelerators and Beams 12, 114801 (2009)

S.M. Lund and B. Bukh, “Stability Properties of the Transverse Envelope Equations
Describing Intense lon Beam Transport,” Phys. Rev. Special Topics — Accelerators and
Beams 7, 024801 (2004)
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