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Transverse Equilibrium Dist. Functions: Detailed Outline

Section headings include embedded links that when clicked on will direct you to
the section

0) Review: Equations of Motion and Approximations
1) Transverse Vlasov-Poisson Model

A. Vlasov-Poisson System
B. Review: Lattices: Continuous, Solenoidal, and Quadrupole
C. Review: Undepressed Particle Phase Advance

2) Vlasov Equilibria
A. Equilibrium Conditions
B. Single Particle Constants of the Motion
C. Discussion: Plasma Physics Approach to Beam Physics
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Detailed Outline - 2

3) The KV Equilibrium Distribution

A: Hill's Equation with Linear Space-Charge Forces

B. Review: Courant-Snyder Invariants

C. Courant-Snyder Invariants for a Uniform Density Elliptical Beam
D. KV Envelope Equations

E. KV Equilibrium Distribution

F. Canonical Form of the KV Distribution Function

G, Matched Envelope Structure

F. Depressed Particle Orbits

. rms Equivalent Beams

J. Discussion/Comments on the KV model

Appendix A: Self-fields of a Uniform Density Elliptical Beam in Free Space

Derivation #1, direct
Derivation #2, simplified

Appendix B: Canonical Transformation of the KV Distribution
Canonical Transforms
Simplified Moment Calculation
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Detailed Outline - 3

4) The Continuous Focusing Limit of the KV Equilibrium Distribution
A. Reduction of Elliptical Beam Model
B. Wavenumbers of Particle Oscillations
C. Distribution Form
D. Discussion

5) Continuous Focusing Equilibrium Distributions

A. Equilibrium Form
B. Poisson's Equation
C. Moments and the rms Equivalent Beam Envelope Equation

D. Example Distributions
6) Continuous Focusing: The Waterbag Equilibrium Distribution

A. Distribution Form
B. Poisson's Equation
C. Solution in Terms of Accelerator Parameters

D. Equilibrium Properties
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Detailed Outline - 4

7) Continuous Focusing: The Thermal Equilibrium Distribution
A, Overview
B. Distribution Form
C. Poisson's Equation
D. Solution in Terms of Accelerator Parameters
E, Equilibrium Properties
8) Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam
A. Poisson's equation for the perturbed potential due to a test charge
B. Solution for characteristic Debye screening
9) Continuous Focusing: The Density Inversion Theorem

Relation of density profile to the full distribution function
10) Comments on the Plausibility of Smooth, non-KV Vlasov Equilibria in
Periodic Focusing Lattices

A. Introduction
B. Simple approximate pseudo-equilibrium distributions to approximate a smooth
equilibrium
Contact Information
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S0: Review: Equations of Motion and Approximations

Overview results from Transverse Particle Dynamics to frame formulation
Transverse particle equations of motion 1n terms of applied field components
E®. B® were derived as:

/ Ba
X”—I—(%Bb) x| = d EY + d z X B? + 472 x| X Z
L (wB) T mmeBEE T myBee L my B
q 0
V7 0%

Here, ¢ is the beam self-field potential given by the solution to the Poisson
equation with beam charge density P

o 0
b—_P

Ox Ox €0

Vip =

+ Boundary Conditions on ¢

Equations derived under assumptions:

+ No bends (fixed x-y-z coordinate system with no local bends)

* Paraxial equations ( z'?,y% < 1)

* No dispersive effects (3, same all particles), acceleration allowed ( 8, # const )
+ Electrostatic and leading-order (in [} ) self-magnetic interactions
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These equations can be reduced when the applied focusing fields are linear to:

(%51») o . q 7
(%Bb) T #ia(8)T = CmRB2c2 Ox
(Vbﬁb)' : B q 0
(Wbﬂb) v+ my(s)y = - mypBEc? By

where k. (s) = x-focusing function of lattice

Ky (s) = y-focusing function of lattice

These equations can be applied to:
Continuous Focusing:

Kz(8) = Ky(s) = k%o = const
Good qualitative guide but not physically realizable

Solenoidal Focusing: (implicitly expressed within a rotating frame)

b0 (5) = ki (5) = K2 () = [ﬁf;(,j)] - [;Z(;b)c] |

By = T (s) =

q m
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Quadrupole Focusing:
G(s)

ERETTIR Electric
Ke(S) = —/{,y(S) — Y G(s) Magnetic
c[Bp]’ 5

G 1s the field gradient which for linear applied fields is:

4 a
OE% OF 2V. .
— 5k = 8; — —qu, Electric
G(s) = oB* _ 9B* B .
Yy P t
\ 8y = Bn T o Magnetic

If “normalized” variables are employed to compensate for acceleration induced
damping of particle oscillations, the equations can then be analyzed using a

coasting beam formulation with /5, = const

1 o q 0
) = R R e b
7, q 9,

Y + KylS)y =
y( ) m’ybﬂbcz Oy

Using adjusted focusing strength

/{m%%%__(%ﬁb) 1 ()"

1
4 (w62 2 (1)
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S1: Transverse Vlasov-Poisson Model: for a 2D coasting, single species beam
with electrostatic self-fields propagating in a linear focusing lattice:

/
X1, X]  transverse particle coordinate, angle
/
d, M charge, mass f1 (XJ_a X1 3) single particle distribution

Vo5 b axial relativistic factors H,(x, X/J_, S) single particle Hamiltonian
Vlasov Equation (see J.J. Barnard, Introductory Lectures):

d 0 dx, O dx’, 0
a fL _ f 1 4 L f € 4 1 f /L —0
ds 0s ds 0x) ds 0Ox/|
Particle Equations of Motion:
d 0H | d |, 0H |
ds ox', ds ox |
Hamiltonian (see S.M. Lund, lectures on Transverse Particle Dynamics):
1,2 1 2 1 2 q
HJ_ — §XJ_ -+ 5/{53(8)15 -+ §K/y(8)y + m/ygﬂgc2¢
Poisson Equation: Charge Density:
52 0 p q |
— 2 == [ %X — 25!
((%2 +8y2>¢ €0 €0 X1 )L P q/d X1 )L

+ boundary conditions on ¢
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Comments on Normalization

Normalization choices of distribution function f 1

fi(xy,x, s)dzx 1 dQLIZ‘/J_ — Number of particles per unit axia} length
within %y | d2xl of x|, x| at
lattice position s

Transverse distribution f | 1s actually projection of 3D distribution f

f(x,y, 2,2y, ps, s)dxdydzdx'dy' dp,

= Number of particles within drvdydzdz'dy’dp,
of X, Xl , P at lattice position s

Project:

o0
fJ_(XJ_7X/J_7S) — / dpz f(x,y,z,x’,y’,pz,s)

— OO0

* Vlasov equation is more typically derived in 3D variables X, P in texts:

+ “Particles” in 2D transverse model are really charged rods uniform in z

*+ Later work will motivate how this 2D geometry can get the right answers in
many contexts to physical 3D systems

- Analysis much easier in lower dimensions!
SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 11



Projections of Distribution

Integrate over coordinate to “project” distribution
 Certain projections have are needed to solve for beam self fields and have well
developed interpretations

Number Density:
number
n(xy.s) = / x| fi(x1,%), ) )] = ——
meter
Charge Density:
Coulombs
p(xX1,8) =qn(xy,s) :q/dQXl frxy,x,8) [pl] = 3
meter

Line-Charge:
+ Constant of motion if particles not lost/created (see problem sets)
- Particles must go somewhere so total weight/number conserved

A\ —q /deJ_/delJ_ fJ_(XJ_,X,J_,S) H)\H _ Coulombs

meter

=q ]dzx n(x,,s) = const
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Averages over the distribution

Take projections of distribution with quantities of interest to average over the
distribution
* Phase-space 6D (4D here): Hard to see what is going on in high dimensions so
take averages on projection to more easily interpret beam evolution

Phase-Space Average:
+ Averaged quantity depends only on s

() :fdzwlfd%l'“ﬁ [Py [dP - fL
- [d?z) [d?2', fo - \q

Example: Statistical edge _ 2\ 1/2
= 2
measure of beam x-edge ra($) S
Restricted (angle) Average:
+ Averaged quantity depends on

(o) _fdle"'fl _ fd2xl"'fL
LT fd2513/J_ fJ_ N n
Example: x-plane flow X'(x,,s) = (Xl)xl

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 13



Expression of Vlasov Equation
Hamiltonian expression of the Vlasov equation:

d of, dx; 0fL dx'| O0fL Reminder:
%f L= "9s T ds Ox, ds ox’, =0 Hamiltonian form
eqations of motion
0 OH, O OH, O
_ O OFy 07 OHL O d OH,
Os — 0x| oOx, 0x; 0Ox| TXL = S
. : . 1
Using tge equaté(}?j of m/otlon. y a, S|
EXL ox’, — Rl ds L ox
d , (‘9HL . . R q 90
ds + ox, (/@x:vx TRyYY ¥ mey; B2 c? 0XL)
dfL o of L ) ) q o6\ OfL
9s | L ox L v y iy mry; BEc? 0%y ) 0%
In formal dynamics, a “Poisson Bracket” notation is often employed:
Of. [ O0H, 0f. O0H, JfiL
—f L= + - — == =0
ds @ Ox, 9x, Ox, 0%,
e,
gl +{HL, fL} =0
*

Poisson Bracket
SM Lund, USPAS, 2017
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Comments on Vlasov-Poisson Model

* Collisionless Vlasov-Poisson model good for intense beams with many particles
- Collisions negligible, see: S.M. Lund, Transverse Particle Dynamics, S13
+ Vlasov-Poisson model can be solved as an initial value problem

1) fi(xy1,x',s=s;) = Initial "condition” (function) specified

2) Vlasov-Poisson model solved for subsequent evolution in s
for f1(x,,x|,s) for s > s;

* The Vlasov distribution function f, > ( can be thought of as a probability
distribution evolving in x | — X,J_ phase-space.
- Particles/probability neither created nor destroyed
- Flows along characteristic particle trajectories in x, — x’, phase-space
- Vlasov equation a higher-dimensional continuity equation describing
incompressible flow in x| — x’L phase-space
* The coupling to the self-field via the Poisson equation makes the
Vlasov-Poisson model highly nonlinear

0? 0? P
— d2 / I s _ _ 7
P Q/ L | fJ_ (8332 T ay2> ¢ €0
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+ Vlasov-Poisson system 1s written without acceleration, but the transforms
developed to 1dentify the normalized emittance in the lectures on
Transverse Particle Dynamics can be exploited to generalize all

result presented to (weakly) accelerating beams (interpret in tilde variables)

+ For solenoidal focusing the system can be interpreted in the rotating
Larmor Frame, see: lectures on Transverse Particle Dynamics
+ System as expressed applies to 2D (unbunched) beam as expressed
- Considerable difficulty in analysis for 3D version for
transverse/longitudinal physics

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 16



Review: Focusing lattices, continuous and periodic
(simple piecewise constant):

a) Continuous

K ()4 ' (K, =K,= k%o = const ) ' Lattice Period Lp

| | 2

> Occupancy 7]

b) Periodic Solenoid ne< [O’ 1]

L (K= k) A ]
Solenoid description
carried out implicitly in

. | . > Larmor frame

T T T [see: S.M. Lund, lectures on

| ' d=(1-)L, Transverse Particle Dynamics]

s  ¢) Periodic Quadrupole Doublct
Kx(s) ( Ky _—Kj-‘ ) : % _ .
T 1. e i Syncopation Factor «
dy \MLyl2, d;
F Quad A " . 1
i D Quad i ) Q& [O, 5]
L2 i
I S 1
- L, - d=a(lL, a=g = FODO
| Lattice Period | dy=(1-o)(1-M)L,

SM Lund, USPAS, 2017
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Example Hamiltonians:
See S.M. Lund Lectures on Transverse Particle Dynamics for more details

. . . L L 2 L
Continuous focusing: Kk, = ky = kjg = const

H, =

1
2

) 2

1
2

_kgoxi T

q

my; By c?

Solenoidal focusing: (in Larmor frame variables) x, = k,, = k(s)

H, =

1
—X

2

) 2
1T

1
— KX

2

1+

q

my; By ¢

- (2%;1)2

Quadrupole focusing: Kz = —Ky = K(S) K = {

G/|Bp] Magnetic
G/(Byc[Bp] Electric

1 1 1 [B,O] _ mebBbC
HJ_:—X/J_2+—/€$2——/{y2—|— 3q22 q
2 2 2 my; By — Rigidity

SM Lund, USPAS, 2017
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Review: Undepressed particle phase advance o 1s typically employed to
characterize the applied focusing strength of periodic lattices:
see: S.M. Lund lectures on Transverse Particle Dynamics

x-orbit without space-charge satisfies Hill's equation

2" (s) + ka(s)z(s) =0
( ;;C’((i)) > _ ML (s | 5) - ( :C(Si.) ) M, = 2 x2 Transfer

Matrix from

S=8S8; 0o S
Undepressed phase advance

1
COS 0y = §TI‘ M., (s; + Ly|s;)

+ Subscript Ox used stresses x-plane value and zero (Q = 0) space-charge effects
Single particle (and centroid) stability requires:

1
§’TI' Mzc(sz + Lp|SZ)| S 1

) . O0xr < 180°

[Courant and Snyder, Annals of Phys. 3, 1 (1958)]
Analogous equations hold in the y-plane

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 19



The undepressed phase advance can also be equivalently calculated from:

/!
W, T KeWog —

S;+Lyp ds
O0x — / 2
S; wO:I:

=0
3
wO:c

woz (s + Lp) = woz(s)

Wor > 0

+ Subscript Ox stresses x-plane value and zero (Q = 0) space-charge effects

- Need to generalize notation since we will add space-charge effects
- Will find space-charge tends to cancel out part of applied focusing
- Focusing can also be different in x- and y-planes

SM Lund, USPAS, 2017
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S2: Vlasov Equilibria: Plasma physics-like approach is to resolve
the system 1nto an equilibrium + perturbation and analyze stability

Equilibrium solution to the Vlasov equation 1s constructed from single-particle
constants of motion C.

f1=f1{Ci}) >0 —  Equilibrium

0
Z af L dC / —0 An.d the distribution

satisfies Vlasov’s equation
without f L changing form

—fl (1Ci})

Comments:
» Equilibrium f) is an exact solution to Vlasov's equation that does not change
in 4D phase-space functional form as s advances
- Distribution values can still evolve in 4D z, y, z’, 1y’ phase-space as s
advances
- Equilibrium distribution periodic in lattice period in periodic lattice
- Projections of the distribution can evolve in s in non-continuous lattices
+ Equilibrium 1s “time independent” ( / Os = () 1n continuous focusing
SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 21



Comments Continued:
* Requirement of non-negative f, ({C};}) follows from the distribution
representing (probability of) particle counts in the continuum model
* Particle constants of the motion {(; } are in the presence of (possibly s-
varying) applied and space-charge forces
- Highly non-trivial!
- Only one exact solution known for s-varying focusing using Courant-
Snyder invariants: the KV distribution to be analyzed in these lectures

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 22



/// Example: Continuous focusing with f, = f| (H )

1 2 1 q . .
H, = §Xl -+ 5/{%@(3 + mV35202 1) no exghmts dependence
b~b k3o = const
Vlasov’s equation expressed in Hamiltonian form is: Reminder:
d of L dx, Of, dX’J_ of . Hamiltonian form
%f 1L = 95 + ds x| + ds %/, =0 equations of motion
of,  OH, 0f. O0H, 0Jf1 d = Gl
= + = — =0 ds ox',
0s ox', oOxy Ox; O g Py
/ 1
Take f, = f, (H,) and apply the chain rule: 0 st T T ox,
df _ﬁfLﬁHL+8fL OH, OH,/ 0H, O0H; _ 0
ds"" O0H, 8s @ O0H, \ox|, o0x, 0x, ox,)
_0fL OH, 0
N 8H 1 (98 B
OH
— L _ O  For nontrivial solution with OfL(HL) £ 0
88 8HL
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Apply chain rule for the total change of H | along particle orbit in the distribution:

iHJ_:aHJ_+aHJ_ .deJr@H/L .dX/J_
ds 0s ox, ds ox',  ds
Apply Hamilton’s equations of motion
d_ - _0H, A _ _OH,
‘0 obtain: ds X ds o1 0 Previous page
d 8HL+8HL OH, OH, O0H, O0H,

il = R _ : —
ds' T s ox, oOx/| ox',  Oxy (?/5

—> H | = const

Showing that f1 = f1 (H ) implies that H, = const following particle orbits
and that Vlasov's equation is satisfied to produce a stationary equilibrium

Discussion:
* Also, for physical solutions must require: f| (H,) > 0
- To be appropriate for single species with positive density
» Huge variety of equilibrium function choices f1 (H )
can be made to generate many radically different equilibria
- Infinite variety in function space
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Discussion Continued:

» Does NOT apply to systems with s-varying focusing with Kz, 7 const
- However, K, — k%o can provide a guide in many reasonable cases
*+ In this special case the equilbrium distribution does not change form
but is also stationary (0/0s = 0 ) with no evolution in local phase-space
density when viewing f, (z,y,2",v')

/]
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Typical single particle constants of motion:

Transverse Hamiltonian for continuous focusing:

1 /
2

1
Hy =>x\"+ 5%03’(1 +

k%o = const

q

m; B c?

¢ = const

+ Not valid for periodic focusing systems!

Angular momentum for systems invariant under azimuthal rotation:

Py = zy' — yz’ = const

+ Subtle point: This form is really a Canonical Angular Momentum and
applies to solenoidal magnetic focusing when the variables are expressed
in the rotating Larmor frame (i.e., in the “tilde” variables)

- see: S.M. Lund, lectures on Transverse Particle Dynamics

Axial kinetic energy for systems with no acceleration:

E= (v —1)mec

2

— const

» Trivial for a coasting beam with Y53y = const

More on other classes of constraints later ...

SM Lund, USPAS, 2017
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Plasma physics approach to beam physics:

Resolve:

f(XJ-7X/J_78) — fJ_({CZ}) + 5fJ_(XJ-7X/J_7S)

equilibrium / perturbation fi> |5f L‘

and carry out equilibrium + stability analysis
Comments:
+ Attraction 1s to parallel the impressive successes of plasma physics
- Gain insight into preferred state of nature
+ Beams are born off a source and may not be close to an equilibrium condition
- Appropriate single particle constants of the motion unknown for
periodic focusing lattices other than the (unphysically 1dealistic) KV distribution
+ Intense beam self-fields and finite radial extent vastly complicate equilibrium
description and analysis of perturbations
- Unknown if smooth Vlasov equilibria exist (exact sense) in periodic focusing
though recent perturbation theory/simulations suggest self-similar classes of

distributions have near equilibrium form
- Higher model detail vastly complicates picture!

+ If system can be tuned to more closely resemble a relaxed, equilibrium, one

might expect less deleterious effects based on plasma physics analogies
SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 27



S3: The KV Equilibrium Distribution
[Kapchinskij and Vladimirskij, Proc. Int. Conf. On High Energy Accel., p. 274 (1959);
and Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009)]

Assume a uniform density elliptical beam in a periodic focusing lattice

v
Elliptical . fr g - Line—Charge:
Beam ]?‘y A= qn(s)mry(s)ry(s)
i B = const  (charge conservation)
zumt.)er X Beam Edge:
ensity n 5132 y2
- - + =1 (ellipse)
re rz(s)  r5(s) g
Free-space self-field solution within the beam (see: Appendix A) is:
\ le2 y2
¢ = — =+ + const
2meg | (re +1y)rs (T +1y)7y
do A x
Or  meg (1o + 1y)Ts valid only within the beam!
00 A Yy + Nonlinear outside beam
Oy  meo (re +1y)7y

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 28



The particle equations of motion:

0
ZE”—I—IimﬂE‘ _ q _ @
m’ybﬁbc Ox
" q 0¢
Yt RylY =
J mvbﬁbCQ oy

become within the beam:

4 QQ )

2"(s) + < Ky(s) — 0
\ [Tx(s) —|_ Ty(s)]rﬂc(s) y,

) {0 20 \
Yo (s) + § Fy(s) re(s) + 1y (s)]ry(s) :

Here, Q is the dimensionless perveance defined by:

gA
= — const
- 2meomy) BEc?

\

* Same measure of space-charge intensity used by J.J. Barnard in Intro. Lectures
+ Properties/interpretations of the perveance will be extensively developed in

in this and subsequent lectures

- Will appear in same form in many different space-charge problems
SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 29



If we regard the envelope radi1 7z, Ty as specified functions of s, then these
equations of motion are Hill's equations familiar from elementary accelerator
physics:

HORSMOIMC)
2Q)
1 (8) + 1y (5)]ry (5)

Suggests Procedure:
+ Calculate Courant-Snyder invariants under assumptions made
+ Construct a distribution function of Courant-Snyder invariants that generates
the uniform density elliptical beam projection assumed
- Nontrivial step: guess and show that it works: KV construction
Resulting distribution will be an equilibrium that does not evolve in functional
form, but phase-space projections will evolve in s when focusing functions vary
in s

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 30



Review (1): The Courant-Snyder invariant of Hill's equation
[Courant and Snyder, Annl. Phys. 3, 1 (1958)]

Hill's equation describes a zero space-charge particle orbit in linear applied
focusing fields:

2" (s) + k(s)x(s) =0

As a consequence of Floquet's theorem, the solution can be cast in
phase-amplitude form:

1
/ S
v(s) = Asw(s) cos (s) V()= o
where w/(s) 18 the periodic amplitude function satisfying
1

w" (s) + k(s)w(s) — =0

w?(s)
w(s + L,) = w(s) w(s) >0

1 (s) is a phase function given by
° ds
“e) =i+ [ o

A, and %¥: are constants set by initial conditions at s = s;

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions
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Review (2): The Courant-Snyder invariant of Hill's equation
From this formulation, it follows that

x(s) = A;w(s) cosy(s) 1

A w?(s)
o(s) sin 4(s)

z'(s) = A;w'(s) cosp(s) —

= A; cos

SHRS

wx' —w'zr = A; siny

square and add equations to obtain the Courant-Snyder invariant

2
(E) + (wx’ —w'z)? = A? = const
w

+ Simplifies interpretation of dynamics
+ Extensively used 1n accelerator physics

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 32



Phase-amplitude description of particles evolving within a uniform density beam:

Phase-amplitude form of x-orbit equations: initial(conditior)ls yield:
S =3S;
r(s) = Agiwe(s) cos P, (s) A,; = const
As i = (s = 51)
' (s) = A ;w . (s)cos,(s) — ———sin (s e T '
(8) = Auit () o8 (s) — =015 sin(s) e
where
20) 1
wy () + iz (s)wa(s) — Wz (s) — =0
72 (8) + 1y (8)]72(5) w3 (s)
Wy (s + Ly) = wy(s) wg(s) >0
® ds
elo) = v+ | s
identifies the Courant-Snyder invariant
2
<i> + (wya” — wyx)? = A3; = const
Wy

Analogous equations hold for the y-plane
SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 33



The KV envelope equations:

Define maximum Courant-Snyder invariants: cos i, = 1
Aaziwm COS %; ? Ty = ALU max Wz

ex = Max(AZ)) L=
£y = MaX(Azi)

Values must correspond to the beam-edge radii:

rz(8) = VEzwa(s)
ry(s) = Eywy(s)

The equations for w_and w_can then be rescaled to obtain the familiar

y

KV envelope equations for the matched beam envelope

5 (8) + Ko (8)ra(s) —

TZ(S) + Ky (8)ry(s) —

rz(s+ Lp) = rz(s)
ry(s+ Lp) = ry(s)

SM Lund, USPAS, 2017

v A
> 0 Wl ;y
Edge Ellipse: x
¥y
rz r,
20 &%
rz(s) +ry(s)  ri(s)
20 B gy 5
rz(s) +ry(s)  1y(s)
rz(s) >0
ry(s) >0
Transverse Equilibrium Distributions 34



Use variable rescalings to denote x- and y-plane Courant-Snyder invariants as:

2
T
<—> + (wex’ — w,x)* = A2, = const
Wy

z\ 2 rox’ — '\’
<_> + ( - & ) = (; = const
Ty Ex
2 r y/ _ g Y 2
(i) 4+ ( Y y > = (', = const
Ty Ey

Kapchinskij and Vladimirskij constructed a delta-function distribution of a linear
combination of these Courant-Snyder invariants that generates the correct
uniform density elliptical beam needed for consistency with the assumptions:

A
fJ_: 5 5[Cx—|—cy_1]

qTeExEy

+ Delta function means the sum of the x- and y-invariants 1s a constant
* Other forms cannot generate the needed uniform density elliptical
beam projection (see: S9)
+ Density inversion theorem covered later can be used to derive result
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The KV equilibrium is constructed from the Courant-Snyder invariants:

KV equilibrium distribution write out full arguments in x, x':

fJ_(XJ_vle_vs) —

A

2

s (2)

Y

2 / / 2
ryY — Ty
= — 1
(Ty) " ( Ey )

/ / 2
Vel — TxZC
Ex

0() = Dirac delta function

This distribution generates (see: proof in Appendix B) the correct uniform density
elliptical beam:
A
QT Ty’
0,

2
n = / d°x’, f1
Obtaining this form consistent with the assumptions, thereby
demonstrating full self-consistency of the KV equilibrium distribution.
- Full 4-D form of the distribution does not evolve in s
- Projections of the distribution can (and generally do!) evolve in s

x? /12 —|—y2/7°§ <1
x? /r? +y2/7“§ > 1
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/// Comment on notation of integrals:

- 2" forms useful for systems with azimuthal spatial or annular symmetry

Spatial

/dQJJJ_---E/ da:/ dy ---
:/ drr/ df - --
0 —Tr

Angular

/le’l“' /

-

SM Lund, USPAS, 2017

3
Q.
&\
—
3
Q.
@\

/ dfw?'/ g’ -

Cylindrical Coordinates:

x =1rcosbt
y = rsinf
Angular

Cylindrical Coordinates:
x' =1’ cos b

y' = r’sin 6’
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Use care when interpreting dimensions of symbols in cylindrical form of angular
integrals:

/#ET——\/CU2—|—?J [']] = Angle r' € (0, 00)
0" + iH = iArcTan[y,m] [6]] = rad 0" € [—m, 7]
ds ds
' = 1 cos 6 [[2"]] = Angle z' € (—o00,0)
y' = r'sinf’ [y']] = Angle y' € (—o0,00)

+* Tilde 1s used in angular cylindrical variables to stress that cylindrical variables
are chosen 1n form to span the correct ranges in x" and y' but are not d/ds of the
usual cylindrical polar coordinates.
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Comment on notation of integrals (continued):
Axisymmetry simplifications

Spatial: for some function f(x3) = f(r?)

[ f6) =2 [ arese?
— w/()oodr2 f(r?)
= w/ooodw f(w)

-2
Angular: for some function g(x'?) = g(r'")

/d2xl g(x't) = 27r/ dr' v (")
0

SM Lund, USPAS, 2017

Transverse Equilibrium Distributions

Cylindrical Coordinates:

T = 1rcosb

y = rsinf

Angular

Cylindrical Coordinates:

' = r' cos '
y' = r’sin @

~2
u=r'

/]
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Moments of the KV distribution can be calculated directly from the distribution
to further aid interpretation: [see: Appendix B for methods to simply calculate]

_ JdPzy [da - )
Full 4D average: < " >L = dexL fdzfﬂi 1
| B fdel o fL
Restricted angle average: (- >x’J_ = f dzmi fl
Envelope edge radius: Envelope edge angle:
1/2 1/2
re = 2(a%)/ = 2(aa’) /(@)

rms edge emittance (maximum Courant-Snyder invariant):
» = 4[(z?) | (&™) | — (z2")2]Y? = const

Coherent flows (within the beam, zero otherwise):
/ / L
<$ >Xi — Ty
“Ty

Angular spread (x-temperature, within the beam, zero otherwise):

2 2 y
_ / / 2 &y L Y
T, = (¢ —(x >Xl) >x’L 2r2 < —T—Q—%>

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 40



Summary of 1* and 2" order moments of the KV distribution:

Moment Value
Jd*a' 2 fy rin All 1* and 2™ order
[d2a', o' f) ryin moments not listed
[d2a!, 2f, [?"f f ;ﬂ% (1 _ i’_j _ f_j)] n VaIHSh, 1.€.,
x T o
n y v

fd.zrcj_ y"zfj_
[ d*a’ xa'fy
Jd*e' yy'fL

J ' (zy —ya') o

dr_;xzn 1 /dQZIJ/J_ zyfi =0

(x%))
{y*)e
(fzh
()L
(za'))
(yy' )L
(zy' —ya')lL

16[{?)1 (z)1 — {za’)]]

16[{y) L (™)L — (yy')i]

%yzﬂ,
0 (zy)L =0
i:& see reviews by:
;': ! i_’"T (limit of results presented)
Tt Lund and Bukh, PRSTAB 7,
rare 024801 (2004), Appendix A
’ S.M. Lund, T. Kikuchi, and
0 R.C. Davidson, PRSTAB 12,
ez 114801 (2009)
2

SM Lund, USPAS, 2017
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Canonical transformation illustrates KV distribution structure:
[Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990), and Appendix B]

Phase-space transformation: raTy

dr dy = dX dY
X = \/aaj ’ VEzty
Tz \/EE
ot — 1l dx' dy' = fr’rde/dY/
X == g xTy
Ver dz dy do’ dy = dX dY dX' dY’

Courant-Snyder invariants in the presence of beam space-charge are then simply:

X? + X'? = const

and the KV distribution takes the simple, symmetrical form:
0 + —1

fJ_(xayaxlaylvs):fJ—(X7Y7X/’Y/): 2
qTeELEy

from which the density and other projections can be (see: Appendix B) calculated

more easily: o0 2 2
' ”:/dzxih: 4 /dU”[U“(l‘x_‘y_)]
0

qQTT LTy r2 7“5
A 2/ 2 2 /.2
:{ QT Ty’ a;/rx—l—y/ry<1
0, x?/ry +y?/re > 1
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KV Envelope equation

The envelope equation reflects low-order force balances

S e 2Q) B ﬁ _0 Matched Solution:
T Tz re 41y TgSC | Tw(S—FLp):Tm(S)

2 2 ry(s + L) = ry(s)
ry T RyTy — e _—g:o ’ ’ ’

% | Tzt Ty Ty

SRR G S . A | Kz(s+ Lp) = Kz (S)

Applied Space-Charge Thermal
Focusing  Defocusing Defocusing
Terms: Lattice Perveance = Emittance

Comments:
+ Envelope equation 1s a projection of the 4D invariant distribution

- Envelope evolution equivalently given by moments of the
4D equilibrium distribution
+ Most important basic design equation for transport lattices with high space-charge
intensity
- Simplest consistent model incorporating applied focusing,
space-charge defocusing, and thermal defocusing forces
- Starting point of almost all practical machine design!

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 43



Comments Continued:
+ Beam envelope matching where the beam envelope has the periodicity of the lattice

re(s+ Lp) = rz(s)
ry(s+ Lp) = ry(s)

will be covered in much more detail in S.M. Lund lectures on Centroid and Envelope
Description of Beams. Envelope matching requires specific choices of initial conditions

Tx<3i>7 Ty(si) 7“;(87;), T;(Si)

for periodic evolution.
+ Instabilities of envelope equations are well understood and real (to be covered: see S.M.
Lund lectures on Centroid and Envelope Description of Beams)
- Must be avoided for reliable machine operation
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The matched solution to the KV envelope equations reflects the symmetry of the
focusing lattice and must in general be calculated numerically

Matching Condition Example Parameters
L,=05m, o9=80° n=0.5

Ex = €y = 50 mm-mrad

ro(s+ Lp) = 14(8)

ry(s + Lp) = 1ry(s) o/og = 0.2
Solenoidal Focusing FODO Quadrupole Focusing
(Q = 6.6986 x 10~ %) (Q = 6.5614 x 10™%)
_ _ A N S |
g £ . N --
Eﬂl E ':.. Hr = —Hy
L wooar |
= I U =

Axial Coordinate s/L,

The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport
SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 45




2D phase-space projections of a matched KV equilibrium beam
in a periodic FODO quadrupole transport lattice

Matched Beam Envelope and Focusing Function

— —
= k2

[

Envelope Radii (mm)
]

I
. . 0 0.2 i 0.4 i 0.6
Projection | | Axial Coordinate!(Lattice Periods)
y
X-y
area: mT,T, 7 const x
X.’-*It gm

!
X-X 1—,
area: me, = const X

(CS Invariant)

!

y-y

area: Te,, = const
(CS Invariant)

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 46



KV model shows that particle orbits in the presence of space-charge can
be strongly modified — space charge slows the orbit response:

Matched envelope:

ry(s) + Ka(s)ra(s) —

"“Z(S) + Ky (s)ry(s) —

rz(s+ Ly) = rz(s)
ry(s+ Lp) = 1y(s)

2Q) ez
o) try(3)  7As)
20 &
() Frgs)  13(s)
ry(s) >0
ry(s) >0

Equation of motion for x-plane “depressed” orbit in the presence of space-charge:

z"(s) + K (s)z(s) —

2Q)
72 () +1y(8)|ra(s)

z(s) =0

All particles have the same value of depressed phase advance (similar Eqns in y):

si+Lp
<%E¢A%+Qﬁ—%@0:%/‘

ds

;o Ta(s)

SM Lund, USPAS, 2017
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Contrast: Review, the undepressed particle phase advance calculated in
the lectures on Transverse Particle Dynamics

The undepressed phase advance is defined as the phase advance of a particle in

the absence of space-charge (Q = 0):
*Denote by 90z to distinguished from the “depressed” phase advance o,

in the presence of space-charge

1
Wo, + KzWog — —5— = Woz (s + Ly) = woz(s)
Woy,
sitLp g Wog > 0
00z = / o
Si Wy
This can be equivalently calculated from the matched envelope with O = O:
£2
U+ Ko — SE =0 a5+ Lp) = o (s
"0a roz > 0
S’i+Lp dS Ox
O0x = 533/ 5
S; T0x

* Value of €3 1s arbitrary (answer for 0oz 1s independent)
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Depressed particle x-plane orbits within a matched KV beam in a periodic
FODO quadrupole channel for the matched beams previously shown

Solenoidal Focusing (Larmor frame orbit):
Undepressed (Red) and Depressed (Black) Particle Orbits

o x-plane orbit:
E y — O — y/
Both Problems
00 25 5 75 10 125 15 175 20 'Medlog.
FODO Quadrupole Focusing:lLattice Periods 5
Undepressed (Red) and Depressed (Black) Particle Orbits on = 0.2
o’2—mmM™—mmm———mmmm™@™M@MmMm j 0
2 0.01 x-plane orbit:
D O ¢ 0=
5 001} y y=0=
-0.02f

0.0 25 S 7.5 10 125 15 175 20

Lattice Periods
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Clarification Comment on previous plots:

For the shown undepressed orbit (no beam space-charge), the particle 1s
integrated from the same 1nitial condition as the depressed orbit (in
presence of space-charge). In this context the matched envelope which
1s shown including space-charge has no meaning.
* A beam rms “edge” envelope without space-charge 7o, could also
be shown taking

roz(8) = \/ExWoz(8) = \/€xP0x(5)

* This envelope will be different than the depressed beam.
The undepressed particle orbit can be calculated using phase-amplitude
methods or by simply integrating the ODE describing the particle
moving in linear applied fields:

2" + ky(s)x =0

r(s=s;) = x;
,  Same Initial condition as depressed
r(s=s;) =ux
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Depressed particle phase advance provides a convenient
measure of space-charge strength

For simplicity take (plane symmetry in average focusing and emittance)
00z = O0oy = 00 Ex =&y =€
Depressed phase advance of particles moving within a matched beam envelope:

sitle gg sitle g
o=c¢ =
/s - rE(s) ./s ry(s)

7

Limits:

1) Clglino 0 =00 Envelope just rescaled amplitude: 7“3; = 811}833
) limo = 0 Matched envelope.exis.ts with € = ( |
e—0 Then € = 0 multiplying phase advance integral
Normalized space charge strength Cold Beam
O/ oo — 0 (space-charge dominated)

e—0

0<o/og <1

Warm Beam

(kinetic dominated)
Q—0
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For example matched envelope presented earlier: repeat periods

Undepressed phase advance: 4, = 80° 4.5
Depressed phase advance: 5 =16° — 0/o9=0.2 22.5
Solenoidal Focusing (Larmor frame orbit): ggﬁﬁi;f;’i

phase advance

Undepressed (Red) and Depressed (Black) Particle Orbits

5 x-plane
© orbit
= :
y=0=y
00 25 5 75 10 125 15 175 20
B Lattice Periods
4.5 periods
- >
22.5 periods
Comment:

All particles in the distribution will, of course, always move in response to both applied
and self-fields. You cannot turn off space-charge for an undepressed orbit. Itis a
convenient conceptual construction to help understand focusing properties.
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The rms equivalent beam model helps interpret general beam evolution in
terms of an “equivalent” local KV distribution

Real beams distributions 1n the lab will not be KV form. But the KV model can
be applied to interpret arbitrary distributions via the concept of rms equivalence.
For the same focusing lattice, replace any beam charge p(z,y) density by a
uniform density KV beam of the same species (¢, ™ ) and energy ( ;) 1n each

axial slice (s) using averages calculated from the actual “real” beam distribution

with: (), = fdQZULfdQ e 1
fd2 fd%?l fi

rms equivalent beam (identical 1st and 2nd order moments):

f | = real distribution

Quantity KV Equiv. Calculated from Distribution
Perveance Q — % [Pz, [d%2, f1 [[2meqn; BEC?]
z-Env Rad 7, — <g;2>i/ 2

y-Env Rad 1, = 2<y2>i/ 2

r-Env Angle 7/, _ 2<3737/>J_/<£E‘2>i/2

y-Env Angle fr; = 2(yy’) |/ <92>1L/ 2

r-Emittance ¢, = 4[(x?) | (2"?) | — <a7x’>L]1/2
y-Emittance ¢, — 4[<y2> L<y/2> L= (yy') L]1 /2
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Comments on rms equivalent beam concept:

* The emittances will generally evolve in s
- Means that the equivalence must be recalculated in every slice as the
emittances evolve
- For reasons to be analyzed later (see S.M. Lund lectures on
Kinetic Stability of Beams), this evolution is often small
* Concept is highly useful
- KV equilibrium properties well understood and are approximately correct

to model lowest order “real” beam properties
- See, Reiser, Theory and Design of Charged Particle Beams (1994, 2008)
for a detailed and instructive discussion of rms equivalence
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Sacherer expanded the concept of rms equivalency by showing that the

equivalency works exactly for beams with elliptic symmetry space-charge
[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]

For any beam with elliptic symmetry charge density in each transverse slice:

72 y2 Based on:
P:P<T_2‘|‘T_2) <3¢> B A T
v Y ox 47r€0 Ty + Ty
the KV enve]ope equations see J.J. Barnard intro. lectures
20) e2(s)
rll(8) + kg (8)ry(s) — AN
ro(s) +ry(s)  T3(s)
2Q) € (S)
() + K, (8)ry(s) — —0

remain valid when (averages taken with the full distribution):

_ gA _ . 2 .

Q = 2meom B2 = const A= q/d x) p = const
— 2< >1/2 £, = 4[<332>L<CE‘/2>J_ . <£IZCU/>3_]1/2
= 2(y*)/? ey =4[ L (W)L — (yy)3 )

The emittances may evolve in s under this model

(see SM Lund lectures on Transverse Kinetic Stability)
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Interpretation of the dimensionless perveance O

The dimensionless perveance:

gA A
— — const
¢ 2megmey; Bi ¢

gnmryry, = line-charge = const

n = beam density

» Scales with size of beam ( A ), but typically has small characteristic values
even for beams with high space charge intensity ( ~ 10 *to 10® common)

+ Even small values of O can matter depending on the relative strength of other
effects from applied focusing forces, thermal defocusing, etc.

Can be expressed equivalently 1n several ways:
gA qly 2 I

- 2meomAp BECE 2meomp B3 (vB)? 1a

I, = \fpc = beam current
2 ~ ~2
WET T
_ _ 4 TreTyn  _ plaly I4 = 4megmc® /g = Alfven current

- 2meompBicd 2v3 B2

&p = \V/@?1/(meg) = plasma freq.

» Forms based on A, I, generalize to nonuniform density beams
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To better understand the perveance O, consider a round, uniform density beam with
Ty =Ty =T

then the solution for the potential within the beam reduces:

)\ 5132 y2
¢ = — + + const

2T€Q (7“3; + Ty)ra: (Ta: + ry)ry

A + t
= — cons
4meg 7“%
)\ .
— Ap=¢(r=0)—¢(r=rp) = for potential drop
47eq across the beam

If the beam is also nonrelativistic, then the axial kinetic energy &y is

1
E = (1 — )me?® ~ 5"7151302

and the perveance can be alternatively expressed as

g _qA9¢

- 2megm; B c? Ey

+ Perveance can be interpreted as space-charge potential energy difference

across beam relative to the axial kinetic energy
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Further comments on the KV equilibrium: Distribution Structure

KV equilibrium distribution:

f; ~ §|Courant-Snyder invariants|

Forms a highly singular hyper-shell in 4D phase-space

!/
Schematic: X1,

/..\ . 4D singular hyper-shell surface
>

/X

* Singular distribution has large “Free-Energy” to drive many instabilities

- Low order envelope modes are physical and highly important
(see: lectures by S.M. Lund on Centroid and Envelope Descriptions of Beams)
+ Perturbative analysis shows strong collective instabilities
- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)
- Higher order instabilities (collective modes) have unphysical aspects
due to (delta-function) structure of distribution and must be applied
with care (see: lectures by S.M. Lund on Kinetic Stability of Beams)
- Instabilities can cause problems if the KV distribution is employed
as an initial beam state in self-consistent simulations
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Preview: lectures on Centroid and Envelope Descriptions of Beams:
Instability bands of the KV envelope equation are well understood in
periodic focusing channels and must be avoided in machine operation

Envelope Mode Instability Growth Rates

Solenoid (17 = 0.25) Quadrupole FODO (1 _=0.70)

1.0 - | | ] 1.0 |
- Iy, | g 05 |
08| l - 0.8 I
'{— | 0.0
06| attice | D06
Q y Res. Band \Q
© o4 ' 0.4
[.attice
07! Res. 0.2
00t !B . - . 0.0 |
100 120 140 160 180 100 120 140 160 180
G (deg/period) G (deg/period)

[S.M. Lund and B. Bukh, PRSTAB 7 024801 (2004)]

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 59



Further comments on the KV equilibrium: 2D Projections

All 2D projections of the KV distribution are uniformly filled ellipses

+ Not very different from what is often observed in experimental measurements and
self-consistent simulations of stable beams with strong space-charge
+ Falloff of distribution at “edges” can be rapid, but smooth, for strong space-charge

rdz’ rdy' fi rdyrdy fi

 Area me;
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Further comments on the KV equilibrium:
Angular Spreads: Coherent and Incoherent

Angular spreads within the beam:
Coherent (flow): Incoherent (temperature):

2 2 2
€ x Y
(@ = thafraPha, = 5% (1= = )

\

— T Ty

W
|
o

* Coherent flow required for periodic focusing to conserve charge

+ Temperature must be zero at the beam edge since the distribution edge is sharp

+ Parabolic temperature profile is consistent with linear grad P pressure forces in a fluid
model interpretation of the (kinetic) KV distribution

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 61



Further comments on the KV equilibrium:

The KV distribution 1s the only exact equilibrium distribution formed from
Courant-Snyder invariants of linear forces valid for periodic focusing channels:
+Low order properties of the distribution are physically appealing
+[llustrates relevant Courant-Snyder invariants in simple form

- Later arguments demonstrate that these invariants should be a reasonable
approximation for beams with strong space charge
+ KV distribution does not have a 3D generalization [see F. Sacherer, Ph.d. thesis, 1968]

Strong Vlasov instabilities associated with the KV model render the distribution
inappropriate for use in evaluating machines at high levels of detail:
+Instabilities are not all physical and render interpretation of results difficult
- Difficult to separate physical from nonphysical effects in simulations

Possible Research Problem (unsolved in 40+ years!):
Can an exact Vlasov equilibrium be constructed for a smooth (non-singular),
nonuniform density distribution in a linear, periodic focusing channel?
+Not clear what invariants can be used or if any can exist
- Nonexistence proof would also be significant

+Recent perturbation theory and simulation work suggest prospects
- Self-similar classes of distributions

+Lack of a smooth equilibrium does not imply that real machines cannot work!
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Because of a lack of theory for a smooth, self-consistent distribution that would
be more physically appealing than the KV distribution we will examine smooth
distributions in the idealized continuous focusing limit (after an analysis of the
continuous limit of the KV theory):

* Allows more classic “plasma physics” like analysis

+[lluminates physics of intense space charge

*Lack of continuous focusing in the laboratory will prevent over generalization
of results obtained

A 1D analog to the KV distribution called the “Neuffer Distribution” is useful in
longitudinal physics

+Based on linear forces with a “g-factor” model
* Distribution not singular in 1D and is fully stable in continuous focusing
*See: J.J. Barnard, lectures on Longitudinal Physics
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Appendix A: Self-Fields of a Uniform Density Elliptical Beam
in Free-Space

1) Direct Proof:

The solution to the 2D Poisson equation:

o2 H2 (—#, ifx—jﬁ-% <1
<—2+—2>¢=< ety T e Ty
dx? Oy 0, if & + % > 1

, 00 A\
im —/— ~
r—oo Or  2mepr

has been formally constructed as:

* Solutions date from early Newtonian gravitational field solutions of stars with ellipsoidal density
+ See Landau and Lifshitz, Classical Theory of Fields for a simple presentation

A & ds oC ds x? y?
¢ = _4 + 2 + 2
Teo | Jo \/(rg—ks)(rg—ks) 3 \/(r%+s)(r§—|—s) rz s TyTs
+ const
¢ =0 when z?/r? +y2/r§ <1
72 y? 22 42
t of: =1, when —+ = >1
¢ root o 7“926+€+7“5—i—§ when r%+7“5 Al
SM Lund, USPAS, 2017
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We will A) demonstrate that this solution works and then B) simplify the result.
A) Verify by direct substitution:

A (+2)
(9:70 471'60 \/r2+s )(r2 + 5) r2 +s

[1 2y ]85
\/(rg+s)(rg+s) rzt& ry+E] o

But: 2 2

: T Yy
S r2+&  r2+¢

In either case the 2™ term

if £=0 = % —0 above vanishes
Giving:

o9 A /OO ds ( T )

dr  2meg Je \/(7“323 +5)(r2 + ) r2 +s

0

99 A /OO ds ( Yy )
Ao de (k4 s) (s T

Differentiate again and apply the chain rule:

A2
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<82+82>¢__)\ /°° ds (1 N 1)
Ox2 ayQ 2T€g ¢ \/(T%—I—S)(’Iﬁ—i—S) T%—I—S ?“22/—|—S

1 [x@ﬁ/@x y@ﬁ/@y]
JO2 482 +s) Lre ey e

Must show that the right hand side reduces to the required elliptical form for a
uniform density beam for:

2 Y2
: : + =1
Case 1: Exterior r% ny 7“5 Iy

Case 2: Interior §=1

Case 1: Exterior 33_2 + y_2 > 1
T .
. . 2 y?
Differentiate: 5 + 5 =1
e e
o0& 21 1
— —_ =

or  (r2+¢) [ > } + analogous eqn in y

_x2 + _ Yy
(rz+£)2 ' (ri+8)? A3
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Using these results:

w0¢/0x | yo&/dy _2[ z? v ] | ! — 9

= +
T%—F ,,42_|_ 74323_|_ 2 ,,42_|_ 2 72 2
R (R A C ] | IR

Also, need to calculate integrals like: w? =r2 + £

> d¢ 1 > dw
I.(§) = ~ = z 2 2 2\3/2
e 2+ +OI2r2+¢ Jymrelrz —ry +w?)

+ analogous integrals in y

This integral can be done using tables or symbolic programs like Mathematica:

w—>00 9
(e 20 9 24Ty +§
T p— p— —|—
(12 = 12)[r2 =73 + w? - rz=ry (P2 —rd)ri+€
w=4/T2+

Applying this integral and the analogous {y (€)

/OOO \/(71% +CS(T§ +5) [7“3;1+8 " ”'“517“9] ~ O

2 [ree ymtE) 2
oy (e VR 024907+ O A4
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Applying both of these results, we obtain:

<a_2+a_2)¢:_ A { 2 B 2 }
92 | oy o |\ 240+ (0203 +8)

=0 Thereby verifying the exterior case !

2 y2
Case 2: Interior — + — < 1
s .

10§ /0 N yo& /0y

=0
i S S e S

E=0 =

The integrals defined and calculated above give in this case:

2 2
L(&£=0) = (7o 4+ 1y I,(§=0) = (1o + 7475

Applying both of these results, we obtain:

2 0? A 2 A {
a_ + — ¢ — — 0 = — — _@
Ox?  Oy? 2meg | TxTy EQTT 5Ty €0

Thereby verifying the interior case ! A5
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Verity that the correct large-» limit of the potential 1s obtained outside the beam:

00 A

i I
Ox 27T€0x (&)
0J0) A

i I
oy 27T€0y y()

Thus:

lim _9¢ = — Az
r—oo  Ox 2meqg T2
lim —@ __ Y
rooo Oy  2meq 12

—

r large = & large

im —
T— 00

: 1 1
A= =0
: 1 1
Am 1,(8) =2 =13

O

or

A

2TEeQT

Thereby verifying the exterior limit!

Together, these results fully verify that the integral solution satisfies the Poisson
equation describing a uniform density elliptical beam in free space

SM Lund, USPAS, 2017
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Finally, it 1s useful to apply the steps in the verification to derive a simplified

formula for the potential within the beam where:
2 2
x

—+ L <1, =0
ry Ts
This gives:
A
¢ = — {372[:1;(5 =0) + y° I, (¢ = 0)} + const,
4meg
A { 217 21 }
= — + + const
ey | ro(re +1y)  Ty(re +17y)
)\ 2 2
¢ = — { - + Y } + const
2meq | 7o (re +1y)  Ty(re +1y)

+ This formula agrees with the simple case of an axisymmetric beam with

Ty =Ty =Tp
- Discussed further in a simple homework problem
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2) Indirect Proof:
* More efficient method
*+ Steps useful for other constructions including moment calculations
- See: J.J. Barnard, Introductory Lectures

Density has elliptical symmetry:

2 2
n(x,y) =n (% + %) function n(argument) arbitrary
x Y

The solution to the 2D Poisson equation:

0? 0?
+—)o=-L
ox? 8y2 €0

in free-space is then given by

where 1(x) is a function defined such that

n(x,y) — dz—(;) o

/ood€ n(x) _
o Jo " maefrre YT EvE e

+ Can show that a choice of 7] realizable for any elliptical symmetry »
SM Lund, USPAS, 2017 Transverse Equilibrium Distributions

A8
71



Prove that the solution 1s valid by direct substitution

(9)(_ 2T 82X 2
_ Y Oz r3+¢§ 0r2 12+ ¢
XTRre T ey T o 2y 2
Oy 1y +¢ Oy> 2 +¢

Substitute in Poisson's equation, use the chain rule, and apply results above:
0> 02 )
(@ T o2 ) 0= . 2 2 d
00 am |\ (__4z~ _ 4y n 2 2
_ QTaTy / de (dx2) ((T%+£)2 T (r§+€)2) T (dx) <T§+€ T r§+€)
0

€0 &\ ra+¢

Note: 5 5

_ L Y
= [(7‘%+€)2+(7“§+€)2]d€

Using this result the first integral becomes:

d’ dn”® dx

L
/ 2t ) \@Ze? T 0er) / de dx? de
0 Ve + &4 /ri+ ¢ 0 Ve + & i+ € A9
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Apply partial integration:

dn dx i ﬂ)
X

4 [ d dx? dt de —=
/0 ‘ \/7“27 /T2 + / : 22+
— x d?] d
B 4/0 “ d€ rz +&4/ri+§ +4/0 dx d§ \/7“27\/7“2

dy d (’r2 + 7“2 )
_ 4 dx Ly / e T
0 /7“2 7“2
£=0 \/

in first term, upper limit vanishes since denominator ~ & — 00

o dn 1 _1 )
_ 4 dn' o 2/ de dx (T%—l—g T r§+§> - Term cancels
rety dX |e—g 0 V2T & Jrz+¢ 2" integral
Giving: Y b
02 02 rer, 4 dn(x q
55t a3 ) 0= X) = ——n(z,y)
ox oy deg ToTy dX £=0 €0
dn(x)/dx|e=o = n(z,y) A10

Which verifies the ansatz.
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For a uniform density ellipse, we take:

A x ifx <1 dn(x A ifx <1
n(X) — . N L) — q 'y .
qrrgry |1, if x > 1 dx 0, if x >1
Then
dn(x)| e ifxlemo <1 | o, M2t /ri 4P ey <1
dX |e—g 0, if x|e=0 > 1 0, if 2% /r? + yz/rz > 1
Therefore, for this choice of
d
%‘ = n(x,y) for a uniform density elliptical beam
X le=0 with radii r, r, and density \/(qmryry)

Apply these results to calculate

deg o /12 ¥ /r2—|—
2 12
X:T%+§+T5+€ — lf,r—2+%<1 then
Y <1 forall 0<¢ <0 All
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Then:
b= —LaTy /oods A
0

deg qmr LTy

72 2
(2P (0 +
Using Mathematica or integral tables
/Ood§ 1 _ 2
o (rEHEPPE+OY? relre +1y)
/Oodﬁ 1 _ 2
0 (72 "‘5)1/2(7“54‘5)3/2 ry(rs +1y)

Showing that:

A 232 y2
o= — + + const
2meg | To(rs +1y)  Ty(re +1y)

since an overall constant can always be added to the potential (the integral had a
reference choice ¢p(x = y = 0) = 0 built in.

Al2
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The steps introduced in this proof can also be simply extended to show that
* For steps, see JJ Barnard, Introductory Lectures

( 6gb> A Ty
o)L == 1/2
ox dmeg Ty + 1y ve o [d2o.n ro = <ZE2>J_/
A S N ry = ()2
oy + Admeg Ty + 1y Y L
for any elliptic symmetry density profile
2 2
x
n(zx,y) = func (—2 + y_2>
ry Ts

In the introductory lectures, these results were applied to show that the KV
envelope equations with evolving emittances can be applied to elliptic symmetry

beams.
* Result first shown by Sacherer, IEEE Trans. Nuc. Sci. 18, 1105 (1971)

Al3
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Appendix B: Canonical Transformation of the KV Distribution

The single-particle equations of motion:

1" ( . 2Q) \ _
AR B e E e e S
1" ( B 20 \ _
V) T e @ S Y 0
can be derived from the Hamiltonian:
I\ L 2Q) 2
HJ_(iU,y,CE » Y 78) —_ 533 + [/ix(s) + ’I“w(S)[’I"x(S) —|—7“y(8)]] 9
L 1 2Q) Y’
YT l“y“) T () (s) + ry<s>1] 2
using:
ds™ - ox', ds"+ 0Ox,

Bl
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Perform a canonical transform to new variables X,Y, X',Y' using the generating

function

F2(x7y7X/7Y/)

X

Wy

1
[X’ + ixw;]

Yy |« 1
AN I VA
" Wy [ " Qywy]

Then we have from Canonical Transform theory (see: Goldstein, Classical
Mechanics, 2™ Edition, 1980)

6’F2 I 8F2 1
X = - 22 — (X' /
0X' w, v Ox Wy (X7 + 2wy
0F3 Y 0Fs 1
YV — _ I P R 0 Ve /
oy’  w, Y oy wy (Y + y’wy)
which give
Transform Inverse Transform
X =x/w, X =w,z’ —zw, r=w, X 1 =X"Jw,+w,X
Y =y/w, Y =wyy —yw, y =w,Y y =Y w, +w,Y

SM Lund, USPAS, 2017
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The structure of the canonical transform results in transformed equations of
motion in proper canonical form:

OF5

ﬁL:HL—I—a— H =H (X,Y,X',Y';s)
S

N 1 1 1 1

H _ _X/2 _Y/2 —X2 _Y2

2w? i 2wy i 2w? " 2wy

dy OHL X d.,  0H X
ds 0X’" w? ds”™ 90X = w?
dy OHL Y d., 0H __Y
ds oY’ wg ds oY wg

+ Caution: X' merely denotes the conjugate variable to X : %X + X'

+ X and X' both have dimensions sqrt(meters)

+ Equations of motion can be verified directly from transform equations (see
problem sets)

+ Transformed Hamiltonian H | is explicitly s dependent due tow x and w_y
lattice functions B3
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Following Davidson (Physics of Nonneutral Plasmas), the equations of motion:

ds w2 ds*™ w2
ds w; ds”~ w2

have a psudo-harmonic oscillator solution:

+ Straightforward to verify by direct substitution

X(S) = X cos iy, (S) + X,: sin %(S)
X'(s) = —X;sinth,(s) + X cos th5(s)

/S ds X, = const
S

~w2(3) X! = const

VY (8) = set by initial conditions
1 1
— X? + X"? =X?[sin? 9, J/‘COSQ .] + X/?[sin? @Dx/: cos® ]
+ X; X [sin ¢, cos ¢a/ —Osin Y COS Yy ]
=X? 4 X;? = const

+ Same form solution in y-plane B4
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Using the transforms:
X =x/w,
Y =y/w,

in this expression verifies the simple, symmetrical form of the Courant-Snyder

/ / /
X' =w,r — rw,

Y' =w,y" — yw,

mvariants in the transformed variables:

X2_|_X/2:<

Y2_|_Y/2:<

X

2
) + (wer! — zw')? = X2 + X = const

2

SM Lund, USPAS, 2017
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The canonical transforms render the KV distribution much simpler to express.
First examine how phase-space areas transform:

drdy = wyw,dXdY
dX/dY/ — dZCdydiEldy, = dXdeX/dY/

dz'dy’ =
W Wy,

* The property dx dy dx'dy' = dX dY dX' dY'is a consequence of proper
canonical transforms preserving phase-space area

Because phase space area is conserved, the distribution in transformed phase-
space variables 1s 1dentical to the original distribution. Therefore, for the KV
distribution

A z\ 2 roal — 2 ryy — 1y ?
= ) () < () ()
qQT2ELEy T o Ty Ey

\ :X2 € X/2 Y2 e Y/2
+ o 1] Ty = \/awac

:7'('2565 £ £
q xCy L x J

* Transformed form simpler and more symmetrical

» Exploited to simplify calculation of distribution moments and projections B7
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Density Calculation:
As a first example application of the canonical transform, prove that the density
projection of the KV distribution is a uniform density ellipse. Doing so will prove
the consistency of the KV equilibrium:
*» If density projection is as assumed then the Courant-Snyder invariants are valid
* Steps used can be applied to calculate other moments/projections
* Steps can be applied to continuous focusing without using the transformations

dX'dY’
n(@,y) = / do'dy fi — / f

W Wy
re = \/ExWy U, =X'/\/ex T d — dX'dY’
_ — V! N v \/ExE
Ty = /EyWy Uy =Y /\/2y Y

X2 Y?
n = QA /dede5[U§+U§—<1————>]
qTeT 2Ty Er Ey

B8
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Exploit the cylindrical symmetry
dU*
Ul =U, +U; Uy dUy = dyU,dU, = dip—=

A T >C dUi 5 2 9P

giving
A o0 x,Q y2
= dUT §|U% — (1 -5 — =
N(CB, y) /O 1 [ 1 ( 7“:% r2 ) ]

qmr LTy z
A\ n .
e = if 22 /12 +y°/r; <1
0, if 22 /12 +y* /1) > 1

Shows that the singular KV distribution yields the required uniform density

elliptical projection required for self-consistency! v
Note: Line Charge: A = const - i
) =
n = : |
qIT 5Ty, Area Ellipse = 77Ty . B9
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/] Aside

An interesting footnote to this Appendix 1s that an infinity of canonical

generating functions can be applied to transform the KV distribution in
standard quadratic form

fi~d8X?+ X"?+Y?+Y" — const]

to other sets of variables. These distributions have underlying KV form.
* Not logical to label transformed KV distributions as “new’ but this has been
done 1n the literature
- Could generate an infinity of KV like equilibria in this manner

+ Identifying specific transforms with physical relevance can be useful even if
the canonical structure of the distribution 1s still KV

- Helps identify basic design criteria with envelope consistency
equations etc.

- Example of this 1s a self-consistent KV distribution formulated for
quadrupole skew coupling

/l

B10
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S4: Continuous Focusing limit of the KV Equilibrium Distribution

Continuous focusing, axisymmetric beam

K (s) = ky(s) = ki = const
Ex =€y =€

Ty =Ty =Tp

KV envelope equation

< oo |@mw zfoo | &amw

Undepressed betatron wavenumber

with matched ( 7“(/) — ( ) solution to the quadratic in 7“2 envelope equation

2Q)
!/
r. 4+ KkK.r, — — —
v v Ty + 7y
20)
!/
r + Kyry - — —
Y vy Ty + Ty
reduces to:
2
7 2 Q €
ry +Kkzorp —— — = =10
b BOb T'p 7“2
Q +/4k3)2% + Q7
Ty =
ngo

1/2

— const

SM Lund, USPAS, 2017

Transverse Equilibrium Distributions

86



Similarly, the particle equations of motion within the beam are:

4 2 N
CB,/ —I_ < /ix — Q > T — O
[’I“a; T ry]rat J
2 N\
y// + < /fy — Q > Y = 0
\ [/rx —|— /ry]’ry y
reduce to
0 Depressed
X/i + k%XJ_ =0 kﬁ = k%o — — = const betatron
" wavenumber

with solution

x1 (s) = X1 coslla(s — s)] + 72 sinks (s — )]
p

Space-charge tune depression (rate of phase advance same everywhere, L arb.)

1/2 o
0 < — < 1
’f_ﬁ:z:<1 k@> < o<

BOrb e—0 Q—>0

envelope equation envelope equation
:>Tb:\/@/k60 =>7“b=\/5//%0
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Continuous Focusing KV Equilibrium —
Undepressed and depressed particle orbits in the x-plane

o
o) 00
:E(S) Particle Orbits in Beam

A
envelope

\ / undepressed
\/ > S
depressed

Much simpler in details than the periodic focusing case,
but qualitatively similar in that space-charge “depresses” the
rate of particle phase advance

Ty
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Continuous Focusing KV Beam — Equilibrium Distribution Form

Using 5
A = qmnry n = const  density within the beam
for the beam line charge and
o(x
d(const - x) = ()
const

the full elliptic beam KV distribution can be expressed as :
+ See next slide for steps involved in the form reduction

2 2 2 2
- () () () ()
n
where 1 41 k n qo
1L = _XJ_ XJ_
2 po mey; 522
1 52 2 e
— §X (i 5 X1 -- Hamiltonian
, b (on-axis ¢ = () ref taken)
€
Hip = ﬁ = const -- Hamiltonian at beam edge, 7 = 773

SM Lund, USPAS, 2017
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[/ Aside: Steps of derivation

Using: e e — . ,
v vy A = gmnry = const

Ty = Ty = Tp = const

2 1 2 2 r / _,r,/ 2
(2 (1) (2
Ty o Ty Ey

2 2 2 2.2 2,12
nr T T, r
- 55(2+y2+b + 207 —1)

A
JL=—7%—"9

2
qT=ExEy

e \r; 1 g? e?
Using:
0
d(const - x) = (=)
const

no (1 g2 g2
— 5 %2 _ =
=5 (QXL T 2773)
The solution for the potential for the uniform density beam inside the beam 1s:

10,.9¢ _ A — cb:—LXL—l—const

ror Or Wégrg 47T60rb
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The Hamiltonian becomes

1 qo
H, ==X k x2
1 L + = B0 L + m’YbBbCQ

2
1 g\ gA

—_x'4 4 = k x2 x2 + const —
2 L pO=L dmmey; B2 c?r? = Q= 2meomyp 22
1

=—X k x2 ——X + const = const
5 ¢+ 30X o2 1

From the equ111br1um envelope equation:

Q 2

k> = —
70 7"b Tb

Substituting this result, the term o< () can be eliminated in H ; to obtain:

1 g2
H, ==
L=gXit g 27l

The value of H | for an edge particle (turning point with zero angle) 1s:
2

H, EHJ_(?“:?“(),X/L =0) = 8— + const
2Tb

Giving (constants are same in Hamiltonian and edge value and subtract out):

L + const

n 1 g2 g2 n
= 5 x4+ —x? - — |\ =_—_§5(H, — H
I <2XL+ 27°§XL 27“%) 27T ( = Lb)

/1]
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Equilibrium distribution 5

€
. Hp = — = const
n 2r
fL(HL) = —0(HL — Hip) b
m n = const because r;, =const

From the equilibrium fL(H1) can explicitly calculate (see homework problems)

L _ 2 1 fn, 0 r<m
Density: n—/dimjl—{oy o < 1
d*x' P f) T\(l —r?/rd), 0<r<r
. Tx — 2 2 f 1 — T b/ = b
Temperature: Yo By ¢ T@e I, 0. ry < 1
Density Temperature
ol § Tl —_ mpEee
T = 2
. 21T,
) | T
| * =T.(r=0)
: - >
Tp r () r
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Continuous Focusing KV Beam — Comments

For continuous focusing, /| is a single particle constant of the motion (see
problem sets), so it is not surprising that the KV equilibrium form reduces to a
delta function form of f1 (H 1)

+ Because of the delta-function distribution form, all particles in the continuous
focusing KV beam have the same transverse energy with H | = H;, = const

Several textbook treatments of the KV distribution derive continuous focusing
versions and then just write down (if at all) the periodic focusing version based on
Courant-Snyder invariants. This can create a false impression that the KV
distribution 1s a Hamiltonian-type invariant in the general form.

+ For non-continuous focusing channels there is no simple relation between
Courant-Snyder type invariants and H 1
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Case of a mismatched KV beam in a continuous focusing channel

If we take f; = f1 (H,) in a continuous focusing channel, the resulting beam
equilibrium is stationary (0/9s = 0)1in all statistical measures with

ry = 2<ZCQ>1/2 = const

€ =&y =€ =4/ (22) | (2/2) ) = const

and the beam satisfies the stationary envelope equation

Q &
Korp — % — S — 0
p0O7o T 7“2

This matched beam will be in local radial force balance with no
oscillations (see S 5)

The KV case of the matched equilibrium distribution has been derived as

AN

fr=fL(HL)= %MHJ_ — H )
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More generally, the KV distribution can be mismatched to the focusing lattice. In
this case one cannot write the distribution as

n
fr=/fiL(HL)= %5(17& — Hyyp)
but rather, is expressible in terms of the more general form of the KV distribution
2 / / 2 2 / / 2
_ A x ToeX —T,T TyY —T,Y
= [ (2) o () () () -

which can be written in several forms using:

£x = €y = € = const with 7, = 7(s) satisfying

Ty =Ty =T} 7 const the envelope equation:
I — 82
ng—Ty_Tb#COHSt Tl/)/+k%07“b—g——320
A Tl% r2 2 1 Tl/)2 2 2 27“1,7“[/) / /
szqWQeQ(SL—Q(:L’ +y'“) + %+5_2 (x=+y~) — - (xz" +yy') — 1

A 1 1 [e? T g2
_ 5= 12 12 = = 12 2 2y b / AN
omrad |30 1) g (G 40 @ 40D - Blad b)) - £

* These forms are valid regardless of the amplitude of variation in 75(s) which

also satisfies the envelope equation
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Mismatched KV beam envelope:

Envelope 7, = 7,(s) evolves consistently with the envelope equation:

7 2 Q) g
'rb—l_kﬁorb—r——,r—?):o
b b

from some specified initial condition

ro(s = 8i) = T

"“1/3(3 = 5;) = 7“27;

-

__—  ———_ Matched (solid)

—— -
e =

Matched (dashed) — -

Jp—

 T(s)
+ For small amplitudes, the envelope will be oscillate harmonically with the
period corresponding to the breathing mode wavelength as described in

lectures on Transverse Centroid and Envelope Models of Beam Evolution
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S5: Stationary Equilibrium Distributions in Continuous Focusing Channels
Take

K (s) = ky(s) = ki, = const

* Real transport channels have s-varying focusing functions
* For a rough correspondence to physical lattices take: kgg = 0o/ Ly

A class of equilibrium can be constructed for any non-negative choice of function:

1 1 q9
— H Z O H — /12 _k,2 2
fi fJ_( L) 1 2XJ_ + 9 BOX | + my,f’ﬁ,?cQ

¢ must be calculated consistently from the (generally nonlinear) Poisson equation:

2 2
<% + aa—yQ) p=—— /dle fL(HL)

€0

* Solutions generated will be steady-state (9/ds = 0)

s When f1L = f1(HL) , the Poisson equation only has axisymmetric solutions with
0/00 = 0 [see: Lund, PRSTAB 10, 064203 (2007)]

The Hamiltonian is only equivalent to the Courant-Snyder invariant in continuous
focusing (see: Transverse Particle Dynamics). In periodic focusing channels

kz(s) and K, (s) vary in s and the Hamiltonian is not a constant of the motion.
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The axisymmetric Poisson equation simplifies to:

0
;E< af) . R d233 fL(HL)

€0 €0
For notational convenience, introduce an effective potential
(add applied component and rescale) defined by:

1
Y(r) = —]{%OTQ + ggbz r =+ x%+ y?

2 my; By c?
then
1
H, = §X’f +
and system axisymmetry can be exploited to calculate the beam density :
n(fl“) /dQZE fJ_(HJ_) :271'/ dHJ_ fJ_(HJ_)
0
Proof:
o) = [ guin) = [Cai [Tar s (340
H, 1~’2+¢ H _ :27r/ di 7 f1 1~’2+¢
2 J_lf’:O — ”Qb 0
dH, = 7'dr’ H, |70 = 00 _ o / TAH, fo(H)
W
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The Poisson equation can then be expressed in terms of the effective potential as:

r Or

i

Y

f”'—

or

27>
= 2k5, —
) - me(ﬂ? Bye?
1
0

or

= m%5 [kgor -

/ dH, fi1(H)
Pp(r)

oY
or }

To characterize a choice of equilibrium function f (

Poisson equation must be solved

+ Equation is, in general, highly nonlinear rendering the procedure difficult
- Linear for 2 special cases: KV (covered) and Waterbag (section to follow)

H ), the (transformed)

Some general features of equilibria can still be understood:

+ Apply rms equivalent beam picture and interpret in terms of moments
+ Calculate equilibria for a few types of very different functions to understand the
likely range of characteristics
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Moment properties of continuous focusing equilibrium distributions

Equilibria with any valid equilibrium f () satisfy the stationary (r;, = const)
rms equivalent envelope equation for a matched beam:

Q ¢
ki0rp, — — — — =0
BOTE o
* Describes average radial force balance of particles
* Uses the result (see J.J. Barnard, Intro. Lectures): <$a¢/ 5’33> = —A / (87T€0)
where
A
Q_ d 2_COIlSt _Q/dQQUL/dQQJJ_fJ_HJ_
2megm; Bic

_f d?“?“gfw dHJ_fJ_ HJ_)
Jo drr [, dH) fi(Hy)
e? = 2r(x ’fﬁzzr,ﬁfo dr;fw ! jo( L~ )LL)
fO d?“?“fw dHJ_fJ_(HJ_)
<>J_ _ fd%jj_fd%jﬂ_ fJ_(HJ_)
[Ba [ fL(H))
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Parameters used to define the equilibrium function

fL(HL)
should be cast in terms of (or ratios of)
kﬂ()? Qv €, Tp

for use 1n accelerator applications. The rms equivalent beam equations can be
used to carry out needed parameter eliminations. Such eliminations can be
complicated due to the nonlinear structure of the equations.

A local (generally r varying) kinetic temperature can also be calculated

T, = (), e =
i
n(r)Ty(r) = %/d%l XTfL(HL) =2m /;OdHL (Hie —9¢)f1(HL)
which 1s also related to the emittance,
()1 = fﬁi;ﬁf e? = 16(z%) 1 (2") L = 4ry fﬁ;f;fg
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Choices of continuous focusing equilibrium distributions:

Common choices for fi (H1) analyzed in the literature:
1) KV (already covered)

fJ_O((S(HJ_—HJ_b)

H |, = const

'

2) Waterbag (to be covered) Hy  H
[see M. Reiser, Charged Particle Beams, (1994, 2008)]

fLoxcOWH 1, —H))
0, £<0 N

o) ={ V' 52 —
3) Thermal (to be covered)

[see M. Reiser; Davidson, Nonneutral Plasmas, 1990]

f1 xexp(—H./T)

T = const > 0 _

Infinity of choices can be made for an infinity of papers! r H
* Fortunately, range of behavior can be understood with a few reasonable choices
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Preview of what we will find: When relative space-charge is strong, all
smooth equilibrium distributions expected to look similar

Constant charge and focusing: Q = 10™* kgo = const

Vary relative space-charge strength: o /09 = 0.1, 0.2, --- , 0.9

Waterbag Distribution Thermal Distribution
b

1" fLx©O(HL,—Hy) fiLocexp(—HL/T)

1.0

3| n(r)

2meyy; B ¢

0.8 ¢
0.6
0.4}

0.2+ 4

o/op = 0.9
0 0.005 001 0015 002 0.025 003 0 0005 001 0015 002 0025 003
Radius, kg,r Radius, Fkgor

Edge shape varies with distribution choice, but cores similar when o /o small
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S6: Continuous Focusing: The Waterbag Equilibrium Distribution:
[Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008);
and Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009), Appendix D]

Waterbag distribution:

fL(Hy) = foO(H, — H}) fo = const
. Hp, = const Edge Hamiltonian
O(x) = { , >0

0, <0

The physical edge radius 7. of the beam will be related to the edge Hamiltonian:

Te 7 Th = 2< >1/2
Te > Tp

Hy|p=p, = Hp Note (generally):

Using previous formulas the equilibrium density can then be calculated as:

1 1 qo
HL= §XJ_ + Y V= Qk%OTQ " my, By ¢
7?,(7") /dQQj fJ_—QWL dH | fJ_(HJ_):ZT('fo{ (?b—¢(r), zigz
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The transformed Poisson equation of the equilibrium

10
r Or

(

o
or

27>

3 Q2
meo; Oy, c?

/OO dH, fi(H.)
Y(r)

can be expressed within the beam (r < r.) as:

10 oY
r or
2 2
ki = mq_Jo 5 = const
€01} Bbc

(ra) — kg = 2k — kg H,

This 1s a modified Bessel function equation and the solution within the beam
regular at the origin r = 0 and satisfying ¢ (r = r,)

— H, 1s given by

U(r) = Hy — 27

k2,
k2 [1_

Io(k()?“)

Io(kore)

|

where Iy(z) denotes a modified Bessel function of order ¢
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The density is then expressible within the beam (r < r.) as:

2
n(r) = 47rf0kk—%0 [1 — Lo (kor) ]

Io(kore)
. 260771’75’55027@[230 [1 B Io(k'()”l“) ]
q2 [O(k0re>

Similarly, the local beam temperature within the beam can be calculated as:

Tp(r) = (@), = kk—%) [1 N IIOO((:OOQ)]

x n(r)

The feature of a fixed proportionality between the temperature 77, (7) and the

density n(r) 1s a consequence of the waterbag equilibrium distribution choice and
1s not a general feature of continuous focusing.
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The waterbag distribution expression can now be expressed as:

frlxe,x)) = fo® (2

ko [1 Io(/for)] L

k—g B Io(ko’r'e) B §XJ_

* The edge Hamiltonian value H} has been eliminated
* Parameters are:

fo .... distribution normalization
kore ... scaled edge radius
kso/ko .... scaled focusing strength

Parameters preferred for accelerator applications:
kﬁOa Q7 Ex = &y = &

Needed constraints to eliminate parameters in terms of our preferred set will now
be derived.
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Parameters constraints for the waterbag equilibrium beam

First calculate the beam line-charge:

re K 2 I (kore)
A =2 d — 4r2qfo-L0p2 1 — L0 e
7T(]/O rrn(r) 74q fo &2 re Fore To(ore)

k50 212(]90"%)
e Io(kore)

)\:27Tq/ dr rn(r) = 4m2q fo
0

here we have employed the modified Bessel function identities ( £ integer):

S Tu()] = 'l (2),
20

= Lu(2) = Lo (2) = Lo (2),

Similarly, the beam rms edge radius can be explicitly calculated as:

_2< > QIO Ciirrrr:(i“))
@ 2 . I()(/C()’I“e) B 4 . [3(kQT€)
() = Blkore)  Groro? |2 T R0 Ly
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The perveance 1s then calculated as:

gA
2megm; B c?

I>(kore)
Io(kore)

@ = (]%07“6)2

The edge and perveance equations can then be combined to obtain a parameter
constraint relating kyr. to desired system parameters:

k%Orlg _ [02(k0re> o 4 2[()(]6‘0’?6)
Q 122 (kOTe> (kOTtS)Q Is (kOTe)

+ (kore)

Here, any of the 3 system parameters on the LHS may be eliminated using the
matched beam envelope equation to effect alternative parameterizations:
2
£ .
k%orb — Q _ b9 —) climinate any of: k%o, ry, @
The rms equivalent beam concept can also be applied to show that:

k%()?“g B 1 rms equivalent KV measure of 0 /00
Q 1= (0/00)? * Space-charge really nonlinear and the
Waterbag equilibrium has a spectrum of o
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The constraint 1s plotted over the full range of effective space-charge strength:

1 o Ig(k‘o’l“e> 4 2[0(]{‘07“6) n
1 — (0’/0’0)2 122(]{707"6) (kgre)Q ]Q(k’o’l“e)

100 ¢

10

ko?‘e

0.1 . . . : . . . . . . . . . . . . . . .
0.0 0.2 0.4 0.6 0.8 1.0
Tune Depression, o /o

+ Equilibrium parameter kgr. uniquely fixes effective space-charge strength
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//lAside: Parameter choices and limits of the constraint equation

Some prefer to use an alternative space-charge strength measure to /00
and use a so-called self-field parameter defined in terms of the on-axis plasma
frequency of the distribution:

Self-field parameter:

~ D 2 A
Sp = 30<21p - @Z%E—q i =n(r =0)
— 2
2, By kﬁo e = on-axis plasma density

For a KV equilibrium, s and 0 /0 are simply related:

o 2
@=1-(2)
0

For a waterbag equilibrium, Sy and kgr,. (from which 0 /00 can be calculated)
are related by:
1

 Io(kore)
Generally, for smooth (non-KV) equilibria, Sp 1s a logarithmically

insensitive parameter for strong space-charge strength (see tables in S6 and S7) ///
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Use parameter constraints to plot properties of waterbag equilibrium

1) Density and temperature profile at fixed line charge and focusing strength

Q=10 k?go = const
E T T T
= 1.0 ¢ G'/G'[):D.l
=08 S
12 06 |
. Sl i\
2 - AN
iz 0.2 \\\N
. - o/oy = 0.9
S oL/ =09

0 0.005 0.01 0015 0.02 0.025 0.03
Radius, kg,r

+ Parabolic density for weak space-charge and flat in the core out to a sharp edge

for strong space charge
+ For the waterbag equilibrium, temperature 7(r) 1s proportional to density n(r)

so the same curves apply for 7(7)
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2) Phase-space boundary of distribution at fixed line charge and focusing strength
Q=10"* kgo = const

—_
=~
S
I~
[ ——

1.0 O'/O'[}:O.l

0.8 Density

0.6! Profile

0.4
0.2 ¢

Density,

0.0

0 0.005 0.01 0015 0.02 0.025 0.03
Radius, kg,r

*~

0.030
0.025
0.020 |
0.015 ¢

ooy = 0.9

Edge of
distribution
in phase-space

Angle, |77 |

0.010

0\

0 0.005 001 0.015 0.02 0.025 0.03
Radius, kgor

0.005

0.000
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3) Summary of scaled parameters for example plots:

Q=10""*
k%org 7 k 3
og/oo|  Sp ~o kor. - % 10° X kgogs
0.9 10.2502 5.263 1.112 1.217|39.81 0.4737
0.8 10.4666 2.778 1.709 1.208|84.87 0.2222
0.7 10.6477 1.961 2.304 1.197|137.5 0.1373
0.6 {0.7916 1.563 2.979 1.183(201.5 0.09375
0.5 [0.8968 1.333 3.821 1.166|283.8 0.06667
0.4 {0.9626 1.190 4.978 1.144|398.7 0.04762
0.3 10.9928 1.099 6.789 1.118{579.3 0.03297
0.2 (0.9997 1.042 10.25 1.0851925.6 0.02083
0.1 |1.0000 1.010 20.38 1.046|1938. 0.01010
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S7: Continuous Focusing: The Thermal Equilibrium Distribution:
[Davidson, Physics of Nonneutral Plasma, Addison Wesley (1990),

Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008),
Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009), Appendix F]

In an infinitely long continuous focusing channel, collisions will eventually relax
the beam to thermal equilibrium. The Fokker-Planck equation predicts that the
unique Maxwell-Boltzmann distribution describing this limit is:

HI‘GS
lim fLoceXp<— t)

S— 00 T

Hooop = single particle Hamiltonian of beam
rest —— . .
in rest frame (energy units)

1" = const  Thermodynamic temperature
(energy units)

Beam propagation time in transport channel is generally short relative to collision time,
inhibiting full relaxation
+ Collective effects may enhance relaxation rate

- Wave spectrums likely large for real beams and enhanced by
transient and nonequilibrium effects
- Random errors acting on system may enhance and lock-in phase mixing
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Continuous focusing thermal equilibrium distribution

Analysis of the rest frame transformation shows that the 2D Maxwell-Boltzmann
distribution (careful on frame for temperature definition!) is:

my B2 ( m%ﬁg&m)
exp | —

H
fulfl) =—5F T
1 B Temperature
H, =-x7+ kﬁox 1+ 19 5 1" = const (energy units, lab frame)
2 mry; Bic . . :
| n(r =0) = n = const  on-axis density
= §XL + ¢(r =0) =0 (reference choice)
The density can then be conveniently calculated in terms of a scaled stream
function: ~
n(r) = /del fi =ne?

n
myBiciy 1 <m7b5b202k507g C]¢>

and the x- and y-temperatures are equal and spatially uniform with:

d2 /2 fJ_
T 2 2 f — T
bmﬂ fdzﬂi'J_ fJ_

— const 1y = Ty
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Scaled Poisson equation for continuous focusing thermal equilibrium

To describe the thermal equilibrium density profile, the Poisson equation must be

solved. In terms of the scaled effective potential, the Poisson equation 1is:
+ Derivation details carried out in the problem sets

10 [ 0y -
pOp \" Op

- o)

bp=0)=0  S-(p=0)=0

0
Here. 73
Ap = €l If)ebyfhlengtliiformed. p = r Scaled radial coordinate
q°n 1O THE peak, Of-atis YoAD  inrel. Debye lengths

beam density

2.5\ 1/2 T \'/?
(Dp _ ( Plasma frequency formed > Ap =

€0 from on-axis beam density @gm
273 2022 Dimensionless parameter relating
b~b B0 . .
A = > — 1 the ratio of applied to space-charge
w2 .
p defocusing forces

+ Equation is highly nonlinear, but can be solved (approximately) analytically
+ Scaled solutions depend only on the single dimensionless parameter A
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Numerical solution of scaled thermal equilibrium Poisson equation in
terms of a normalized density

=
-

—~

Density, n(p)/n = e ¢

0.8

0.6

0.4

0.2

0.0

15 20 25
Radius, p = 7/(7Ab)

+ Equation is highly nonlinear and must, in general, be solved numerically

- Dependance on A is very sensitive
- For small A, the beam is nearly uniform in the core

+ Edge fall-off 1s always in a few Debye lengths when A 1s small

- Edge becomes very sharp at fixed beam line-charge
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/Il Aside: Approximate Analytical Solution for the Thermal Equilibrium
Density/Potential

Using the scaled density

n =
= —— = € ¥
n
the equilibrium Poisson equation can be equivalently expressed as:

2N 1 [ON\° 10N

_ — . —N?_-(14+ AN
Op? N<c9p> +p(9p (1+4)
N(p=0)=1
ON|
0p =0

This equation has been analyzed to construct limiting form analytical solutions
for both large and small A [see: Startsev and Lund, PoP 15, 043101 (2008)]
* Large A\ solution => warmbeam  => Gaussian-like radial profile
* Small A solution => cold beam  => Flat core, bell shaped profile
- Highly nonlinear structure, but approx solution has very high accuracy
out to where the density becomes exponentially small!

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 119



Large A solution:

1+ A
N ~ exp [_— 2]
4
* Accurate for A 2 0.1 [For full error spec. see: PoP 15, 043101 (2008)]

Small A solution:

(1+1A+ 4 AQ) Io(x) = 0™ order Modified
N ~ Bessel Function
{1+ %Alo( )+ L [ALo(p)]2} of 1" kind

* Highly accurate for A < 0.1  [For full error spec. see: PoP 15, 043101 (2008)]

Special numerical methods have also been developed to calculate N or
1 = —1In N to arbitrary accuracy for any value of A, however small
[see: Lund, Kikuchi, and Davidson, PRSTAB, to be published, (2008) Appendices F, G]
+ Extreme flatness of solution for small A § 10~8 creates numerical
precision problems that require special numerical methods to address

+ Method was used to verify accuracy of small A solution above
/1]
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Parameters constraints for the thermal equilibrium beam

Parameters employed in f| (H ) to specify the equilibrium are (+ kinematic
factors): n, T, A
Parameters preferred for accelerator applications:
kgo, @, e€x=¢€y=2¢p
Needed constraints can be calculated directly from the equilibrium:

e 00 3 Integral function
Q= (%mﬁgcg> /0 dpp e of A only

T T
k3.cp = 4 4
=1 () [ () +9)
. _< T ) 14 A
O \wmpBEe? ) 2(wAp)?

T T
2 9 9
— 16 =4
“b fybmﬁg@ (@)1 (fybm@?@) "o

1 T
=4 = k2, [4 (%mﬁ?c2> " Q]
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Example of derivation steps applied to derive previous constraint equations:

2T o0 -
Line charge: A= b7 dp pe™?
29 Jo
3o
rms edge radius: Tg — 4<332>J_ — 275)\% fooodﬂ pe _
Jo dp pe™
rms edge emittance: 0

T T
=16 CE2 — 4 ( ) r2
Yem By c? )L wmpBic? ) P

Matched envelope equation:
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These constraints must, in general, be solved numerically
+ Useful to probe system sensitivities in relevant parameters

Examples:
1) rms equivalent beam tune depression as a function of A

1/2
o R.H.S function
oo — ) } of A only
5.0
2.5 rms equivalent KV measure
0.0 of 0 /09
<<]3 =25 + Space-charge really
o =50 nonlinear and the Thermal
— 154 equilibrium has a spectrum
—-10.0 ¢ of o
-12.5 ¢
-15.0

0.0 0.2 0.4 0.6 0.8 1.0
Tune Depression, /oy

+ Small rms equivalent tune depression corresponds to extremely small values of A
- Special numerical methods generally must be employed to calculate equilibrium
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2) Density profile at fixed line charge and focusing strength

Q=101 kgo = const,

-~

= 10 o/op=0.1 1)
> 0.8 ,/

B - |

1S 0.6 F o/og=0.1, 0.2, ---, 0.8, 0.9
& [ _
. N\

5 I\

'z 0.2 \\\\\\ |

2 7/ =09 \\\

- A

0 0.005 001 0.015 0.02 0.025 0.03
Radius, kggr

* Density profile changes with scaled T

- Low values yields a flat-top => 0 Joo — 0
- High values yield a Gaussian like profile => o /0y — 1
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3) Distribution contours at fixed line charge and focusing strength
Q=104

ri} n(r)

2
b

q
TMENT 3
[}

L

2

0.2

Density, [

=
=

ooy = 0.1

a)

0 0.005 001 0015
Radius, £

0.02

07

0.025 0.03

fi(H.)/f.(0) Contours, o/op= 0.9

3

n.2

_‘_:—1\“”0.4

—

=00

o.

1

D)

b)

0 0005 001 0015

0.02

Radius, ksyr

0.025

0.03

k%o = const

Angle, |77 |

Angle, |77 |

0.006
0.005
0.004
0.003
0.002

0.001
0.000

0.0012
0.0010
0.0008
0.0006
0.0004
0.0002

0.0000

fi(H.)/f (0) Contours, o/cy = 0.5

0.0

0.2

0.4

0.6

0.8

1.0

%102 Radius, ksor

0.0

fi(H.)/f (0) Contours, o/oy = 0.1
0.1 d)
0.2
0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8 1.0

%102 Radius. ksor
+ Particles will move approximately force-free till approaching the edge where it is
rapidly bent back (see Debye screening analysis this lecture)
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Scaled parameters for examples 2) and 3)

o /oy

A

Sh

k3o Ap

Q=10"*

T
e

10° x kocs

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1.851
6.382x1071
2.649x107!
1.059x10!
3.501x10~2
7.684x1077
6.950x 10~
6.389x10~°

0.3508
0.6104
0.7906
0.9043
0.9662
0.9924
0.9993
1.0000

4.975%x10712 1.0000

SM Lund, USPAS, 2017

12.33
6.034
3.898
2.788
2.077
1.549
1.112
0.7217
0.3553

1.065x107% 0.4737
4.444x107° 0.2222
2.402x107° 0.1373
1.406x107° 0.09375
8.333x107° 0.06667
4.762x107° 0.04762
2.473x107° 0.03297
1.042x107° 0.02083
2.525x10~7 0.01010
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Comments on continuous focusing thermal equilibria

From these results it 1s not surprising that the KV envelope model works well for
real beams with strong space-charge (i.e, rms equivalent 0/0¢ small) since the
edges of a smooth thermal [and other smooth f1 (1 )distribution become sharp

+ Thermal equilibrium likely overestimates the edge with since T = const, whereas a
real distribution likely becomes colder near the edge

However, the beam edge contains strong nonlinear terms that will cause deviations
from the KV model

+ Nonlinear terms can radically change the stability properties (stabilize fictitious
higher order KV modes)
*+ Smooth distributions for strong space-charge contain a broad spectrum of particle
oscillation frequencies that are amplitude dependent which 1s stabilizing
- Landau damping
- Phase mixing
- Less of distribution resonant with perturbations
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Frequency distribution in a thermal equilibrium beam

In 2D thermal equilibrium beam, frequency distribution 1s 2D. Orbits are closed
in r and theta but not in X and y:

+ Radial bounce frequency

+ Azimuthal frequency
Simplified 1D (sheet beam) model developed to more simply calculate the
frequency distribution in a thermal equilibrium beam to more simply illustrate the
influence of space-charge in 1D

+ Lund, Friedman, and Bazouin, PRSTAB 14, 054201 (2011)

+ Model shown to produce equilibria with same essential structure as higher

dimensional (2D, 3D) models when appropriate “equivalent” parameters used
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Result for space-charge canceling out ~ 1/2 applied focus strength

5 | ! ! ! | ] I ! I ! ! !
ST Max|F] ! ag/og =05 1
=R SR T A = 0.1007 ]
2 Left X . ]
= ! Width of £ _
=B Cutoff ! P93 k_g—k_g/k: _
= 3pen T/ o N p e 1B
+ 5 | — 0.289
A 9L g
z | !

3 I . Mean of [:
- i D _
: ¥ ka/kpo = 0.456
g [ 0.314 0434 ./&’3/ ”
0

02 04 06 08 10
Oscillation Frequency, ks/kzso

Mean: . 5 /kso
— —2
RMS: P = \/kg—kg /]{50 \/k%—kﬁ /kgo
Width: F, = 2v/30% 1
Relative Width:  F,/ur B :/ d(ksg/kpo) - F
0
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Superimposed results for values of o/0¢ show how the
normalized distribution of oscillator frequencies F in the thermal equilibrium
sheet beam changes as space charge intensity is varied

30 . — —— .
£3 : I
g‘ 25 o/oy = 0.9 ]
5 20t N
= |
2 15} :
5 ! 0'/0'0:0.1 0.8
-~ 10f :
T 0.7 :
S s 2 0.3 - 0.6 ]
S S ]
.0 0.2 0.4 0.6 0.8 1.0

Oscillation Frequency, ks/ ks

+ Distribution becomes very broad as space-charge intensity becomes stronger!
- KV model (single frequency) very poor
+ Sharp for weak space-charge
- KV model approximately right (single frequency shifted from applied focus)
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Frequency distribution, statistical measures:

~ : ]
a 25F ooy = 0.9 ]
S ]
E 20f ]
2 15} 1
A [ o/oy — 0.1 0.8 ]
= 10 :
R 0.7 ]
S st 02 03 ... 0.6 ]
SN /_\
= 00 02 03 06 08 10

Oscillation Frequency, ks/kso

Statistical Measures
Mean: RMS: 0. = Width: Relative Width:

olog A ne=kslkso  \JK2—Fs kg Fu=2V30r  Fu/ur
0.9 2.879 0.886 0.0176 0.0610 0.0689
0.8 1.093 0.774 0.0354 0.123 0.159
0.7 0.5181 0.663 0.0531 0.184 0.277
0.6 0.2500 0.557 0.0696 0.241 0.433
0.5 0.1097 0.456 0.0833 0.289 0.634
0.4 3.780 x 10~ 2 0.361 0.0915 0.317 0.878
0.3 7.562 x 1073 0.274 0.0898 0.311 1.14
0.2 3.649 x 104 0.190 0.0750 0.260 1.37
0.1 5.522 x 108 0.102 0.0465 0.161 1.58
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Frequency distribution, extreme value measures:

30—
~ : ]
a 25F ooy = 0.9 ]
S !
E 20f ]
2 15 1
A [ o/oy — 0.1 0.8 ]
= 10 :
R 0.7 ]
S st 02 03 ... 0.6 ]
S /\ ]
T T T 0 06 08 10

Oscillation Frequency, ks/kso

Extreme Measures

At Max[F| At Left F' Cutoff
O'/Oo A F k@//ﬁﬁo F kﬁ/kﬁo
0.9 2.879 27.3 0.862 27.3 0.862
0.8 1.093 12.1 0.723 12.1 0.723
0.7 0.5181 7.13 0.598 7.09 0.584
0.6 0.2500 5.03 0.515 4.47 0.447
0.5 0.1097 4.12 0.434 2.79 0.314
0.4 3.780 x 10~2 3.83 0.352 1.58 0.191
0.3 7.562 x 1073 4.03 0.270 0.698 0.0866
0.2 3.649 x 1074 4.94 0.177 0.153 0.0191
0.1 5.522 x 1078 8.18 0.0912 0.00191 0.000235
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S8: Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam
[Davidson, Physics of Nonneutral Plasmas, Addison Wesley (1990)]

We will show that space-charge and the applied focusing forces of the lattice
conspire together to Debye screen interactions in the core of a beam with high
space-charge intensity
+ Will systematically derive the Debye length employed by
J.J. Barnard in the Introductory Lectures

+ Applied focusing forces are analogous to a stationary neutralizing species in a plasma

+ 2D case is derived in class, 3D analogous will be covered in homework problem
- Ironically, 3D case simpler to derive!
/l Review:

Free-space field of a “bare” test line-charge )\, at the origin » = ()

o(r) 10 ( 8gb) At O(r)

— >\ e — — = —
p(r) Yo ror \| or 2meg T
solution (use Gauss' theorem) shows long-range interaction
A
¢ = ———"In(r) + const
2Te€Q
E,. = _90 _ M
or  2mwegr //
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Place a small test line charge at r = 0 in a thermal equilibrium beam:

0P q Ae O(r)
;E( 87") - dQCU fL(HL) —

€0 2meEy T

Thermal Equilibrium Test Line-Charge
Set:

¢ = oo+ 09

®o = Thermal Equilibrium potential with no test line-charge
0¢ = Perturbed potential from test line-charge

Assume thermal equilibrium adapts adiabatically to the test line-charge:

n(r):/d%l FL(HL) — e ¥ ~ fe—Vo(r) ,—ad¢/ (v T) 299 <1
VbT
g 0 - a9
~ Yo(r) (1 — q_) Y = const - 1%+ ——
~ ne
| ( % T % T
Yields: 19/ 966 2 N 6(r)
i (st _ he VoM §g —
ror \_ Or oVl 2meg T

Assume a relatively cold beam so the density is flat near the test line-charge:
+ Should be good approximation

he= o) ~
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This gives:

13(&%)_ 56 M 6(r)

fyg)\D - _27T€0 r

1/2 .
N — €od’ _ Debye radius formed from peak,
b on-axis beam density

Derive a general solution by connecting solution very near the test charge with the
general solution for r nonzero:

Near solution: (r — 0)

0 .. 1Q 00 ¢ _ At 0(7)
Vz? )\QD Negligible ---> -y = oreq T

The free-space solution can be immediately applied:

At
0p ~ —
¢ 2T€Q

r —0

In(7) + const
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General Exterior Solution: (r # 0)

)0, op
The delta-function term vanishes giving: a ( or ) N VAL 0" rescale r:

10 [ 956 - o
pOp (pﬁ_p) —00=0 SRRV

This 1s a modified Bessel equation of order O with general solution:

Iy(x) = Modified Bessel Func, 1* kind
Ko(x) = Modified Bessel Func, 2™ kind

C1, C5 = constants

0¢ = C1lo(p) + C2Ko(p)

Connection and General Solution:

Use limiting forms:
p <1 p>1

Io(p) — 1+ ©(p?) To(p) —
Ko(p) = —[In(p/2) + 0.5772- - - + O(p*)]

P

[ +0(1/p)]

—>1/ 1+@1/,0
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Comparison shows that we must choose for connection to the near solution and
regularity at infinity:

Cy = A

2Te€Q

General solution shows Debye screening of test charge in the core of the beam:

At r K Order Zero
_ X
0 ¢ = 2 Ko <% D ) O( ) Modified Bessel Function

At 1 e—r/(’YbAD) r o> ”Yb)\D

= 2v/2me0 \/r/(wAD)

+ Screened interaction does not require overall charge neutrality!
- Beam particles redistribute to screen bare interaction
- Beam behaves as a plasma and expect similar collective waves etc.
+ Same result for all smooth thermal equilibrium distributions and in 1D, 2D, and 3D
- Reason why lower dimension models can get the “right” answer for
collective interactions in spite of the Coulomb force varying with dimension
- See table on next slide and Homework problem for 3D (easier than 2D case!)
+ Explains why the radial density profile in the core of space-charge dominated beams
are expected to be flat: space-charge cancels (linear) applied focus out to charge limit
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Debye screened potential for a test charge inserted in a thermal
equilibrium beam essentially the same in 1D, 2D, and 3D

Test Charge:
1D:
Sheet Charge Density: 23¢ All Cases:
2D: 1/2
Line Charge Density: ¢ A — (60T>
3D: (physical case) qn
Point Charge: dt
Dimension Distance Measure Test Charge Density Screened Potential

1D 2 36() opseelel/GnAr)
2D r= \/W )‘t% 2\/%60 \/r/(}YbAD)e_T/(%AD% > WA
3D r= \/562 +y? + 22 q10()0(y)o(2) _ 4t _o—7/(7AD)

4dmegr

References for Calculation:

1D: Lund, Friedman, Bazouin, PRSTAB 14, 054201 (2011)

2D: These Lectures

3D: Davidson, Theory of Nonneutral Plasmas, Addison-Wesley 1989
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S9: Continuous Focusing: The Density Inversion Theorem

Shows that in an equilibrium distribution the x and x' dependencies are strongly
connected due to the form of f1 (/) and Poisson's equation

For: 1 1 qo

o= fi(Hy) R
1 e :1 2 2 q9

calculate the beam density 1

00 U = —X’f
n(r) = [ d°z’ H =27T/ dU fL (U + (r 2
0= [da sy =or [ pwrven 2

dlgqurentlate:OO , _ , of, B of,
—:27r/ dU —fL(U+¢):27T/ dU = f1(U + ) OH, oU
O 0 oY 0 oU af,
0 — 7

— 27TU11_I>HOO f1W0+v)=2nf1 (U+9Y)|g=o = —2nfL (V)

bounded distribution

10
— fL(HL):_%ﬁ

v=H_]
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Assume that n(r) 1s specified, then the Poisson equation can be integrated:

i ’r(‘?r ( gf) qn( )
T ) = 6 / ar / dF 7 n(F

Calculate the effective potentlal = —kﬁo"“ +

qo(r)

m%) 55 c?

r = —kzor dr 7 n
v(r) - mfybﬁb c2 980 mvbﬁbczeo

For n(r) = const dr 2
/ / dr r n(7

This suggests that y(r) 1s monotonic in r when d n(r)/dr 1s monotonic. Apply
the chain rule:

Density Inversion Theorem

1 On 1 On(r)/or

fi(H))=-— %@ GeH . ~ T on oW(r)/or w=H
q9

1
_ —k2 2
vir) 2 h0" +m%5502

For specified monotonic n(r) the density inversion theorem can be applied with

the Poisson equation to calculate the corresponding equilibrium f1 (H 1)
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Comments on density inversion theorem:

+ Shows that the x and x’ dependence of the distribution are inextricably linked for an
equilibrium distribution function f| (H )

- Not so surprising -- equilibria are highly constrained

*If df, (H,)/dH, < 0 then the kinetic stability theorem (see: S.M. Lund, lectures on
Transverse Kinetic Stability) shows that the equilibrium generated is also stable to
small amplitude perturbations (this generalizes to nonlinear stability)

+ The beam density profile n(r) can be measured in the lab using several methods, but
full 4D x,y x'y’ phase-space is typically more difficult to measure. But insofar as the
beam is near equilibrium form, the inversion theorem can be applied to infer the full
distribution phase-space from measurement of the beam density profile.

Real beams have s-varying focusing — but canonoical transforms can be applied
for variables that appear closer to continuous focusing to allow approximate use of
methodology developed here.
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/l Example: Application of the inversion theorem to the KV equilibrium

B n, 0<r<mn an__A B

n—{ 0. 1y <1 — Frle né(r —rp)

on  On/Or

oY OY/or property of delta-function:
__ﬁ(S(T—Tb) d(x — ;)
o né(r —ry) ’
= T 8%/0rler flai) =0
= —Ad((r) — P(ry)) x;is root of f

use:  Y(rp) = Hilx =o=Hlyp
— _ 1 on N B Expected
fulHL) = 2m OV |y, B 27T5(HL Hop) KV form

Steps 1n this example can be used to “derive” the delta-function form required for the

elliptical beam KV distribution in the more general elliptical beam case:
+ Use canonical transforms (Appendix B) to express elliptical beam in axisymmetric form
+ Apply inversion theorem as outlined above in transformed variables
+ Transform back to regular variables to obtain KV distribution for an elliptical beam

These steps also imply that the KV form is unique
SM Lund, USPAS, 2017 Transverse Equilibrium Distributions
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S10: Comments on the Plausibility of Smooth Vlasov Equilibria
in Periodic Transport Channels
S10A: Introduction

The KV and continuous models are the only (or related to simple transforms
thereof) known exact beam equilibria. Both suffer from i1dealizations that render
them inappropriate for use as initial distribution functions for detailed modeling
of stability in real accelerator systems:

+ KV distribution has an unphysical singular structure giving rise to collective
instabilities with unphysical manifestations

- Low order properties (envelope and some features of low-order plasma
modes) are physical and very useful in machine design

+ Continuous focusing is inadequate to model real accelerator lattices with periodic
or s-varying focusing forces

- Focusing force cannot be realized
(massive partially neutralizing background charge)
- Kicked oscillator intrinsically different than a continuous oscillator

There 1s much room for improvement in this area, including study if smooth
equilibria exist in periodic focusing and implications if no exact equilibria exist.
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If exact smooth “equilibrium” beam distributions exist for periodic focusing, they
are highly nontrivial.

Would a nonexistence of an equilibrium distribution be a problem?

+ Real beams are born off a source that can be simulated
- Propagation length can be relatively small in linacs
+ Transverse confinement can exist without an equilibrium

- Particles can turn at large enough radii forming an edge
- Edge can oscillate from lattice period to lattice period
without pumping to large excursions

——p Might not preclude long propagation with preserved
statistical beam quality

Even approximate equilibria would help sort out complicated processes:

+ Reduce transients and fluctuations can help understand processes in simplest form
- Allows more “plasma physics” type analysis and advances
+ Beams in Vlasov simulations are often observed to “settle down” to a fairly regular
state after an initial transient evolution
- Phase mixing can rapidly lead to an effective relaxation
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Recent progress has been made in better understanding whether smooth equilibria
exist in periodic focusing lattices. Results suggest that they are at least classes of
distributions that are very near equilibria:

*+ M. Dort et. al: Carried out systematic simulations adiabatically changing
continuous focusing to periodic quadrupole at low 0o and find nearly self-
similar periodic beams with small residual oscillations

Dorf, Davidson, Startsev, Qin, Phys. Plasmas 16, 123107 (2009)

+ S. Lund et. al: Guessed a primitive construction taking continuous focusing
distributions and applying KV canonical transforms to better match to periodic
focusing. Procedure implemented in WARP code and shown to produce
excellent results up to near stability limits in oo

Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009)

* E. Startsev et. al: Developed systematic Hamiltonian averaged perturbation
theories showing near equilibrium structure for low o
Startsev, Davidson, Dorf, PRSTAB 13, 064402 (2010) + Extension papers

+ K. Sonnad et. al: Developed a canonical transform theory including space-
charge which promises increased insight with a high degree of flexability
K. Sonnad and J. Cary, PRE 69, 056501(2004)
K. Sonnad and J. Cary, Physics of Plasmas 22 043120 (2015)

Details of perturbative theories beyond scope of class: Much remains to be done!
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S10B: Simple Approximate Pseudo-Equlibrium Distributions to
Model a Smooth Equilibrium
Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009)

Simple “pseudo-equilibrium™ 1nitial distribution to represent an intense beam:
1) Use rms equivalent measures to specify the beam

- Natural set of parameters for accelerator applications

2) Map rms equivalent beam to a smooth, continuous focused matched beam
- Use smooth core models that are stable in continuous focusing:
Waterbag Equilibrium Y
Parabolic Equlhbrlum > See: S5, S6,S7
Thermal Equilibrium

/

+ 3) Transform continuous focused beam for rms equivalency with initial spec
- Use KV transforms that preserve uniform beam Courant-Snyder invariants

Procedure applies to any s-varying focusing channel

+ Focusing channel need not be periodic
+ Beam can be 1nitially rms equivalent matched or mismatched if launched 1n a
periodic transport channel

+ Can apply to both 2D transverse and 3D beams
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4-Step Procedure for Initial Distribution Specification

Assume focusing lattice 1s given:

o Strength usually set by specifying
R (5> Ry (5 ) specified undperessed phase advances

00z, Ooy

Step 1:
For each particle (3D) or slice (2D) specify 2™ order rms properties at axial

coordinate s

Envelope coordinates/angles: (specify beam envelope)

ras) = 2(2%) " 1 (s) = 2z} f(22)?
Ty( ) =2(y >1/2 7“;(3) — 2<y?/>¢/(y2>1/2

RMS Emittances: (specify phase-space area)

ea(s) = 4[{@?) L (2™) 1 — (22")1]?
ey(s) = 4[y") L (y) 1L — (wy)3]?
Perveance: (specify space-charge intensity)

_ gA(s)
- 2meomy () BE(s)c?
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Procedure for Initial Distribution Specification (2)

If the beam 1s rms matched, we take:

2

!/ 2@ 8:13

’rw+/<axrw————3

rw—l—ry Ty

2

r’ + kT ——2Q _
Y y'y

Ty + Ty rg

=0

=0

+ Not necessary to match even for periodic lattices
- Procedure applies to mismatched beams
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Procedure for Initial Distribution Specification (3)

Step 2:
Define an rms matched, continuously focused beam in each transverse s-slice:
Continuous s-Varying
(8) = \/ra()70(5)  Envelope Radius
ep(s) = \/€x(3)5y(3) Emittance
Qs) = Q) Perveance

Define a (local) matched beam focusing strength in continuous focusing consistent
with the rms beam envelope:

/ 2 g b

—> | kiols) =
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Procedure for Initial Distribution Specification (4)

Step 3:
Specify an rms matched continuously focused equilibrium consistent with step 2:

Specity an equilibrium function:

1 q¢
fL(ZC,y,Q?/,y/) — fJ_(HJ_) HJ‘ — §XJ— + kﬂoxl + mfbebCQ
and constrain parameters used to define the equilibrium function f, (H ) with:
=q / d*x / d’x’ f1(H)) Line Charge <--> Perveance
4 [d*x [dPa" a?fy (H) |
ry = [@z [d22 fo( HJ_) rms edge radius
i _ 4 fd2 fd2 /2f ) ] |
7“2 f A2 f 2z’ f(H)) rms edge emittance

+ This can be rms equivalence with a smooth distribution NOT a KV distribution!
+ Constraint equations are generally highly nonlinear and must be solved numerically

- Allows specification of beam with natural accelerations variables
- Procedures to implement this can be involved (research problem)
SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 150



Procedure for Initial Distribution Specification (5)

Step 4:
Transform the continuous focused beam coordinates to rms equivalency in the

system with s-varying focusing:

Ty Ty
L — — Ty Y = —yz
Ty
Ex Th rl £y Th r!
) cx / /
r = ——x;, + —ux; Y Z—y—yz—l——yyi
Ep Ty Ty Eb Ty Ty

Here, {z;}, {y:}, {z.}, {y!} are coordinates of the continuous equilibrium

+ Transform reflects structure of linear field Courant-Snyder invariants but
applied to the nonuniform beam
- Approximation effectively treats Hamiltonian as Courant-Snyder invariant
- Properties of beam nonuniform distribution retained in transform
- Expect errors to be largest near beam radial “edge”
at high space-charge intensity
+ If applied to simulations using macroparticles (e.g., PIC codes), then details of
transforms must be derived to weight macroparticles
- Details 1n: Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009)
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Procedure for Initial Distribution Specification (6)

Load N particles in x,y,x',y' phase space consistent with continuous focusing

equilibrium distribution f1 (H 1)
Step A (set particle coordinates):

Calculate beam radial number density n(r) by (generally numerically) solving the
Poisson/stream equation and load particle x,y coordinates:

x = 1rcosb
Yy = rsinf

- Radial coordinates r: Set by transforming uniform deviates consistent with n(r)

- Azimuthal angles 0: Distribute randomly or space for low noise
Step B (set particle angles):
Evaluate f1 (U,r) with U = \/ x'? + y'?  at the particle x, y coordinates loaded in
step A to calculate the angle probability distribution function and load x', y’ coordinates:

' = Ucosé&
y' = Usiné

- Radial coordinate U: Set by transforming uniform deviates consistent with f1 (U,7)
- Azimuthal coordinate &: Distribute randomly or space for low noise
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Procedure for Initial Distribution Specification (7)

Step 4:
Transform continuous focused beam coordinates to rms equivalency in the system

with s-varying focusing:

T Ty
r = —X; Yy= —UY;
Ty Ty
/ /
Ex Ty T ELT T
/! cT / €T / b
r =——x,+—; y = 2=y, + 2y,

Here, {x;}, {w:}, {z.}, {y;} are coordinates of the continuous equilibrium
loaded

+ Transform reflects structure of Courant-Snyder invariants
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Carry out numerical Vlasov simulations of the initial
Pseudoequlibrium distributions to check how procedure works

Use the Warp (PIC) Vlasov code to advance an initial pseudoequilibrium
distribution 1in a periodic FODO lattice to check how significant transient
evolutions are period by period:

* Little evolution => suggests near relaxed equilibrium structure

___________________________ i
d nLy,/2 d
F Quad [ "’:‘ -t -
. | ' >
- » D Quad 5
 nL,/2 ]
_____________________________ decccicioi= g o

- L, - d—(1—mn)L,/2

Lattice Period

og = specified, L, =0.5m, ¢, =¢, =50 mm-mrad
o/op adjusted to fix
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Warp PIC Simulation — Pseudo Thermal Equilibrium

g — 700,

Principal Axes: Lattice Periods = 0.00
T T T T T

Density n/(rms avg n)

Principal Axes: Lattice Periods = 0.00
T T T T T

Density nf{rms avg n)

L)

0[\

-20 0 20
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Principal Axes: Lattice Periods = 5.00
T T T T T

LN
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o

o
-20 4] 20
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o/og
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A
a

I/
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g Mm M
A i
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Transient evolution of 1nitial pseudo-equilibrium distributions
with thermal core form 1n a FODO quadrupole focusing lattice

Density profiles along x and y axes

Snapshots at lattice period intervals over 5 periods

g — 45°
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i3l 1¢E
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Transient evolution of 1nitial pseudo-equilibrium distributions
with waterbag core form in a FODO quadrupole focusing lattice

Density profiles along x and y axes

Snapshots at lattice period intervals over 5 periods
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The beam phase-space area (rms emittance measure) changes
little during the evolutions indicating near equilibrium form
ex =4 [(x%) L (2"?) | — (xaz')Jl/z Plot: £,(s)/ex(5;)

, 1/2
ey =4[ WAL — )2 Plot: g,(s)/2,(s:)
Waterbag Form

Gaussian/Thermal Form

a] Weterthom: g I, S i B Watorham: oy ZEY, a5y DS vy Lherual & = 1539, o5, = 0.8 n J.ll.l. ol oy = 25T sl
1 T T 1L T T bl

=
7 M i vt fa =111
] =114 4 " - =tz s 1

= 1 i
Z ]
b o -
LR [ EEET 3 E - i

i I - - i
A Nl it I AT: .
& : E ;e

= - sl =10 - £ - el ]

- - ] - LN R ]

. \ F
Loarg-e Faclod: —ATSce Secol:

o) Wotcrbeam: oy 0Y ey IS i Thermal: e 0N, o fan
| e mz T T

: ' S (\I F""qll If\/\\ :/v\{-_-_-_ i 7\:\-/\I
o SRR B b | i vt i | f FYV AN
i W 71 i NI \ }r\: o ]
é"'"'_ 1 3 e i glmx;{\ ] f—'m:ﬂ ]
;Elﬁ":““g T -'._E :J.x/ _ :Hc. .-:; _{v#r[’ ::I:\—u\j _ Ew: fl 1 _

LR

_3—'_c 3] =l

MaX Ranges 0.1 % Varlatlon”

SM Lund, USPAS, 2017 Transverse Equilibrium Distributions 158



Compare pseudo-equilibrium loads with other accelerator loads

Comparison distribution from linear-field Courant-Snyder invariants
Batygin, Nuc. Inst. Meth. A 539, 455 (2005)
Thermal/Gaussian forms with weak space-charge

Linear-Field Courant-Snyder:
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23 T T T T 10 T T T—TTTT
X ht : :
] [ y ; \
15 1. Lsf 1
= 1= [
: i 18 |
E 1 b E 1ol
2 18 | '-
R 1 L 3 1
B
& —_s5=20 12 [ —_s=0 &
53 — 5= Ly % 16 [ —_ =Ly %
il — s=2f, % 12 %5 — s=2f, %
= 3Ly ] [ =3Lp
— s=4L; L —_ =4Ly
= 5L, - = 0L
ool 0y ey Y] B S S S LY
10 3 s} 3 10 -1 5 [} 3 10
X ‘mm) ¥ (TIur)
B o e e o o e e o e e 2 ...................
— I53 o -1 1.8 y
o L {1z
gl - -
< | 1¢
Eop 1k
! 1=
‘E i — =1 1& ' s=10
[ — 5= L h —_ = Lp!
Qo oir §— 3=2£p\ 7] QEO-'E §y — 8= ZEP-_
[ 5= 3L ] 5= 3L
[ 5= 4Ly ] fo— s= 4L,
[ 3 =5Lg s=8Lp
PR PR B B T MR B B R
10 3 0 3 10 10 -5 s 5 0
x (mmm)

Transverse Equilibrium Distributions

159



Compare pseudo-equilibrium loads with other accelerator loads

Comparison distribution from linear-field Courant-Snyder invariants

Batygin, Nuc. Inst. Meth. A 539, 455 (2005)

Thermal/Gaussian forms with strong space-charge

Linear-Field Courant-Snyder:
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Summary: Results suggest near equilibrium structure with good quiescent
transport can be obtained for a broad range of beam parameters with a
smooth distribution core loaded using the pseudoequilibrium construction

Find:
» Works well for quadrupole transport for g S 85°

- Should not work where beam 1s unstable and all distributions are expected to
become unstable for op >~ 85° see lectures on Transverse Kinetic Stability:

Experiment:  Tiefenback, Ph.D. Thesis, U.C. Berkeley (1986)
Theory: Lund and Chawla, Proc. 2005 Part. Accel. Conf.

+ Works better when matched envelope has less “flutter”:
- Solenoids: larger lattice occupancy 1)
- Quadrupoles: smaller 0
- Not surprising since less flutter” corresponds to being closer to
continuous focusing
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Comments on Procedure for Initial Distribution Specification

+ Applies to both 2D transverse and 3D beams
+ Easy to generalize procedure for beams with centroid offsets
+ Generates a charge distribution with elliptical symmetry
- Sacherer's results on rms equivalency apply
- Distribution will reflect self-consistent Debye screening
+ Equilibria are only pseudo-equilibria since transforms are not exact
- Nonuniform space-charge results in errors
- Transform consistent with preserved Courant-Snyder invariants for
uniform density beams
- Errors largest near the beam edge - expect only small errors for
very strong space charge where Debye screening leads to a flat density
profile with rapid fall-off at beam edge
+ Many researchers have presented or employed aspects of the improved loading
prescription presented here, including:
I. Hofmann, GSI M. Reiser, U. Maryland ~ M. Ikigami, KEK
E. Startsev, PPPL Y. Batygin, SLAC
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2017

Redistributions of class material welcome. Please do not remove author credits.
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