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Transverse Centroid and Envelope Model: Outline

Overview

Derivation of Centroid and Envelope Equations of Motion

Centroid Equations of Motion

Envelope Equations of Motion

Matched Envelope Solutions

Envelope Perturbations

Envelope Modes in Continuous Focusing

Envelope Modes in Periodic Focusing

Transport Limit Scaling Based on Envelope Models

Centroid and Envelope Descriptions via 1* Order Coupled Moment Equations

References

Comments:

+ Some of this material related to J.J. Barnard lectures:

- Transport limit discussions (Introduction)

- Transverse envelope modes (Continuous Focusing Envelope Modes and Halo)

- Longitudinal envelope evolution (Longitudinal Beam Physics I1I)

- 3D Envelope Modes in a Bunched Beam (Cont. Focusing Envelope Modes and Halo)
* Specific transverse topics will be covered in more detail here for s-varying focusing
+ Extensive Review paper covers envelope mode topics presented in more detail:

Lund and Bukh, “Stability properties of the transverse envelope equations

describing intense ion beam transport,” PRSTAB 7 024801 (2004)
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Transverse Centroid and Envelope Model: Detailed Outline

Section headings include embedded links that when clicked on will direct you to
the section

1) Overview

2) Derivation of Centroid and Envelope Equations of Motion
Statistical Averages
Particle Equations of Motion
Distribution Assumptions
Self-Field Calculation: Direct and Image
Coupled Centroid and Envelope Equations of Motion

3) Centroid Equations of Motion
Single Particle Limit: Oscillation and Stability Properties
Effect of Driving Errors
Effect of Image Charges

4) Envelope Equations of Motion

KV Envelope Equations
Applicability of Model
Properties of Terms

5) Matched Envelope Solution
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Detailed Outline - 2

6) Envelope Perturbations
Perturbed Equations
Matrix Form: Stability and Mode Symmetries
Decoupled Modes
General Mode Limits

7) Envelope Modes in Continuous Focusing
Normal Modes: Breathing and Quadrupole Modes
Driven Modes
Appendix A: Particular Solution for Driven Envelope Modes

8) Envelope Modes in Periodic Focusing
Solenoidal Focusing
Quadrupole Focusing
Launching Conditions

9) Transport Limit Scaling Based on Envelope Models
Overview
Example for a Periodic Quadrupole FODO Lattice
Discussion and Application of Formulas in Design
Results of More Detailed Models
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Detailed Outline - 3

10) Centroid and Envelope Descriptions via 1st Order Coupled Moment

ations

Formulation

Example Illustration -- Familiar KV Envelope Model

Contact Information
References
Acknowledgments
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S1: Overview

Analyze transverse centroid and envelope properties of an unbunched (0/0z = 0)
beam

rp = pipe radius Y Expect for linearly focused
beam with intense space-charge:
+ Beam to look roughly
elliptical in shape
+ Nearly uniform density

> within fairly sharp edge

Aperture

Transverse averages:

fdQZUJ_fdQCC/J_ fJ_

Centroid: () f 1, f dgxl I
X =(x), x- and y-coordinates
Y = (y) | of beam ‘“‘center of mass”

Envelope: (edge measure) x- and y-principal axis radii

of an elliptical beam envelope

_ — Y)2
" 2\/<(:C X)) + Apply to general J1 but base on uniform density L
ry, =2/{(y —Y)2), + Factor of 2 results from dimensionality (diff 1D and 3D)
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Oscillations in the statistical beam centroid and envelope radii are the
lowest-order collective responses of the beam

Centroid Oscillations: Associated with errors and are suppressed to the extent

possible:
* Error Sources seeding/driving oscillations:
- Beam distribution assymetries (even emerging from injector: born offset)

- Dipole bending terms from imperfect applied field optics
- Dipole bending terms from imperfect mechanical alignment

+ Exception: Large centroid oscillations desired when the beam is kicked (insertion or
extraction) into or out of a transport channel as is done in beam insertion/extraction

in/out of rings

Envelope Oscillations: Can have two components in periodic focusing lattices

1) Matched Envelope: Periodic “flutter’” synchronized to period of focusing lattice to
maintain best radial confinement of the beam
+ Properly tuned flutter essential in Alternating Gradient quadrupole lattices

2) Mismatched Envelope: Excursions deviate from matched flutter motion and are
seeded/driven by errors

Limiting maximum beam-edge excursions is desired for economical transport
- Reduces cost by Limiting material volume needed to transport an intense beam
- Reduces generation of halo and associated particle loses
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Mismatched beams have larger envelope excursions and have more collective
stability and beam halo problems since mismatch adds another source of free
energy that can drive statistical increases in particle amplitudes

(see: J.J. Barnard lectures on Envelopes and Halo)

Example: FODO Quadrupole Transport Channel

Envelope Solution: Matched and Mismatched Beam
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+ Larger machine aperture is needed to confine a mismatched beam

- Even in absence of beam halo and other mismatch driven “instabilities”
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Centroid and Envelope oscillations are the most important collective modes of an
intense beam

* Force balances based on matched beam envelope equation predict scaling of
transportable beam parameters
- Used to design transport lattices
+ Instabilities in beam centroid and/or envelope oscillations can prevent reliable

transport
- Parameter locations of instability regions should be understood and avoided in
machine design/operation

Although it is necessary to avoid envelope and centroid instabilities in designs, it
is not alone sufficient for effective machine operation

* Higher-order kinetic and fluid instabilities not expressed in the low-order
envelope models can can degrade beam quality and control and must also be

evaluated
- To be covered (see: S.M. Lund, lectures on Kinetic Stability)
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S2: Derivation of Transverse Centroid and Envelope Equations of Motion

Analyze centroid and envelope properties of an unbunched (9/0z = 0) beam

Transverse Statistical Averages:
Let N be the number of particles in a thin axial slice of the beam at axial

coordinate s. A /\\/

Beam
5>

Axial Coordinate, z

—r

1 I
1 ==

Thin Slice, N >> 1 Particles

Averages can be equivalently defined in terms of the discreet particles making up
the beam or the continuous model transverse Vlasov distribution function:

| N
particles: (o)L = N Z

1=1lIslice
o JPxy [P - f)
distribution: ()1 = finUJ_ fdQCC'L fl

* Averages can be generalized to include axial momentum spread
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Transverse Particle Equations of Motion

Consistent with earlier analysis [lectures on Transverse Particle Dynamics], take:

1 (/Ybﬁb)/ / . q a¢
v (768p) v et = my, By c? Ox
/ 5
//_|_(’Ybﬁb) ey — — q
(oBe) © Y my By c? Oy
0> 0? 0
2 _ I _ — _ "
Vie= (3932 " 5y2> = e
P = Q/dQ:E/J_ fJ_ ¢|aperture =0

Assume:

+ Unbunched beam

+ No axial momentum spread

+ Linear applied focusing fields
described by Kz, Ky

+ Possible acceleration: ¥ 0y
need not be constant

Various apertures are possible influence solution for @ . Some simple examples:

Round Pipe

e
N

Linac magnetic quadrupoles,
acceleration cells, ....
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Elliptical Pipe
y A

K T

In rings with dispersion:
in drifts, magnetic optics, ....

Hyperbolic Sections

'
N

Tp 2

>

Electric quadrupoles
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Review: Focusing lattices we will take in examples: Continuous and
piecewise constant periodic solenoid and quadrupole doublet

a) Continuous
K () L ( K, =K,= k%ﬂ = const ) l

Lattice Period Lp

ko
> Occupancy 7
Eb) Periodic Solenoid ne [O’ 1]
sl (n=k) o _
Solenoid description
carried out implicitly in
. : . = Larmor frame
WM L, “an Can [see: S.M. Lund lectures on
i - | d=(1mL, Transverse Particle Dynamics]
} | ©) Periodic Quadrupole Doublet
Kx('s) I ( K.I: =—Ky ) i % L .
I I A ] Syncopation Factor «
dy L2, 4,
F Quad R - . 1
i D Quad i ) Q& [O, 5]
L2 i
S R R — IS S 1
- L, . d=a(l)L, Q= B — FODO
; Lattice Period - dy=(1-ey(l-M)L,
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Distribution Assumptions

To lowest order, linearly focused intense beams are expected to be nearly uniform
in density within the core of the beam out to an spatial edge where the density

falls rapidly to zero
+ See S.M. Lund lectures on Transverse Equilibrium Distributions

Charge conservation requires:
A = const

Uniform density within beam:
A

T Ty

A (x—X)?/r2+(y—Y)?/r2 <1
— d2 / ~ T Ty’ x Yy
P Y) q/ L { 0,  (z—X)P/r24(y—Y)?/ri>1

)\:q/d2xL/d2xlfL :/d2:r;p = const
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Comments:
+Nearly uniform density out to a sharp spatial beam edge expected for near
equilibrium structure beam with strong space-charge due to Debye screening
- see: S.M. Lund, lectures on Transverse Equilibrium Distributions
+Simulations support that uniform density model is a good approximation for
stable non-equilibrium beams when space-charge is high
- Variety of initial distributions launched and, where stable, rapidly relax
to a fairly uniform charge density core
- Low order core oscillations may persist with little problem evident
- See S.M. Lund lectures on Transverse Kinetic Stability
+ Assumption of a fixed form of distribution essentially closes the infinite
hierarchy of moments that are needed to describe a general beam distribution
- Need only describe shape/edge and center for uniform density beam to fully
specify the distribution!
- Analogous to closures of fluid theories using assumed equations of state etc.
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Self-Field Calculation

Temporarily, we will consider an arbitrary beam charge distribution within an
arbitrary aperture to formulate the problem.

Electrostatic field of a line charge in free-space

E, — )\0 (XJ_—)NC)
L <2
2meg |x1 — X|

Ao = line charge

X] =X = coordinate of charge

Resolve the field of the beam into direct (free space) and image terms:

S i and superimpose free-space

El =——=E +E . . . o
ox, solutions for direct and image contributions
Direct Field
1 - p(x) (XL — %) beam char

1 (%) 2req / L x, — % |2 plxL) density

Image Field . _ . beam image charge
— (5 . .
Ei (x) = 1 / P27, P (XL)(XLN QXL) p'(X1) = density induced
27 x; — X | on aperture

SM Lund, USPAS, 2017

Transverse Centroid and Envelope Descriptions of Beam Evolution

15




// Aside: 2D Field of Line-Charges in Free-Space

VJ_’Ezﬁ :0(74):)‘@

€0 27T

Line charge at origin, apply Gauss' Law to obtain the field as a function of the
radial coordinate 7 :

E, = A E, =rF,
2TeQT

For a line charge at x| = x| , shift coordinates and employ vector notation:

A XJ_—}EJ_
B,

B 27T€0 |XJ_ —}EJ_|2

Use this and linear superposition for the field due to direct and image charges
+ Metallic aperture replaced by collection of images external to the aperture in
free-space to calculate consistent fields interior to the aperture

1
E, = d’ X
1 I / L1 P(XL)

X| —X|

x, —x|?

//
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Comment on Image Fields

Actual charges on the conducting aperture are induced on a thin (surface charge
density) layer on the inner aperture surface. In the method of images, these are
replaced by a distribution of charges outside the aperture in vacuum that meet the
conducting aperture boundary conditions

+ Field within aperture can be calculated using the images in vacuum

+ Induced charges on the inner aperture often called “image charges”

+ Magnitude of induced charge on aperture is equal to beam charge and the

total charge of the images

Physical Images
+ No pipe
+ Schematic only (really continuous image dist)

YA -
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Direct Field:

The direct field solution for a uniform density beam in free-space was

calculated for the KV equilibrium distribution
- see: S.M. Lund, lectures on Transverse Equilibrium Distributions, S3

(7 \

Uniform density in beam:
A

LTy

p = — const

A r—X

Teg (T + Ty)Ts

Expressions are valid only within
\ v the elliptical density beam -- where
Jy— they will be applied in taking averages

e (re + 747y

SM Lund, USPAS, 2017
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Image Field:

Image structure depends on the aperture. Assume a round pipe
(most common case) for simplicity.

Y

A

AT

K
,
—

9

A = —Ao image charge
2
L p . 1 .
X7 = ;Xo 1mage ocation
%0
Will be derived in the

the problem sets.

Superimpose all images of beam to obtain the image contribution in aperture:

E}(x) =

1
2T€EQ

/ d°7|
pipe

p(XL)(xL — 2%y /1% ]?)

[ =i /%L ]?

+ Difficult to calculate even for p corresponding to a uniform density beam
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Examine limits of the image field to build intuition on the range of properties:
1) Line charge along x-axis:

y

No loss in generality:
Can always choose coordinates to

/

T'p

ke ch li I ; '
make charge lie on axis _ Noox, —xt
L7 9 Ix) — v |2
. 0|XL — X
€T A= — )\
p(x1) = M(x — XX) i ﬁA
LT X

Plug this density in the image charge expression for a round-pipe aperture:
+ Need only evaluate at x| = XX since beam is at that location

E! (x| = X%) =

A .
2meg(ra/X — X)X

+ Generates nonlinear field at position of direct charge
+ Field creates attractive force between direct and image charge
- Therefore image charge should be expected to “drag” centroid further off
- Amplitude of centroid oscillations expected to increase if not corrected (steering)

SM Lund, USPAS, 2017
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2) Centered, uniform density elliptical beam:
Yy A

A x2/rz+y2/fr§<1

T Ty’

X
_ p(x1) 0, 22 /r? 4 y2/r2 > 1

Expand using complex coordinates starting from the general image expression:
+ Image field is in vacuum aperture so complex methods help calculation

+ Follow procedures in Transverse Particle Dynamics, Sec 3D: Multipole Models
©.@)

| | | 1 (z —ay)"
A AU N n—1 _ d? )
B =g iB = Y e am g [ R U
n=2.4....
)Xy n/2
, An! ry—ry
Z=r Ty 1=v-1 T 2me027(n/2 + 1)(n/2)! ( rd )
The linear (n = 2) components of this expansion give:
. by r2 — 2 . A r2 — 2
E = x4yx, E, =— x4yy
8meg Ty 8meg Ty

+ Rapidly vanish (higher order n terms more rapidly) as beam becomes more round
+ Case will be analyzed further in the problem sets
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3) Uniform density elliptical beam with a small displacement along the x-axis:
Y =0 | X|/rp, < 1

Expand using complex coordinates starting from the general image expression:
+ Complex coordinates help simplify very messy calculation
E.P. Lee, E. Close, and L. Smith, Nuclear Instruments and Methods, 1126 (1987)
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Leading order terms expanded in | X|/ Tp without assuming small ellipticity obtain:

E' — L
v 2meors
- A
o
Y 2meqr2

[f-(:c—X)+g-X]—1—@<—

;

X

f.y_|_@<_

T'p

X

T'p

;

Where fand g are focusing and bending coefficients that can be calculated in terms of
X, 7Ty, 7y (which all may vary in s) as:

FocusingTerm:
2
polin X 1+3<Tgrg>+3<@r§>
4r2 r2 2 r2 8 re
BendingTerm:
2
'r'%—rz X2 3 (r —7“5 1(r —7'5
g=1+ 12 + — 1—1—1 —— |t | =
re T T 8 T

+ Expressions become even more complicated with simultaneous x- and y-
displacements and more complicated aperture geometries !

* 1 quickly become weaker as the beam becomes more round and/or for a larger pipe

+ Similar comments apply to g other than it has a term that remains for a round beam
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Comments on 1images:
+Sign 1s generally such that it will tend to increase beam centroid displacements
- Also (usually) weak linear focusing corrections for an elliptical beam
*Can be very difficult to calculate explicitly
- Even for simple case of circular pipe
- Special cases of simple geometry and case formulas help clarify scaling
- Generally suppress by making the beam small relative to characteristic
aperture dimensions and keeping the beam steered near-axis
- Simulations typically applied
*Depend strongly on the aperture geometry
- Generally varies as a function of s in the machine aperture due to changes in
accelerator lattice elements and/or as beam symmetries evolve

Round Pipe Elliptical Pipe Hyperbolic Sections
Y A Yy A &A_/
R e

N x

NE T
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Coupled centroid and envelope equations of motion for a

uniform density elliptical beam

Consistent with the assumed structure of the distribution
(uniform density elliptical beam), denote:

Beam Centroid:

X = <.CU>J_
Y=

X/
Y/

(') 1

<y/>J_

Coordinates with respect to centroid:

r=x—X

Nag!
|

Envelope Edge Radii:

(T%) 1

ry = 2v/(9%) 1

Ty = 2

r

/
T
/
y

= 2(z7") | /(7%) )/
= 2G5

With the assumed uniform elliptical beam, all moments can be calculated
Tz,

X, Y

1n terms of:

+ Such truncations follow whenever the form of the distribution 1s “frozen”
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/[Aside: Edge Radius Measures and Dimension

The coefficient of rms edge measures of “radii” of a uniform density beam
depends on dimension:

1D: Uniform Sheet Beam:
+ For accelerator equivalent model details see:
Lund, Friedman, Bazouin PRSTAB 14, 054201 (2011)

Lwidth = \/5@2)1/2

2D: Uniform Elliptical Cross-Section:
+ See lectures on Transverse Equilibrium Distributions and homework problems

— >1/2
ry = 2(y >1/2

3D: Uniformly Filled Ellipsoid:
+ See JJ Barnard Lectures on a mismatched ellipsoidal bunch and

and Barnard and Lund, PAC 9VO18 (1997) 1/
Axisymmetric Transverse Tz \/g<'73 ) /
VB

ri = /5/2(8 + §2)1/? 3Dy

r. = VB(EY) /2 r. = VB(E) /2
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General case uniform density beam:
 For dimension d, the coordinate average along the j = x, y, z

ri =v2+d(i5) .

/]
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Derive centroid equations: First use the self-field resolution for a uniform density
beam, then the equations of motion for a particle within the beam are:

) AN S
2 |
s (7555) 2+ ko — Q (z— X) = 3q . 2E.CZC
(765p) (re +7y)72 m% Byc
7 (’Vb/gb)/ / 20Q) i i
Y+ Y + Kyy — —-Y E,
R e T T o
************** Direct Terms Image Terms
Perveance: gA

= o omAB B2 (not necessarily constant if beam accelerates)
b

. / .
average equations using: ( > 1= (z > | = X" etc., to obtain:

Centroid Equations: (see derivation steps next slide) Note: the electric image
- field will cancel the
X" 4 (95)’ X' 4+ Kk, X =Q 2meo (EL), coefficient 27meg/A
(765s) AT . (30) (0L — %)
" (/Ybﬁb) v v 27eg B _ E = 2meg /d%ﬁ - T;L i(;LPXL
Y (’Ybﬁb) T Ky Q _ \ < y>J—_

» (E") | will generally dependon: X, Y and Tz, Ty
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//Aside: Steps in deriving the x-centroid equation
Start with equation of motion:

!/
xr +

(708s)" 2 3
(VBs) et (T2 +1y)72 @ =X) = meﬁbCZE

Average pulling through terms that depend on on s:

7 (’Ybﬁb), / 20Q) q i
()1 4 ( () 'Y 4+ (kpx) | — <(7“:1; oy (x — X)) = <m%5502E "Y1
7 (/Vbﬁb)/ 2Q
@)L+ (7680) T L+ ()L - (75 + 7972 &= X)L
B gA 2meQ ;
Use - 2megmy; B c? [ ] Felt
X = ()L X' = (")) 0= gA
r—X), =X —-X=0  2meomy, By c?
1 (/Vbﬁb)/ / L [27T€0 i ]

/1]
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To derive equations of motion for the envelope radii, first subtract the centroid

equations from the particle equations of motion ( £ = z — X ) to obtain:

o (/Ybﬁb) ~ - 2@5; B q - i
’ (Wbﬂb) &+ il (re +7,)ra  my3 B2 B, — (B ]
v (’Ybﬁb), - 201y B q Z

’ (%Bb) AT (re +7,)re M3 By — (Ey).]

Differentiate the equation for the envelope radius twice (y-equations analogous):

2(xx 4(xx’
r. :2<572>i/2 : T:/C — << >1>/J2— _ <T >_L

p o 2@y 2E?) 2(2F).

Tz = 5 ¥ 12 .32
<CE2>¢/ <x2>¢/ <x2>¢/
@y 16 (%)) (7)) — (@)1
B ~o\1/2 o\ 1/213
[2(2%) /7] 2(22) 17
_wEny, 16 [(#) 1 (@%) ) — (@)1 ]

SM Lund, USPAS, 2017 Transverse Centroid and Envelope Descriptions of Beam Evolution

30




Define (motivated the KV equilibrium results in the lectures on Transverse Equilibrium
Distributions) a statistical rms edge emittance:

0 = Aeg s = 4 [0 (82)1 — (27)7]"

Then we have:

i 4<5753”>L 16[(2%) 1 (7)1 — (22")7 ]
T T rs
~ ~/ 2
_ 4(50513 L N eg
T ro

and employ the equations of motion to eliminate Z" in (TZ” | with the following steps
ploy q g step

Using the equation of motion:

~ 1/ (’Ybﬁb)/ ~/ ~ QQEE q i i
T — — Et —(F
€T +—%5b r + K,.x R m735202[ - < xﬁ}
Yy b

Multiply the equation by &, average, and pull s-varying coefficients and constants
through the average terms to obtain
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oy (Vbﬁb)/ ~ 2\ 2Q<EE >
L (V6b) BE) L+ R (ra + ry)Ta
But m%ﬂbcﬁ [(2Es) (@(B)i).]

Giving
~~ 20 (2 )
< //> T ((z/bb%bb)) < > T l{x< >J_ - (Tf_ﬁryéi_x — moy Bb c? <CEE >
~ ~// (68s)" T2 e Qry/2 _ i
< > T (76By) 4 + Rz Tetry m'YbBbcz <$E >

: : : : 7
Using this moment in the equation for 7",

~ ~ 2
! — 8820 e

x T T3

then gives the envelope equation with the image charge couplings as:
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Envelope Equations:

(v5s)" 2Q) g2 FTEQ
xlx — = = E! ]
7“ —I_ (’Ybﬁb) —|— " T;,;—l—’l“y 7“% SQ L )\ <£U >
(78)" 2Q) 82 CTEY
_ v Ei ]
ry (V58p) "o Ryl re+Ty T S¢ LA Ey)

» (ZE") | will generally depend on: X, Y and 7'z, Ty

Comments on Centroid/Envelope equations:

+Centroid and envelope equations are coupled and must be solved
simultaneously when image terms on the RHS cannot be neglected
+Image terms contain nonlinear terms that can be difficult to evaluate explicitly
- Aperture geometry changes image correction
+The formulation is not self-consistent because a frozen form (uniform density)
charge profile 1s assumed

- Uniform density choice motivated by KV results and Debye screening

see: S.M. Lund, lectures on Transverse Equilibrium Distributions
- The assumed distribution form not evolving represents a fluid model closure
- Typically find with simulations that uniform density frozen form distribution

models can provide reasonably accurate approximate models for centroid and
envelope evolution
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Comments on Centroid/Envelope equations (Continued):
* Constant (normalized when accelerating) emittances are generally assumed
- For strong space charge emittance terms small and limited emittance
evolution does not strongly influence evolution outside of final focus
- See: S.M. Lund, lectures on Transverse Particle Dynamics and
Transverse Kinetic Theory to motivate when this works well

Bby Yoy A s-variation set by acceleration schedule

Ene = YoPbEr = const

— used to calculate €z, &y
Eny = YbPbey = const

_ qA
 2mmegy BEc?
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S3: Centroid Equations of Motion
Single Particle Limit: Oscillation and Stability Properties

Neglect image charge terms, then the centroid equation of motion becomes:

/
X" 4 (/Vbﬂb) X'+ ko X =0
(7680)
/
Y//_I_ (/Vb@b) Y/—|—/<; Y =0
(768p) i’

+ Usual Hill's equation with acceleration term

+ Single particle form. Apply results from S.M. Lund lectures on Transverse Particle
Dynamics: phase amplitude methods, Courant-Snyder invariants, and stability
bounds, ...

Assume that applied lattice focusing is tuned for constant phase advances with
normalized coordinates (effective Kz, Ky ) and/or that acceleration 1s weak and
can be neglected. Then single particle stability results give immediately:

1
5[ Tr M (si + Lplsi)| < 1 00z < 180° centroid stability

<> o st o .
%|Tr M, (s; + Ly|s:)| < 1 ooy < 180 1™ stability condition
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//l Example: FODO channel centroid evolution for a coasting beam

o lattice/beam
Mid-drift g ? parameters:
launch: ; Cl) vy B8, = const
X(0) =0mm % -1 0oz = 80°
X'(0) = 1 mrad - -2 L,=0.5m
-3
n = 0.5

0 2 4 6 8 l.O 1‘2 1‘4 16
s/L,, Lattice Periods
+ Centroid exhibits expected characteristic stable betatron oscillations
- Stable so oscillation amplitude does not grow
- Courant-Snyder invariant (1.e, initial centroid phase-space area set by

initial conditions) and betatron function can be used to bound oscillation
+ Motion 1n y-plane analogous

/]

Designing a lattice for single particle stability by limiting undepressed
phases advances to less that 180 degrees per period means that the centroid
will be stable

+ Situation could be modified in very extreme cases due to image couplings
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Effect of Driving Errors

The reference orbit is ideally tuned for zero centroid excursions. But there will
always be driving errors that can cause the centroid oscillations to accumulate
with beam propagation distance'

V656)" </
X// —|_ ( X _|_ n K/n ajn
(755) Z Go'" Z
Z Kn (S kn(8) nominal gradient function, nth quadrupole
G = nth quadrupole gradient error (unity for no error; s-varying)
0
A,n = nth quadrupole transverse displacement error (s-varying)
/l/ Example: FODO channel centmld w1th uadru ole displacement errors
P q P P
15
Gn ]
Go Z |
Agp =[-05,0.5)mm " Lo o A KR RN K[| B s | solid - with errors
(uniform dist) ~ ey NS A Vg L v L L dashed - no errors
E  -5p
same lattice and 5 o,
initial condition
as previous “1eg 10 20 30 40 50
s/ L, Lattice Periods ///
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Errors will result in a characteristic random walk increase in oscillation amplitude
due to the (generally random) driving terms
+ Can also be systematic errors with different (not random walk) characteristics
depending on the nature of the errors

Control by:
+ Synthesize small applied dipole fields to regularly steer the centroid back on-axis
to the reference trajectory: X=0=Y, X'=0=Y"
+ Fabricate and align focusing elements with higher precision
+ Employ a sufficiently large aperture to contain the oscillations and limit
detrimental nonlinear image charge effects (analysis to come)

Economics dictates the optimal strategy
- Usually sufficient control achieved by a combination of methods
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Effects of Image Charges

Model the beam as a displaced line-charge in a circular aperture. Then using the
previously derived image charge field, the equations of motion reduce to:

X"+ (95’ PP X 4k, X = QX examine oscillation
(755b) 129 — X along x-axis
X
7“2Cz X2 %X * %XS
p p p
linear correction / \ Nonlinear correction (smaller)

Example: FODO channel centroid with image charge corrections

:'-_

[2

rp, = 30 mm
Q=2x10"4

—

solid — with images
dashed — no images

o

|
—

same lattice
as previous

Centroid X [mm]|

0 10 20 30 40 50
s/ L,, Lattice Periods
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Main effect of images 1s typically an accumulated phase error of the centroid orbit
+ This will complicate extrapolations of errors over many lattice periods

Control by:
+ Keeping centroid displacements X, Y small by correcting
+ Make aperture (pipe radius) larger

Comments:
+*Images contributions to centroid excursions typically less problematic than
misalignment errors in focusing elements
+*More detailed analysis show that the coupling of the envelope radii 7z, 7y to the
centroid evolution in X, Y 1s often weak
+ Fringe fields are more important for accurate calculation of centroid orbits since
orbits are not part of a matched lattice
- Single orbit vs a bundle of orbits, so more sensitive to the timing of
focusing impulses imparted by the lattice
+ Over long path lengths many nonlinear terms can also influence oscillation phase
e Lattice errors are not typically known a priori so one must often analyze characteristic
error distributions to see if centroids measured are consistent with expectations
- Often model a uniform distribution of errors or Gaussian with cutoff tails since
quality checks should render the tails of the Gaussian inconceivable to realize
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S4: Envelope Equations of Motion

Overview: Reduce equations of motion for 7, 7y
+ Find that couplings to centroid coordinates X Y are weak
- Centroid 1deally zero in a well tuned system
*Envelope eqns are most important in designing transverse focusing systems
- Expresses average radial force balance (see following discussion)
- Can be difficult to analyze analytically for scaling properties

- “Systems” or design scoping codes often written using envelope equations,
stability criteria, and practical engineering constraints

+ Instabilities of the envelope equations in periodic focusing lattices must be
avoided in machine operation
- Instabilities are strong and real: not washed out with realistic distributions

without frozen form
- Represent lowest order “KV” modes of a full kinetic theory

*Previous derivation of envelope equations relied on Courant-Snyder
invariants in linear applied and self-fields. Analysis shows that the same

force balances result for a uniform elliptical beam with no image couplings.
- Debye screening arguments suggest assumed uniform density model taken
should be a good approximation for intense space-charge
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KV/rms Envelope Equations: Properties of Terms

The envelope equation reflects low-order force balances:

(Vbﬁb), / 2@ 5% —0
Ty T Kalz — 3 =
(708s) " Ty + Ty ra
2
(Vbﬁb)’r/ 4 o 2 &y _ 0
y vy 3
(%Bb) ; : | T T Ty | Ty
Applied Applied Space-Charg Thermal
Streaming Acceleration  Focusing Defocusing Defocusing
g
Lattice Lattice Perveance Emittance

Terms: Inertial

The “acceleration schedule” specifies both 758, and A
then the equations are integrated with:

VoBbEx = const normalized emittance conservation
Yo BpEy = const (set by initial value)
gA o
= specified perveance
27Teomfy;;3 6502 P P
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Reminder: It was shown for a coasting beam that the envelope equations
remain valid for elliptic charge densities suggesting more general validity

[Sacherer, IEEE Trans. Nucl. Sci. 18,

1101 (1971), J.J. Barnard, Intro. Lectures]

For any beam with elliptic symmetry charge density in each transverse slice:

2

T 2

g
2
Ty

_|_

~r(5+3)

the KV envelope equations

2
T:U

1 o 2Q
o (8) a8 (s) = T o
2Q

ry(8) + Ky(s)ry(s) —

rz(s) +ry(s)

Based on:
oo, A T
<x8x>L  dmeg T, + Ty
See
83 (S) + J.J. Barnard, Intro. Lectures
- r3(s) =0 + Transverse Equilibrium
5 Distributions, S3 App. A
O
T (s)

remain valid when (averages taken with the full distribution):

_ gA

— = const
2meom; B2 c?

1/2

1/2
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)\:q/deLp = const

e = 4[(@?) L (2?1 — (wa”)]Y?

ey =4[y LW*) 1L — (yy)i]"?

+ Evolution changes often small in €4, &y
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Properties of Envelope Equation Terms:

. !/ !
Inertial: 75, 7

(wB)" , (WwBs)

Applied Focusing: ~z"z> AyTy  and Acceleration: (v,0) “°  (70) Y

+ Analogous to single-particle orbit terms in Transverse Particle Dynamics
* Contributions to beam envelope essentially the same as in single particle case
+*Have strong s dependence, can be both focusing and defocusing

- Act only in focusing elements and acceleration gaps
- Net tendency to damp oscillations with energy gain

20 1

Scale ~ :
Ty + Ty Env. Radius
* Acts continuously in s, always defocusing

*Becomes stronger (relatively to other terms) when the beam expands in cross-
sectional area

Perveance:

2

£ 1
Emittance: —= Scale ~

o (Env. Radius)?

+ Acts continuously in s, always defocusing

*Becomes stronger (relatively to other terms) when the beam becomes small 1n
cross-sectional area

*Scaling makes clear why it 1s necessary to inhibit emittance growth for

applications where small spots are desired on target
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As the beam expands, perveance term will eventually dominate emittance term:
[see: Lund and Bukh, PRSTAB 7, 024801 (2004)]

Consider a free expansion (kz = Ky = 0) for a coasting beam with /3, = const

Initial conditions: Cases:
rz(8i) = 74(5;) Q _ & Space-Charge Dominated: €, =
. 3(c. . .
r (s;) = T;(Sz‘) = ra(s:) 2Tw(52> Emittance =~ Dominated: & =0
_ op _ —3
Q=—2<=10
TCC(Si>
3.0
; r, (s)/ r, ( Si) See ne.xt page: soh.ltion 1S
= 2.5 i analytical in bounding
_ Space- Charge .
O . limits shown
7 [ Dominated
a¥ : / | Parameters are chosen such
LE 1.51 r X(S) r x(Si) { thatinitial defocusing
T . |  forces in two limits are
: Emittance |
10| Dominated equal to compare case

00 0.1 02 03 04 05
Axial Coordinate, s—s;, (m)
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For an emittance dominated beam in free-space, the envelope equation becomes:

Q g2 e

/! s
—<<_:§,y — rj__g),:() J =,y
Ty + Ty rx,y ”l“j

The envelope Hamiltonian gives:

1 /2 6.?

—r° + —= = const
J 2

2 27“j

which can be integrated from the initial envelope at s = s; to show that:

Emittance Dominated Free-Expansion (@ = 0)

S GO Y PO Ll A0
r;(si) Z £ rj(si)

rj(s) = rj(se)y |1+
\

J=x,y

Conversely, for a space-charge dominated beam in free-space, the
envelope equation becomes:

Q 8% Y ’I"” —_ — = O 1
—_— > == T+ r+ = =T +r
Tx | 'ry ,r:%,y :> T” O 2( €T y)
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The equations of motion

7 .
T+
r’ =0

can be integrated from the initial envelope at s = s; to show that:
+ T— equation solution trivial 1
+ T+ equation solution exploits Hamiltonian 57“2 — @ Inry = const

Space-Charge Dominated Free-Expansion (e, = £, = 0)

12/( . / . r’2(s; . 2
ri(s) =ri(s;)exp (ngz) + lerfi™! {erﬁ T:;%)] + ?e +2£2 ) (:+(si3) }] )
r(s) =r(si) +r_(si)s = si) Imaginary Error Function

1 erf(iz) 2 [~ 5
ry = §(TCU 4+ ry> erﬁ(z) = ; \/_ dt exp(t )
1 =+v—1

The free-space expansion solutions for emittance and space-charge dominated

beams will be explored more in the problems
SM Lund, USPAS, 2017 Transverse Centroid and Envelope Descriptions of Beam Evolution 47




S5: Matched Envelope Solution: Lund and Bukh, PRSTAB 7, 024801 (2004)

Neglect acceleration (7»3» = const) or use transformed variables:

7 — QQ B Ei B
T (S) + /@x(S)Tg;(S) frx(S) + Ty(S) TCSU S) :
17 — 2 B 82 B
() )y ($) = S T )
Tx(S + Lp) — TLU(S) 7“5,;(5) >0
ry(s + Ly) = 1, (s) ry(s) > 0

Matching involves finding specific initial conditions for the envelope to
have the periodicity of the lattice:

Find Values of: Such That: (periodic)
/ / /
Tx\Si Tz \Si re(Si + Lp) = 12(8; re(8i + Lp) = 1,(8;
(si) | (si) > | = p) = ra(si) / ( p) / (si)
ry(si) Ty (84) ry(si + Lp) = 7y(5;) ry(8i + Lp) = 1,(8:)

* Typically constructed with numerical root finding from estimated/guessed values

- Can be surprisingly difficult for complicated lattices (higho ) with strong space-charge
+ [terative technique developed to numerically calculate without root finding;

Lund, Chilton and Lee, PRSTAB 9, 064201 (2006)

- Method exploits Courant-Snyder invariants of depressed orbits within the beam
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Typical Matched vs Mismatched solution for FODO channel:

X,Y Envelopes (mm)

40

10

Matched

Matched Beam Envelope

Tx )

5 10 15
Axial Coordinate, s (m)

X,Y Envelopes (mm)

10

Mismatched

Envelope Solution: Matched and Mismatched Beam

T I T l'\l | T I T T | I T T

r / "«— MisMatched Beam (Dashed) /|
xr! , ! [

i

X ‘l\_ "j' |
Matched Beam (Solid)

|
5 10 15
Axial Coordinate, s (m)

The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport
+ Matching uses optics most efficiently to maintain radial beam confinement

SM Lund, USPAS, 2017
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The matched solution to the KV envelope equations reflects the symmetry of the
focusing lattice and must, in general, be calculated numerically

Edge Radu r; and r, (mm)

SM Lund, USPAS, 2017

Envelope equation very nonlinear
re(s =+ Lp) = 14(8)
ry(s+ Lp) = ry(s)

Ex = Ey

Solenoidal Focusing
(Q = 6.6986 x 10™%)

Axial Coordinate &/Ly,

Parameters
L,=0.0m, o9 = 80°, n=0.5

£, = 50 mm-mrad
o/og = 0.2

Perveance Q iterated to
obtain matched solution
with this tune depression

FODO Quadrupole Focusing
(Q = 6.5614 x 10™%)

/ o,
\\R:’. “
-~ i HR --.-'-"-#
. /f,f
r
¥ \\‘.% ) -
K = —iy,

] 0.4 0.6 0.8 1

Axial Cloordinate s/L,
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Symmetries of a matched beam are interpreted in terms of a local rms

equivalent KV beam and moments/projections of the KV distribution
[see: S.M. Lund, lectures on Transverse Equilibrium Distributions]

MLALC A DAl TIYCIOPRE dnd MOCLsINE CUncLOn

T —
E )
Z
A n
B 6L
) — I |
- ;
. . 4 o o2 i " 04 i " 06 i 0.8
PI'OJ ection I | Axial Coordinate!(Lattice Periods) |
¥ ¥ y
X_y X X X

area: mT, 7, 7 const

X-X'
area: e, = const
(CS Invariant)

|

Y-y

area: e, = const
(CS Invariant)
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Iterative Numerical Matching Code implemented in Mathematica provided
Lund, Chilton, and Lee, PRSTAB 9, 064201 (2006)

IM (Iterated Matching) Method
+IM Method uses fail-safe numerical iteration technique without root finding to
construct matched envelope solutions in periodic focusing lattices
- Based on projections of Courant-Snyder invariants of depressed orbits in beam
- Applies to arbitrarily complicated lattices (with user input focusing functions)
- Works even where matched envelope is unstable

+ Can find matched solutions under a variety of parameterizations:

Case -1 ’fazaffyaLp (O'Oxao'Oy) Q, €, Ey + Twxiy Tyi, T;i, T;ﬂ-
Case 0: (standard) Kas Ky, Lp (00z, 00y) @, €x, €y

Case 1: Kas Ky, Lp (00z,00y) @, 0z, 0y (find consit: 5, &)
Case 2: Ky Ky, Lp (00z,00y) €2 = €y, 0z = 0y (find consit: Q)

Note: Case O 1s only applied to integrate from an initial condition
and does NOT generate a matched beam.

+ Optional packages include additional information:
- Characteristic undepressed and depressed particle orbits within beam
- Matched envelope stability properties (covered later in these lectures)
* Program employed to make many example figures in this course
- Many highly nontrival to make without this code !
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To Obtain code:
» Package files placed in directory “env_match_code” with this lecture note set
» Package maintained/updated presently using git software maintenance tools.
Can obtain full distribution on unix-like system from a terminal window using:

% git clone https://github.com/smlund/iterative_match

To Run code: see readme.txt file with source code for more details

1) Place “im_*.m” program files in directory and set parameters (text editor) in “im_inputs.m”
2) Open Mathematica Notebook in directory
3) Run in notebook by typing: << im_solver.m [shift-return]
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Example Run: sinusoidally varying quadrupole lattice with Kz = —Hy
+ See “examples/user” subdirectory in source code distribution (other examples also)

Output: 1% Output: 2"

File Edit Insert Format Cell Graphics Evaluation Palettes Window » File Edit Insert Format Cell Graphics Ewvaluation Palettes Window »
<< in_solver.m 3 Undepressed (Lattice) Betatron Function J <]
MatChEd EI'IVE'|DPE' SUIUUD“ - IM MEthUd ] Undepressed Betatron Functions (black = x, red = y) 3
0.8 T T " T
3-5-2015 by lund on localhost ]
Code Provided by Steve Lund ]
Michigan State University (MSU), Facility for Rare |Isotope Beams (FRIE) ] .
E
. i o
Transport Lattice &
Lattice Tyvpe UserInput E
Undepressed Phase Advances [deg/period]
x-plane, op, [deg/pericd] 80.
v-plane, og, [deg/pericd] 20.
Lattice Period, Ly [m] 0.5
Coccocupancy, 1 HN&
Syncopation Factor, o (ao=1/2 = FODO) MNEA 5 (mj)
Max Focusing strength, Max[sg, o], [1/m*] |45.853 i | roHorizontal y-vertical -
Lattice Focusing Functions (black = x, red = y) 3 Max Bl Max[fy] [m] 0.7TI2l 0.7TT21
s-locations of Maxs [mm] 125. 375.
ol Min[Ge ], Min[3.] [m] 0,.19226 0.19226
40 s-locations of Mins [mm] 375. 125. i
—, 20y : =
A Beam Properties
If‘ ':" . . 4 ]
] Dimensionless Ferveance, Q 1. =10 4
" RMS Edge Emittances [mm-mrad]:
= _opl £ 7.6221
Ey T.8221
Depressed Phase Advances [deg/period]
-407 x-plane, o, [deg/pericd] 16.
, , , \ v-plane, o, [deg/pericd] 16.
0.0 0.1 0.2 0.3 0.4 05 Tune Depressions:
5 (M) Ox Tox 0.2
Oy { Ty .

Hem
KD

-

75% 75%
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Output: 3"

Fle Edit Insert Format Cell Graphics Ewvaluation Palettes Window »
Matched Solution
Matched Envelops Functions (black = x, red = y) El
5.0 .
45 .
= 40 d
T s ]
3.0 _
0.0 0.1 nz 0.3 0.4 05
5 [m] ]
Matched Envelope Angles (black = x, red = y) 3
155 . : : : .
5 ]
@ ]
0.0 0.1 0.2 0.3 0.4 0.5
s[m] ]
| ¥-Horizontal y-vertical

Y

SM Lund, USPAS, 2017

75%

Output: 4"

File Edit Insert Format Cell Graphics Evaluation Palettes Window »
x-Horizontal v-Vertical 3 @
Radii, ry =2 (x*452, =2 (531020
Avg (Lattice Pericd), ry, ry [mm] 3.947 3.947
Max, Max[ry], Max[ry] [mm] 5.1485 5.1485
s-locations of Maxs [mm] 125. 375.
Min, Min[ry], Min[ry] [mm] 2.8298 2.8298
s-locations of Mins [mm] 375. 125.
Angles, rx', rYI :
Max, Max[ry'], max[r,'] [mrad] 14.685 14.685
s-locations of Maxs [mm] 11.317 261,32
Min, Min[r,'], Min[r,'] [mrad] -14.685 -14.685
s-locations of Mins [mm] 23B.66 488.67
Matching Conditions:
Radii. «ryx[0], ry[0] [mm] 3.904% 3.904%
angles, r,'[0], ry'[0] [mrad] 14.533 -14.533 1
Average Radius Measures: E
3 rzTy  [mm] 3.8612
(e +Ty) /2 [mm] 3.947
Parameterization Case 1 K
Specified Fractional Tolerance|l. =10 g
Achieved Fractional Tolerance|2.6884x10°7
Iterations MNesded 7
CPU Time for Soclution [sec] 15.9703 ]
Single Particle CS Invariants (includes space-charge): 3
&y [mm-mrad] 2.744
£y [mm-mrad] 2.744
Axial Coordinates:
Initial s; [m] 0.
Final s¢ [m] 11.25
75%

+ More on particle orbits and
matched envelope stability
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S6: Envelope Perturbations: Lund and Bukh, PRSTAB 7, 024801 (2004)

In the envelope equations take:

Envelope Perturbations: Driving Perturbations:
2(5) = Tam(s) + 61205 2(5) = a(s) & 6a ()
ry(s) = Tym(s) + 0ry(s) iy (8) = sy 5) + Oy (s
Q — Q -+ 6@(8) Perveance
Matched  Mismatch + 6e,(s)
Envelope Perturbations z 7 Ea A Emittance
£y — €y + 0gy(s)

Perturbations in envelope radii are about a matched solution:

Fom (5 + Lp) = Tem(s)  Tom(8) >0
Fym (8 + Lp) = Tym(s) Tym(s) >0
Perturbations in envelope radii are small relative to matched solution and driving
terms are consistently ordered:
Taem(8) > [07r4(s)| Amplitudes defined in terms of
rym(8) > |07, (s)| producing small envelope perturbations

+ Driving perturbations and distribution errors generate/pump envelope perturbations
- Arise from many sources: focusing errors, lost particles, emittance growth, .....
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The matched solution satisfies:
+ Add subscript m to denote matched envelope solution and distinguish from

other evolutions

Fe = Tam For matched beam envelope

Ty — Tym with periodicity of lattice
Assume a coasting beam with 753, = const or that emittance is small and the
lattice 1s retuned to compensate for acceleration to maintain periodic Kz, Ky

1" . 2Q) . 5% _
o) 4 e ) @) @)
" B 2Q &
o ) G @) )
Pem (S + Lp) = Tum(s) Tem(8) > 0
rym (s + Lp) = 1ym(S) rym(s) >0

Matching is usually cast in terms of finding 4 “initial” envelope phase-space
values where the envelope solution satisfies the periodicity constraint for specified

focusing, perveance, and emittances:
/
Tmm(S@') T:Um(si)

/
ry’m(si) Tym(si)
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Linearized Perturbed Envelope Equations: (steps on next slide)
» Neglect all terms of order 42 and higher: (57“33)2, 0Tz 0Ty, 0QQOTy, - -+

20) 3e?
!/ X
Ory, + K0Ty + o o2 (0rgy + Ory) + 1 —L 7,
2 2€ .,
Tam + Tym r:cm
20) 3e2
/! Yy
0T, + KyOTy + o o2 (0ry + 07y) + o —— 0Ty,
2 25y
- _Tym5ﬂy _'_ T'xem "I_ Tym 5Q _I— r?:jm 583!

Homogeneous Equations:
+ Linearized envelope equations with driving terms set to zero

2 33
Or! + K0T, + T +Qr E (07 + dry) + r4$ ory =0
rm Yym
2Q 3¢’
or!! 0 ory + 0 Py g =0
Ty T KyOTy + (’I“a;m—l-rym)z( ry +0ry) + o Ty
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Derivation steps for terms in the linearized envelope equation:

Inertial: =+ orl
Focusing: KaTe —>(Kz + 0Kz) (Tom + 075)

~ KpTom + KpOT g 4 0Ky Ty @(52)
20) \ 20) + 200)

Ty + Ty /rxm + Tym + 0Ty + 07y,

N 20) [1 01y + 01y ]

Perveance:

Toem T T'ym Tem T+ T'ym
20
+ ¢ + O(6%)
T'em + rym

g7 (x4 0ep)’
rs ' (rem + 012)3

28,0E 1 3

Emittance:

: [1 _ 35%] +6(52)

3 3
chm T:z:m ’I“xm
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Collect all terms and neglect higher order:

Ty, (8) + Kz (8)Tem(s) — rm<s>2§rym<s> ol

20) 3e?
!/ x
0T, + KgpOTy + (. (0ry + ory) + @5%
2 2E 1
= —T:Uméliag -+ 5@ + 35 653}
Tzm + ?“ym Txm
Use the matched beam constraint:
7 . 2Q _ £z _
Tem(8) + Ka(8)ram(8) — oy —m ey =0
Giving:
20) 3e?
!/ X
0T + K0Ty + (o & o) (0ry + ory) + %5%
2 2E
= —chm(sl‘ig; + 5@ + ;—: 553;
Tzm + Tym Tasm

+ analogous equation in y-plane
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Martix Form of the Linearized Perturbed Envelope Equations:

d
—0R+K:-0R =0P
ds
0T,
SR = 0T Coordinate vector
| ory
67“;), Coefficient matrix Has per10d1Cl‘[y
o -1 0 0 | 2Q of the lattice period
K = kxm 0 kOm 0 (Twm + Ty’m)Q
-1 0 0 0 -1 £2 .
kom 0 kym O kjm = Kj + 35— +kom  J=2, Y
im
0
— —5&33?“'1””7’ —I— 2?”xm5‘|6;27“ym + 26385633
oP = 0 Driving perturbation vector
—0KyTym + 2 xm+rym -+ stj;y
Expand solution into homogeneous and particular parts:
0Rj, = homogeneous solution
SR = 6R;, + 6R,, h s
0R, = particular solution
d d
d—éRh—l—K )R, =0 £(5R + K -oR, =0P
S
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Homogeneous Solution: Normal Modes

+ Describes normal mode oscillations

+ Original analysis by Struckmeier and Reiser [Part. Accel. 14, 227 (1984)]
Particular Solution: Driven Modes

+ Describes action of driving terms

+ Characterize in terms of projections on homogeneous response (on normal modes)

Homogeneous solution expressible as a map:

OR(s) = Mc(s|s;) - 0R(s;) 1;02\V 4x14 S'}]Steifn;i°ll)11'1t analo.gous.to the
5R( 3) — (5% 57°/x 7 5ry, 5r’) XZ analysis .0 111's equation via
¢ Y transfer matrices: see S.M. Lund
Me(S’Si) = 4 x4 transfer map lectures on Transverse Particle Dynamics

Eigenvalues and eigenvectors of map through one period characterize normal
modes and stability properties:

Me(si —+ Lp|87;) . En(Sz) = )\nEn(Sz)

Stability Properties Mode Expansion/Launching
4
NS 0, — mode phase advance (real) SR(s;) = Z anE, (s:)
n = In Yn — mode growth/damp factor (real) n=1
o, = const (complex)

SM Lund, USPAS, 2017 Transverse Centroid and Envelope Descriptions of Beam Evolution 62




Eigenvalue/Eigenvector Symmetry Classes:

a) Stable
ImAi, A

¢) Unstable, Lattice
Resonance

Im A, A

Eigenvalues

ic
1
ll = e_
ic
7‘~2 = e 2 )
-io,
k3 = l/?L1 = ll* =e

7L4= 1/7\,2 = 7\.2* =e

Eigenvalues
icl

—icl

in
14 = 1/12 = (l/yz)e

Eigenvectors

Eigenvectors

ol
fgz (real)
By = B

]§4 (real)

b) Unstable, Confluent
Resonance

Im A,

Eigenvalues

IO'l
kl =7v,€ _
10}
Ay = 1/A% = (l/yl)e‘
—lGl
Ay = 1/4 = (1/&_/1)6-

—IGl

d) Unstable, Double Lattice

Resonance

ImA, A

Eigenvalues
i
A o=7,e

in

=
9
|

N

Symmetry classes of eigenvalues/eigenvectors:
+ Determine normal mode symmetries

+ Hamiltonian dynamics allow only 4 distinct classes of eigenvalue symmetries

- See A. Dragt, Lectures on Nonlinear Orbit Dynamics,
in Physics of High Energy Particle Accelerators, (AIP Conf. Proc. No. 87, 1982, p. 147)

+ Envelope mode symmetries discussed fully in PRSTAB review
+ Caution: Textbook by Reiser makes errors in quadrupole mode symmetries and
mislabels/identifies dispersion characteristics and branch choices

SM Lund, USPAS, 2017

= 17k = (177e”

zy
>
o3

>
(98]

|

= /%y = (1/7,)e™

>
N
|

Eigenvectors

Eigenvectors
f; 1 (real)
E‘Z (real)
E}, (real)

E4 (real)
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Pure mode launching conditions:

Launching conditions for distinct normal modes corresponding to the

eigenvalue classes 1llustrated:
Ay = mode amplitude (real)
1y = mode launch phase (real)

¢ = mode index
C.C. = complex conjugate

Casc Modec Launching Condition

Latticc Period Advance

(a) Stable 1 - Stable Osc. ‘R = A1e™E; + C.C.

ME(SRl(T,Dl) = (SRl(T,bl -+ O‘l)

Lattice Res. 2 - Exp. Growth |dRs = AsEs
3 - Exp. Damping | dR3 = A3E,

2 - Stable Osc. Ry = Ase™2E,y + C.C. M 0R,(ths) = dRo(1hy + o)
(b) Unstable 1- Exp. Growth [dR; = A" E; + C.C. M.0R(¢)1) = v1dR((¢)1 + o)
Confluent Res. 2 - Exp. Damping | Ry = Aye™?Ey 4+ C.C. MORo(v2) = (1/v1)0Ra(12 + 1)
(c) Unstable 1 - Stable Osc. Ry = AjeVE| + C.C. M.0R,(¢) = 6R (¢ + o)

MeCSRg = —’YQ(SRQ
MeﬁRJ = —(1/’)/3)51:{3

(d) Unstable 1- Exp. Growth |éR; = AE,
Double Lattice 2 - Exp. Growth |dRy = AEs
Resonance 3 - Exp. Damping | dR3 = Az;E;3

4 - Exp. Damping | 0R., = A/E,

R, = 0Ry(s;) Ey=Ey(s;)) M,=

M65R1 = —’yl(SRl
MRy = —70R
Me(ng = —(1/’)/1)(51:{3
M85R4 = —(1/’)/2)(51:{1

Me(Si + Lp|87;)

AL [E1(5)e1 () 1 B (s)e 1] 4 Ay [Ey(s)e™2(8) + Ei(s)e™™2(%)], cases (a) and (b)
SR(5) = { A1 [E1(s)e () + Ei(s)e™ 1)) + AEq(s) + AsEy(s), case (c)
)

AlEl (S) + AQEQ(S) + A3E3(S) + A4E4(S),

case (d
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Decoupled Modes

In a continuous or periodic solenoidal focusing channel

o) = iy () = A(s)
with a round matched-beam solution

Ex = €y = € = const

Tem(S) = Tym(8) = rim(s)
envelope perturbations are simply decoupled with:

0Ty + Or
Breathing Mode: ory = —- ; J
0ry — 0
Quadrupole Mode: or_ = " 5 "y
The resulting decoupled envelope equations are:
Breathing Mode: |---]dry = Ky dry
Q 3?7 Oky + Ok 1 2¢ [ dey, + O¢
5T:ﬁ+[/£+%+%_5r+:—rm( 5 y)+a(5Q+’r%< . y)
Quadrupole Mode: [ ]or_ =k_dr_
3e? Oky — OK 2¢ [ de, — Oe
5TZ+[K+E]5T_:_Tm< > y)+r,§l< 5 y)
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Graphical interpretation of mode symmetries:

Breathing Mode:

Quadrupole Mode:

0Ty — 0Ty,

2

or_

2
E
/434-:/{4‘24—37
T'm T'm
2
e
K_ :/ﬁl—l—gT
T'm

SM Lund, USPAS, 2017

Y

Quadrupole Mode (—)T

Envelope

Breathing Mode (+)
Envelope

_ ~  Breathing
N or i _?r X Mode (+)
_ Quadrupole
Sry B _er Mode (-)
T N L -
>
X
Matched Beam PR ——
Envelope Fm Oy
Quadrupole and

Breathing Modes

Breathing Mode Linear Restoring Strength

Quadrupole Mode Linear Restoring Strength
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Decoupled Mode Properties:

Space charge terms ~ Q only directly expressed in equation for or,(s)
* Indirectly present in both equations from matched envelope r,(s)

Homogeneous Solution:
* Restoring term for or,(s) larger than for or (s)
- Breathing mode should oscillate faster than the quadrupole mode

2 2
/<;+:/<;+%—|—357m>/<;_:/<;—|—357m

Particular Solution:
* Misbalances in focusing and emittance driving terms
can project onto either mode

- nonzero perturbed k,(s) + k,(s) and £,(s) + ¢€,(s)
project onto breathing mode
- nonzero perturbed K, (s) - k,(s) and g(s) - €,s)
project onto quadrupole mode
* Perveance driving perturbations project only on breathing mode
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Previous symmetry classes greatly reduce for decoupled modes:
Previous homogeneous 4x4 solution map:
OR(s) = Mc(sl|s;) - 0R(s;)
OR(s) = (0ry, 07, 014, 57“:;)
M, (s|s;) = 4 x 4 transfer map

Reduces to two independent 2x2 maps with greatly simplified symmetries:

OR = (ory,0r'y,0r_,orl)

Ma(si+ Lyls) = [N B ]

0 M_(Si —|—Lp‘81)

HereM 4 denote the 2x2 map solutions to the uncoupled Hills equations for dr. :

ory + ktory =0

o Q 382 57}; . N 57“i

Ky = K+ 7",'271 + ?";ln (ST;: — M:l:(8|32) 574;; i
B 3e?

K =K+ %
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The corresponding 2D eigenvalue problems:

Mj:(SZ' + Lp|8i) . En(SZ) = )\:I:En(sz)

Familiar results from analysis of Hills equation (see: S.M. Lund lectures on

Transverse Particle Dynamics) can be immediately applied to the decoupled case,

for example:

1
§|TT M (s; + Lpls;)| <1 <= mode stability

Eigenvalue symmetries give decoupled mode launching conditions
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Eigenvalue Symmetry 1:

Stable
Im }.f A

I(Ti

Launching
Condition / Projections

s y A Breathing Mode (+)
x:_ D) L= 1/h — e lGi Quadrupole Mode (-) Envelope
) T T Envelope é Breathing
N _rx Mode (+)
Sr = —5r Quadrupole
. y- XMode (-)
Eigenvalue Symmetry 2: "m ]
Unstable, Lattice Resonance -
ImA, A
—IT
T |
Matched Beam e
7\,_1_ 1/ l_!_ Envelope Fm | or x|
* ¢ < Quadrupole and
1 Re 7\-.|__ Breathing Modes
—ITT
Moy =y, e
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General Envelope Mode Limits

Using phase-amplitude analysis can show for any linear focusing lattice:

1) Phase advance of any normal mode satisfies the zero space-charge limait:

lim oy = 20
Q—0 ¢ 0

2) Pure normal modes (not driven) evolve with a quadratic phase-space
(Courant-Snyder) invariant in the normal coordinates of the mode

Simply expressed for decoupled modes with Ky = Ky, €z =€y

5 2
[ Ti(s)] + [ (8)074 (5) — we (s)dr(s)]? = const
w(s)
where ’ 322 1
w+—|—/<ow++7w+—|—7w+—w—i:()
3e? 1
w’_’—|—/<;w_—|—%w_——320
re w?

w+(s + Lp) = w+(s)

Analogous results for Coupled modes [See Edwards and Teng, IEEE Trans Nuc. Sci. 20, 885 (1973)]
+ But typically much more complex expression due to coupling
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S7: Envelope Modes in Continuous Focusing
Lund and Bukh, PRSTAB 7, 024801 (2004)

. 2
Focusing: K (8) = ky(s) = k2 = <@> = const

LP
Matched beam: Ex = €y = € = const
symmetric beam: Tem(S) = rym(s) = r,, = const
2
matched envelope: L2 . Q & 0
BoT'm 3
"m  To
depressed phase advance: _ g2 Q ¢ Lp
— & — — P
(rm/Lp)?  TH
one parameter needed for scaled solution: k%o 2 08 £2 ( o / 00)2
Decoupled Modes: 5~ = 7973 — 575
g Q2 QL [1-(o/00)]

015 (s) £ 0ry(s)
2
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Envelope equations of motion become:

d? [ or
2 + 2
Lpd32 (rm ) Ty (
d? [ 6r_
2 2
Lpd32 (rm ) o= (

m)- : (k%0+k%0 + (0§ a)Q+a —

(5 — 2 5 T 5 5 X 5
L) __% ’; B ’;y +02( €z 5y)
Tm, 2 k/ao kf}o € €

ot E\/ 204 + 20 “breathing”  mode phase advance

o_ E\/ o5 + 302  “quadrupole” mode phase advance

Homogeneous equations for normal modes:

ds? L,

d? oy 2 See also lectures by
——or4 + (—) ory =0 J.J. Barnard, Envelope Modes and Halo

+ Simple harmonic oscillator equation

Homogeneous Solution (normal modes):

— 8 or’y (8 — 5;
5ri(s):5ri(si)cos(ai8 SZ) un M81n<aﬂ:8 S)

Ly

or+(s;), 57"2_L(3i)
SM Lund, USPAS, 2017

mode 1nitial conditions
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Properties of continuous focusing homogeneous solution: Normal Modes

Mode Phase Advances
§ 2.0 Quadrupole Mode)(]—)“
= Envelope
<18
Z Breathing Mode
£ 1.6/ o, /0, I
2 1.4
= c./0y
S 1.2 Quadrupole Mode |
=
E 1 atche cam
5 30 02 04 06 08 1.0 Fovelope.
G /Gy
o E\/ 202 + 202 Breathing Mode: ory =
o_ =1\/08 + 302 . —
- 0 Quadrupole Mode: §r_ =

SM Lund, USPAS, 2017

Mode Projections

Breathing Mode (+)
Envelope

_ «  Breathing

ﬂFrJ’_ ) ?I’x Mode (+)
_ Quadrupole

Sry B —_er Mode (=)

Fm Oy

Quadrupole and
Breathing Modes

0Ty =+ 07y
2
— 0Ty,
2

0T
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Particular Solution (driving perturbations):
Green's function form of solution derived using projections onto normal modes
+ See proof that this is a valid solution is given in Appendix A

5p+(5):_028 52%25) 5%25) +(03_02>5QC§S)+02 [552(5)+55y€(3)]
o :(5%&;,;(8) 0K (s): o [6ex(s)  dey(s)
o)== | T - e [T 2

S— S

y L. S
Gi(s,5) = /L sin (ai 7 )
p p

Green's function solution 1s fully general. Insight gained from simplified solutions for
specific classes of driving perturbations:
+ Adiabatic ,
» Sudden covered 1n these lectures
+ Ramped
+ Harmonic

covered in PRSTAB Review article
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Continuous Focusing — adiabatic particular solution

For driving perturbations dp+(s) and dp—(s) slow on quadrupole mode (slower
mode) wavelength ~ 27L,/o_ the Green function solution reduces to:

ory (s Op (s
:( ) — ;2( ) / Focusing / Perveance
m +
v (1) @), [LL=(0/00)*] 6Q0s)
214 (0/00)?]| 2\ K2 k2 21+ (0/00)?] @
: 80 80
(0/09)? 1 (bex(s)  dey(s)
+ 51 3 + :
14 (0/00)? | 2 £ £
pa Emittance
5r_(s)  Sp_(s) Coefficients of adiabatic
7“_m = (;% / Focusing terms in square brackets“[ ]”
] 1 11 (dre(s) Ory(s)
— |1+3(0/00)?] 2 < k2, k2, O+ E\/208+202
L[ 20/00) |1 (S2als)  Gey(s) o_ =\/o? + 30
1+ 3(cg/09)? | 2 3 £ '
Y Emittance
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Derivation of Adiabatic Solution:
+ Several ways to derive, show more “mechanical” procedure here ....

Use:

Or4(s) 1 .
- = L]% /SZ ds G (s,5)0p+(S)

ore(s) _ /Sdg [i s (Uis — 5)] 52912(5) Adiabatic 4 O
T'm ss ds L, ol
q/:(

s d — 3\ § ~ S
/ ds — [cos (ais S) piQ(S)] —/ ds cos( 5 S 5 °)
Py dS Lp O-:|: s; p / :|:

~ ~\ |S=S O
— cos | op 2 o= (5) = Px(s) cos oy 22 i( )
+ L, o1 |._. ol + L, 0%
op+(s) No Initial Perturbation
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Comments on Adiabatic Solution:
+ Adiabatic response is essentially a slow adaptation in the matched envelope to
perturbations (solution does not oscillate due to slow changes)
+ Slow envelope frequency o_ sets the scale for slow variations required

Replacements in adiabatically adapted match:

Toe =Ty — Tm + 0T + 07—

Ty = Tm — Tm + 07— — 074

Parameter replacements in rematched beam (no longer axisymmetric):

ke = k30 — ko + 0k (s)
Ky = kg — kg + 0ky(s)
Q — Q+0Q(s)
Ex =€ — €+ 0z (8)
gy =€ —> €+ 0gy(s)
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Continuous Focusing — adiabatic solution coefficients

a) &, = (8r,+ &r,)/2 Breathing Mode Projection
0.5

0 4 Ferveance
. | Term:

R
11 -(o/0p)

0.3 21 +(0/0,)?

0 2 Focusing Terms: Emittance

1 1 Terms:
0 1 2 +(ofc{)}3 \ (Gfﬁniz

2
1+ (0/0‘0}

0.
%.0 c2 04 06 08 1.0
G /0y

b) &r. = (6r,- 6r,)/2  Quadrupole Mode Projection
1.0
0.8

0.6

F ing T T
04 I‘-:)cusn’llg erms/

02 214 (a/cﬂyl

Adiabatic Solution Coefficients

Emittance Terms.
-

(G/d”}

2
I+(d/d‘”)

\\\
\ ]

Adiabatic Solution Coefficients

0.
%.0 02 04 06 08 10
C /0y

Relative strength of:

+ Space-Charge (Perveance)
+ Applied Focusing
+ Emittance

terms vary with space-charge
depression (o /o) for both
breathing and quadrupole
mode projections

Plots allow one to read off the
relative importance of various
contributions to beam
mismatch as a function of
space-charge strength
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Continuous Focusing — sudden particular solution

For sudden, step function driving perturbations of form:

Op(s) = 6p+O(s — sp)

with amplitudes:

[~ e~ ]

2
— o5 | Ok 0K
5p+ - — 0 a + Y + (0'
2 _k%o k%o_
2 [ — — ]
— of | Ok 0K
2 |12 KR

S=S

axial coordinate Hat quantities

P ™ perturbation applied are constant
amplitudes
50 Sen e,
— 02)—Q + 0% | = 4+ —Y| = const

Q € €

Sen e,
[—x — —Z| = const

3 3

The solution is given by the substitution in the expression for the adiabatic solution:
+ Manipulate Green's function solution to show (similar to Adiabatic case steps)

0T+ (s) _ op+(s)
0+

T'm

with

opL(s) — 5—1;; [1 — COS (ai

Lp

)| s -5

SM Lund, USPAS, 2017
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Sudden perturbation solution, substitute in pervious adiabatic expressions:

ore(s) _ D+ [1 — cos (O'j:m>] Os = 5p)

Tm 0':2|: Lp

Ilustration of solution properties for a sudden 0P+ (s) perturbation term

A

k.E . .
:’r 2x Adiabatic
S AN .
: Sudden (Max Ecursion)
E A

o . .

2 | Adiabatic , |\ [\ [ Adiabatic

% 4 Excursion
©

= A

m

\ A

S=Sp 27l i](j +
Axial Coordinate, s

For the same amplitude of total driving perturbations, sudden perturbations result in 2x the
envelope excursion that adiabatic perturbations produce
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Continuous Focusing — Driven perturbations on a continuously
focused matched equilibrium (summary)

Adiabatic Perturbations:

+ Essentially a rematch of equilibrium beam if the change is slow relative to
quadrupole envelope mode oscillations (phase advance o_ )

Sudden Perturbations:

+ Projects onto breathing and quadrupole envelope modes with 2x adiabatic
amplitude oscillating from zero to max amplitude

Ramped Perturbations: (see PRSTAB article; based on Green's function)

+ Can be viewed as a superposition between the adiabatic and sudden form
perturbations

Harmonic Perturbations: (see PRSTAB article; based on Green's function)
+ Can build very general cases of driven perturbations by linear superposition
+ Results may be less “intuitive” (expressed in complex form)

Cases covered in class illustrate a range of common behavior and help build
intuition on what can drive envelope oscillations and the relative importance of
various terms as a function of space-charge strength
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Appendix A: Particular Solution for Driven Envelope Modes
Lund and Bukh, PRSTAB 7, 024801 (2004)

Following Wiedemann (Particle Accelerator Physics, 1993, pp 106) first, consider more
general Driven Hill's Equation

" + k(s)x = p(s)

The corresponding homogeneous equation:

2" + k(s)r =0

has principal solutions

z(s) = C1C(s) + Ca5(s) (', Cy = constants
where

Cosine-Like Solution Sine-Like Solution

C"+ k(s)C =0 S"+ k(s)S =0

C(s=s;)=1 S(s=1s;)=0

C'(s=s;)=0 S'(s=s;) =1

Recall that the homogeneous solutions have the Wronskian symmetry:
+ See S.M. Lund lectures on Transverse Dynamics, S5C

W(s) =C(s)S'(s) —C'(s)S(s) =1
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A particular solution to the Driven Hill's Equation can be constructed using a
Greens' function method:

2(s) = / 45 G(s, $)p(3)

Sq

G(s,3) = S(s)C(3) — C(5)S(5)

Demonstrate this works by first taklng derivatives:

x—5<>/dsc<><>—c<>/dss<><§>

Sq

o = 8'(s >/dsc<> ® - >/Sd§8<§>p<§>

/!S S;

—5/(s) / 45 C(3)p(3) — C'(s) / 45 S(3)p(3)
"= S (s >/dsc<> ) = 't )/dss< )p(3)

/1 C Wronskian Symmetry

—p(s) + S"(s) / 43 C(3)p(3) — C"(s) / 15 S(3)p(3)

Siq
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Insert these results in the Driven Hill's Equation:
Definition of Principal Orbit Functions

2" 4+ k(s)r = p(s) + [S” —1—/&9]/ ds C(s)p [c” +/C / p(5)

= p(s) |

Thereby proving we have a valid particular solution. The general solution to the
Driven Hill's Equation 1s then:

+ Choose constants 'y, (5 consistent with particle initial conditions at s = s;

x(s) = x(s;)C(s) + 2'(s;)S(s) + /Sd§ G(s,5)p(s)
G(s,5) =S(s)C(5) —C(s)S(8)

Apply these results to the driven perturbed envelope equation:

d? 02
72 —O0r+ + L2 57“:|: L2 5p:|:
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The homogeneous equations can be solved exactly for continuous focusing:

S — 8;
C(s) = cos (O'j: Z)
Ly

L — S
S(s) = ﬁ sin <aiSLpS )

and the Green's function can be simplified as:
G(s,5) = S(s)C(5) — C(s)S(5)

L, “in S — S; s S — S; S—5S;\ . S —S;
= — o o —cos | o sin | o
o L L L, L,

L, . §s— 3§
= —S1In\| o
o+ + L,
Using these results the particular solution for the driven perturbed envelope

equation can be expressed as:
+ Here we rescale the Green's function to put in the form given in S8

or+(s) 1 [7 . .
= L?g /Sids G+ (s,5)0p+(8)

. 1 : S— 3§
Gi(s,§) = o+ /L, sin (O‘i I, )
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S8: Envelope Modes in Periodic Focusing Channels
Lund and Bukh, PRSTAB 7, 024801 (2004)
Overview
+* Much more complicated than continuous focusing results
- Lattice can couple to oscillations and destabilize the system
- Broad parametric instability bands can result
+Instability bands calculated will exclude wide ranges of parameter space from
machine operation
- Exclusion region depends on focusing type
- Will find that alternating gradient quadrupole focusing tends to have more
instability than high occupancy solenoidal focusing due to larger envelope
flutter driving stronger, broader instability
*Results in this section are calculated numerically and summarized
parametrically to illustrate the full range of normal mode characteristics
- Driven modes not considered but should be mostly analogous to CF case
- Results presented in terms of phase advances and normalized space-charge
strength to allow broad applicability
- Coupled 4x4 eigenvalue problem and mode symmetries identified in S6 are
solved numerically and analytical limits are verified
- Carried out for piecewise constant lattices for simplicity (fringe changes little)
* More information on results presented can be found in the PRSTAB review
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Procedure

1) Specify periodic lattice to be employed and beam parameters

2) Calculate undepressed phase advance 0¢ and characterize focusing
strength 1in terms of o

3) Find matched envelope solution to the KV envelope equation and

depressed phase advance O to estimate space-charge strength

* Procedures described in: Lund, Chilton and Lee, PRSTAB 9, 064201 (2006)
can be applied to greatly simplify analysis, particularly where lattice is unstable
- Instabilities complicate calculation of matching conditions

4) Calculate 4x4 envelope perturbation transfer matrix M (s; + L,|s;)
through one lattice period and calculate 4 eigenvalues

5) Analyze eigenvalues using symmetries to characterize mode properties

* Instabilities
* Stable mode characteristics and launching conditions
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1* Example: Envelope Stability for Periodic Solenoid Focusing

Focusing Lattice:

Ko (s) A (Ko = Ky) Occupancy 7]
-------------------------------------------- —| ne (0.1]
! . . ; . -
' | i - . 5
/2  nL, d/2 = d/2
, ' d=(1—n)L,/2
. . R L
| Lattice Period |

Matched Envelope Equation:
Kz (S) = Ky(s) = Kk(s) Ex = Ey =€

rz(8) = ry(s) = rm(s)

2

), (s) + K(8)rm(s) = 7% — 7y = O

T (8) -

rm(s+ Lyp) = 1m(S)
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

+ See: S.M. Lund, lectures on Transverse Particle Dynamics

+ Particle phase-advance 1s measured in the rotating Larmor frame

Solenoidal Focusing - piecewise constant focusing lattice
1—mn

~ L
cos og = cos(20) — ——0Osin(20) O = \/EQ b
n

-
S

TaT @ TTap Tdi d=0 -9,
- Ly - £=nL,
| Lattice Period | n e ( 0, 1] — QOccup ancy
SM Lund, USPAS, 2017 Transverse Centroid and Envelope Descriptions of Beam Evolution 90




Flutter scaling of the matched beam envelope varies for quadrupole and
solenoidal focusing

In both cases depends little on space charge with theory showing:
(1— n)(l n/2)

1/2 (1 n/2)
23/2(1 277/3)1/2

Based on: E.P. Lee, Phys. Plasmas, 9 4301 (2002)
for limit o/og — 0

T2 |max 1~ (1 — cos o) Solenoidal Focusing

T | (1 —=-cosay)

Quadrupole Focusing

+ Solenoids:
- Varies significant in both og and 7

* Quadrupoles:
- Phase advance 0 variation significant
- Occupancy 1) variation weak

Solenoidal Focusing FODO Quadrupole Focusmg
.9 p ——— 1 — ——— 1 0.5 .
0.8 f 0.4}
e 4 2 —D.EE X
= -1 o.2 n = 0.50 Telmes ] _——

"= = 0.2F

i';l = 1 EI & -
Ul

— 0.Lf
i

1 L ———
5D a0 120 &0 a0 120
oy (degrees) o |degrees)
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Solenoidal Focusing — Matched Envelope Solution

a) 05 =80%andm = 0.75 High Occupancy

E}; 0’7 GJ'rG{J —-0.5 . (Mid Lens m;fl'[\iclnDrifL}
0.6 : =0
~ -

£ 05 0.1

g’" 0.4 » _
z | |

00 02 04 06 08 10
Axial Coordinate, s!Lp

b) 6g=80"andn =025 Low Occupancy

S 0.7} © (Mid Lens and Mid Drift
| N clog=0.5 a 7, =0

T 0.6 ' . T

<

-

Radius, r,

00 02 04 06 08 10

Axial Coordinate, s/L,,

SM Lund, USPAS, 2017

Focusing:
a(s) = iy (5) = K(s)

k(s 4 Lp) = #(s)

Matched Beam:
Ex = Ey = € = const

Tem(8) = Tym(s) = Tm(8)
rm(s+ Lp) = rp(s)

Comments:

+ Envelope flutter a strong
function of occupancy 7]
- Flutter also increases with

higher values of 0

*+ Space-charge expands envelope
but does not strongly modity
periodic flutter
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Using a transfer matrix approach on undepressed single-particle orbits set the

strength of the focusing function for specified undepressed particle phase

advance by solving:
+ See: S.M. Lund, lectures on Transverse Particle Dynamics

+ Particle phase-advance 1s measured in the rotating Larmor frame

Solenoidal Focusing - piecewise constant focusing lattice

1 — ~ L
cos o9 = cos(20) — — g sin(20) O = \/EQ =
7
'
Sa)] | (K — Ky) P _
-

| | | | | g

| g - h:d——h:i—hg

T TCap T d=(1-n)l,

;... Lp --; f — nLP

| Lattice Period | n € (O, 1] — Occupancy
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Solenoidal Focusing — parametric plots of breathing and quadrupole envelope
mode phase advances two values of undepressed phase advance

a) 'I]=U125.GD=EDD b) ’l'|=ﬂ125.ﬁ|3=115°

+: Stable +: Stable +: Lattice Kesonance

—: Stable —: Stable —: Stable

f‘ --x\] tf’ “‘t f “‘1
—_ N/ _ ) _.J’ "x ;
E T | I|
= 160 ' E 220 G \Cont. Foc. |
= G, Cont. Foc. &, ' (dashed) |
By 140 (dashed o verlaid) = 1800 x\‘ G_
ﬁ 120 \ _ ﬁ 180 _______._:{\, o
= i = ! &} _Cant. Foc.
= 100 | _Cant. Foc, 2 140 dmhed)

! 20 ' (dashed overlaid) | 4 :

4 : 2 100l :
E': 00 02 04 06 08 1.0 E-': 00 02 04 06 O0F 1.0

G /Gy G /Gy
- S ST ! Band Band
% 1.4 :N':|I Iusmbl]lt:" g 1.4 : ?Tif:t Res.) :{..1’: Res.)
LEI ]. D T-l-.T— 3 E ]. D T-l- T—l /’f._.l_&“‘\fj i T-I- T—’.
g ' 1 g LTS
5 0.6 , 5 06 s
O 00 02 04 086 08 1.0 o 00 02 04 06 08 1.0

G/ Uﬂ G/ Uﬂ

Li
-

\Jlf“f_
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Solenoidal Focusing — mode instability bands become wider and stronger for
smaller occupancy

0.75 (Blue)
n= o) = 115°
. 0.10 (Red)
B Comments:
g *+ Mode phase advance in
e instability band 180 degrees
§ per lattice period
> + Significant deviations from
2 continuous model even outside
9,3 _ . . | _ _ the band of instability when
= 00 02 04 06 08 1.0 space-charge is strong
A c/0 0 + Instability band becomes
: : . . stronger/broader for low
S 14 Y. Band v_Band occupancy and
2 : — B - weaker/narrower for high
2 1.0% S A ( occupancy
= 0.6 ' - Disappears at full occupancy
e - . | | | (continuous limit)
© 00 02 04 06 08 1.0
G /O
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Solenoidal Focusing — broad ranges of parametric instability are found for the
breathing and quadrupole bands that must be avoided in machine operation:
Contour unstable parameters for breathing and quadrupole modes to clarify

n =0.75 n = 0.25
Breathlng and Quadrupole Mode Growth Factors, v, and y_
1.0 |
ln|7+ | 1.0 :
0.8 i 0.8 :
V- 0.0
0.6 Lattice Res. 0.
o ) 0.6
N N
© 04 © 04 Y*
¥+ Lattice
02| Lattice 0o Res.
Res. Band Band
0.0 ' 0.0 .
100 120 140 160 180 100 120 140. 160 180
G (deg/period) O (deg/period)

Eigenvalues in unstable regions:
Ay = o 6” v+ > 1 for unstable growing mode

In v+ = e-folds of growth per period
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Solenoidal Focusing — parametric mode properties of band oscillations

a) 1 =0.75 b) 1 =0.25
Breathing Mode Phase Advance, 6,

1.0F \¥ 2 1.0F \\% 2
= /M
0.8 3 0.8 3
0.6 : 0.6 >
. U . LU
; o7
g G 3
© 04 £ Los i
”J —
0.2 0.2
0.0 0.0 ALl
0 30 60 90 120 150 180 0 30 60 90 120 150 180
G (deg/period) O (deg/period)
Quadrupole Mode Phase Advance, 6_
1.0 -E 1.0 NE
M M
0.8 9 0.8 3
0.6 E S 06 3
‘Q g ~ o
v 04 | E © 04 =
0.2 0.2
0.0 0.0 |
0 120 150 180 0 30 90 120 150 180
Gg (deg/perlod) o (deg/perlod)
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Parametric scaling of the boundary of the region of instability

Solenoid instability bands identified as a Lattice Resonance Instability

corresponding to a 1/2-integer parametric resonance between the mode oscillation
frequency and the lattice

Estimate normal mode frequencies for weak focusing from continuous
focusing theory:

oL \/20(2) + 2072

o~ \/0'8—|—30'2

This gives (measure phase advance in degrees):
Breathing Band:

Quadrupole Band:
o, = 180° o_ = 180°

— (/202 +20% = 180° — (/o2 +30% = 180°

+ Predictions poor due to inaccurate mode frequency estimates
- Predictions nearer to left edge of band rather than center (expect resonance strongest at center)
+ Simple resonance condition cannot predict width of band
- Important to characterize width to avoid instability in machine designs
- Width of band should vary strongly with solenoid occupancy 7
SM Lund, USPAS, 2017
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To provide an approximate guide on the location/width of the breathing and
quadrupole envelope bands, many parametric runs were made and the instability
band boundaries were quantified through curve fitting:

1.0 [ _
S
B 0.8f :
. Quadrupole
-
2 0.61 N
D! Right
CD -
8 Breathing
=, 0.4f :
é} i Left
o 0.2: Right i
g _ Left
ool
0 30 60 90 120 150 180
Phase Advance, oy [Degrees|
Breathing Band Boundaries: Quadrupole Band Boundaries:
g0
2 2 2 _
o+ foy =(90°)"(1 + f) Left: a/oo+gﬁ—l+g
f = f(o0m) = Right: 0 + 900 = 90°(1 + g)
1.113 — 0.413n + 0.003480¢, left-edge
: 1, left-edge
1.046 4+ 0.318n — 0.004100¢, right-edge g=g(n) =
0.227 — 0.173n, right-edge
+ Breathing band: maximum errors ~5 /~2 degrees on left/right boundaries

+ Quadrupole band:  maximum errors ~8/~3 degrees on left/right boundaries
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2" Example: Env Stability for Periodic Quadrupole Focusing

Quadrupole Doublet Focusing Lattice:

)| | (Ke=—k) i n ) n € (0,1] Occupancy
dir ! T]LPIZ, dz
FQuad Hi*ﬂ -rii- = h
i | D (Quad i s
MLy a € 0,1/2] Syncopation
R R - - Factor
~« L ~ dy=o(l-n)L _
i Latticc%criod i d2=(1—(1',)(1—p“l])Lp o = 1/2 — FODO
Matched Envelope Equation:
20 g2
1/ . . €T — O
o) e ) ) ()
20 g2
r" () + Ky (8)Tym(8) — ——Y% =9
ym( ) y( ) Y ( ) T:Bm(s) ‘l‘rym(s) Tgm(s)
rem (S + Lp) = ram(s) Tem(8) > 0
rym (S + Lp) = rym(S) rym(s) >0

SM Lund, USPAS, 2017
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

+ See: S.M. Lund, lectures on Transverse Particle Dynamics

Quadrupole Doublet Focusing - piecewise constant focusing lattice

1 —
cos oy = cos © cosh © + —ne(cos © sinh © — sin © cosh O) _
1 &Ly
(L —n)? 0=
— 2a(1 — a)—2@2 sin © sinh © 2
Ui
'y
i, (s) _i (1, =___K‘y_) _____________________ I S )
dy \MLy2, n € (0,1] Occupancy
F Quad i |
| -
| : D Quad )
_________________________ __________ R _ a€l0,1/2] Syncopation
H Lp __ d; = o1-m )Lp Factor
| Lattice Period - dy=(1-o)(1M)L, a=1/2— FODO
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Envelope Flutter Scaling of Matched Envelope Solution

For FODO quadrupole transport, plot relative matched beam envelope excursions
for a fixed form focusing lattice and fixed beam perveance as the strength of
applied focusing strength increases as measured by o

FODO Quadrupole Lp Jsg
[ ] Tz :/ — 1 (s)
1.4 - 0 Lp
1.2} n=05 L,=05m
, Q=5x10"*
| ez = €, = 0 mm-mrad
0.8 o0
[ o/og
0.6} 45° 0.20
00 02 04 06 08 10 80" 0.26
110°  0.32

Lattice Period, s/ L,

+ Larger matched envelope “flutter” corresponds to larger oy
- More flutter results in higher prospects for instability due to transfer of energy
from applied focusing

+ Little dependence of flutter on quadrupole occupancy 7
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Quadrupole Doublet Focusing —

FODO and Syncopated Lattices

a) 6,=80°n=0.6949,and =12 FODO
—_ 10 i (Mid Drifts) | (l\r:lid Lenses)
l-...]&' i UFIUU*I: 0.5 E rx'j r_}", E Fo= r_}-'= 0
0.8 SIS E
ol ’

00 02 04 06 08 1.0
Axial Coordinate, .?;’Lp

b) 6,=80°1n=0.6949,and ¢ =0.1 Syncopated
1.0 (o

—

q&
S 0.8)

<

e e
0.6 -
y -
" s ..
-

=
i

0.4}

Radii, r

00 02 04 06 08 10
Axial Coordinate, stp

SM Lund, USPAS, 2017

Transverse Centroid and Envelope Descriptions of Beam Evolution

Matched Envelope Solution

Focusing:
ko (s) = —ky(s) = K(s)
k(s + Lpy) = k(s)
Matched Beam:

Ex = Ey = € = const
razm(s _|_ Lp) — Tilim(s)
rym (S + Lp) = rym(s)

Comments:

+ Envelope flutter a weak function
of occupancy 7)

» Syncopation factors & # 1/2
reduce envelope symmetry and
can drive more instabilities

*+ Space-charge expands envelope
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Quadrupole Focusing — parametric plots of breathing and quadrupole
envelope mode phase advances two values of undepressed phase advance

a) N=0.6949, a=0.1, 65=380° b) n=0.6949, a=0.1, op=115°
Syncopated B: Stable B: Lat. Res. B Conf.Res. B: Stable
(Q: Stable i Q:Stable  Q:Conf. Res. (Q: Stable
| Y
o D
_ _ NPARNY,
g 1601 o g 240 O, Cont Foc. ' | (
O : L . ' (dashed) : 1
o O, Cont. Foc. £ | P
> 140 (dashed) sb 200 | | /2
£ 120 %, | 2| e
: = 160F Y
- P o) -'EJ'
E H00 a i G_Eont. Foc. < ! i ¢ = :'J'\ Cont. F oc.
9 80— | (dashed) % 120f __J:_I”,..a-- N (_dashed)i
_E 00 02 04 06 08 10 £ 00 02 04 06 08 10
G /Gy G/Gg
- T ' Y3YoBand, |
5 14l ‘No Instability] & 14[% Q’BTW |
g | i 3 Y f
&gl ek IR ’/:g:\* : Vo
= 1 I = :‘\ \:_/ I
= = / ve Band :
< 06} | = 0.6 . J'(?:fmf. Res) ' U/Yp LYo
© 00 02 04 06 08 10 © 0.0J 02 04 06 08 10
G /0g . C/Cg
| LE
/—r—i;\\
S~ <
l 1/yg
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Important point:
For quadrupole focusing the normal mode coordinates are NOT
5ty £ 01y ory < Breathing Mode

or4 = 5 or— < Quadrupole Mode

* Only works for axisymmetric focusin (K = Ky = K)
with an axisymmetric matched beam (€z = €y = € )

However, for low 0o we will find that the two stable modes correspond closely in
frequency with continuous focusing model breathing and quadrupole modes even
though they have different symmetry properties in terms of normal mode
coordinates. Due to this, we denote:

Subscript B <== Breathing Mode
Subscript Q <== Quadrupole Mode

+ Label branches breathing and quadrupole in terms of low 0 branch frequencies
corresponding to breathing and quadrupole frequencies from continuous theory

+ Continue label to larger values of 09 where frequency correspondence with
continuous modes breaks down
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Quadrupole Focusing — mode instability bands vary little/strongly with
occupancy for FODO/syncopated lattices

a) o.=1/2 (FODO), 6= 115° b) =0.1, 6= 115°
FODO 090  (Blue) Syncopated
_ ) 0.6949 (Black)
L 0.25 (Green)
0.10 (Red)
2 g
= 220 = 220
£ £
eTh] eTh]
ﬁ 180 ﬁ 180
> >
= 140} —= 140
< <
(b (D]
2100L . 4 zwoOb_ .
= 00 02 04 06 08 10 = 00 02 04 06 08 1.0
e o~
G /0y G/Gg
= [ = Band °
% 1.4} S 14y TB’(::YEM.R%)'
& : = . _
b [ N
= 10| = o——={
= = Y; Band
o 0.6} S 0.6-(£LR&)
O 00 02 04 06 08 10 © 00 02 04 06 08 10
G /Gg G /0y
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Quadrupole Focusing — broad ranges of parametric instability are found for
the breathing and quadrupole bands that must be avoided in machine
operation: Contour parameter ranges of instability to clarify

FODO Lattice Syncopated Lattice
n=0.6949, a=1/2 n=0.6949, o =0.1

Breathing and Quadrupole Mode Growth Factors, yg and g

1.0 1 1.0
- Injvg o g 1.0 - In|yg o g 1.0
0.8 I E {]‘8 I E
Y5, Yo 0.0 Y2, Yo 0.0
“onfluent Res onfluent Res.
'«‘?0'6 m. Band éﬁ 0.6 Band
X X Y |
© 04 © 04 B
Lattice
0.2 0.2 Res.
Band !
0.0 . 0.0 :
100 120 140 160 180 100 120 140 160 180
G (deg/period) O (deg/period)

In |vp.q| = e-folds of growth per period of unstable mode
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Quadrupole Focusing — parametric mode properties of band oscillations

a) N=0.6949, aa=1/2 FODO b) 1 =10.6949, o. = 0.1 Syncopated
Breathing Mode Phase Advance, G

1.0

0.8¢

1.0

0.8

é‘.‘) 0.6
~
O 04

0.2

0.0t

SM Lund, USPAS, 2017
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G(deg/period) O (deg/period)
Quadrupole Mode Phase Advance, G

] 1.0 [ N

2 038 | 2
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< L 17 1%

5 o4 \ “ 18

= 160° E
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Lattice Resonace Band

Lattice Resonace Band
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Parametric scaling of the boundary of the region of instability

Quadrupole instability bands identified:
+ Confluent Band: 1/2-integer parametric resonance between both breathing and
quadrupole modes and the lattice
+ Lattice Resonance Band (Syncopated lattice only): 1/2-integer parametric
resonance between one envelope mode and the lattice

Estimate mode frequencies for weak focusing from continuous focusing theory:

op =04 = \/208+202

oQ =0_ = \/08 + 302
This gives (measure phase advance in degrees here):

Confluent Band: [attice Resonance Band:

(04 +0_)/2 = 180° o4 = 180°

— 202200+ \Jor 1302 =360° | = /208 +207 = 180°

+ Predictions poor due to inaccurate mode frequency estimates from continuous model
- Predictions nearer to edge of band rather than center (expect resonance strongest at center)
+ Cannot predict width of band

- Important to characterize to avoid instability
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To provide a rough guide on the location/width of the important FODO confluent
instability band, many parametric runs were made and the instability region
boundary was quantified through curve fitting:

1.0 _

S . ]

o 08 Right Edge

-

S 0.6

7 _

8 5

o 041 Left Edge

- I

o 0.2}

= _

= ool |

0 30 60 90 120 150 180
Phase Advance, g |Degrees|
Left Edge Boundary: Right Edge Boundary:
o + f(n)og = (90°)*[L + f(n)] o+ g(n)oo = 90°[1 + g(1)]
4 1
fn) = 3 9(n) =3

+ Negligible variation in quadrupole occupancy 7] is observed
+ Formulas have a maximum error ~5 and ~2 degrees on left and right boundaries
SM Lund, USPAS, 2017 Transverse Centroid and Envelope Descriptions of Beam Evolution 111




Pure mode launching conditions for quadrupole focusing

Launching a pure breathing (B) or quadrupole (Q) mode in alternating gradient
quadrupole focusing requires specific projections that generally require an
eigenvalue/eigenvector analysis of symmetries to carry out

+ See eignenvalue symmetries given in S6

Show example launch conditions for:

FODO Lattice n = 0.6949
oo = 80°
O'/O'o = 0.2
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Quadrupole Focusing — projections of perturbations on pure modes varies

strongly with mode phase and the location 1n the lattice (FODO example)
Breathing Mode, Mid- Quadrupole Quadrupole Mode, Mid- Quadrupole

- 0.10 :'e. 0.10
Ql

o

< 0.00

L:";

“Y1 05 0 0.5 1 “Y1 05 0 0.5 1

Vp/m (Mode Phase) Yo & (Mode Phase)
0Ty 7 0Ty, 0Ty # —0Ty
generally not exact generally not exact
breathing symmetry quadrupole symmetry

SM Lund, USPAS, 2017 Transverse Centroid and Envelope Descriptions of Beam Evolution 113




Breathing Mode, Mid—Drift Quadrupole Mode, Mid—Drift
0.10

=
p—
=

Radii, 8r;/[./2Q L,]
Radii, 8r,/[./20 L,]
Lo

0.00 0.00
-0.05¢ -0.05}
-0.10 : - - -0.10 : - :
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Yz /T (Mode Phase) Vo /T (Mode Phase)
oy 0.20 : . e o 020 — T :
-l - \\\ \% ,f-" S~
-~ 0.10} ’ N~ A0F 7Y,
oS ’ o /
© 000 ©
B -0.10f B
= * =
_ S : ~0.20 . . .
POTT0s o o5 i L 05 0 05 |
Vg /m (Mode Phase) Yo /T (Mode Phase)
0Ty 7 0Ty 0Ty # —0Ty,
generally not exact generally not exact
breathing symmetry quadrupole symmetry
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As a further guide in pure mode launching, summarize FODO results for:
+ Mid-axial location of an x-focusing quadrupole with the additional choice 57“;- =0

+ Specify ratio of 07/, to launch pure mode
+ Plot as function of 0g for gg < 90°
- Results vary little with occupancy 1 or /0

0.90 {Blue)
N = | 06949 (Black)

0.10  (Red)
Breathing Mode, ¢/G,=0.2 Breathing Mode, ¢/6,=0.5

O 3 T T O 30 T T
%. 3.0 g 3.0
A 2.5¢ Br /or, re 2.5t ory /Or,,
= =
S 2.0} & 20}
£ L1
5 1.5 5 1.5
: :

1.0 1.0
= 0 15 30 45 60 75 GO K 0O 15 30 45 60 7% Q0

Gy (degrees) G (degrees)
Quadrupole Mode, 6/6,=0.2 Quadrupole Mode, ¢/6,=0.5

O 3gf A
= 3.0 _% 3.0
o 2.5¢ —Brx far}? Y 2.5¢1 —er H’E-r},
= =
S 20} :
= 2.0 % 2.0
3 15} 5 15)
: :

1.0 e 1.0 e
H 0 15 30 45 60 75 90 H 0 15 30 45 60 75 90

Oy (degrees) Gy (degrees)

Specific mode
phase in this case
due to the choice
/ /
or, =0 = 5T?{
at launch location
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Comments:
+ For quadrupole transport using the axisymmetric equilibrium projections on
the breathing (+) mode and quadrupole (-) mode will NOT generally result in
nearly pure mode projections:

0ry + 0 : L
or, = L —; "y + Breathing Mode Projection

0ry — 0 L
sr_ = ; "y + Quadrupole Mode Projection

- Mistake can be commonly found in research papers and can confuse analysis of
Supposidly pure classes of envelope oscillations which are not.

- Recall: reason denoted generalization of breathing mode with a subscript B
and quadrupole mode with a subscript Q was an attempt to avoid
confusion by overgeneralization

+ Must solve for eigenvectors of 4x4 envelope transfer matrix through one lattice
period calculated from the launch location in the lattice and analyze
symmetries to determine proper projections (see S6)

+ Normal mode coordinates can be found for the quadrupole and breathing
modes in AG quadrupole focusing lattices through analysis of the eigenvectors
but the expressions are typically complicated

- Modes have underlying Courant-Snyder invariant but it will be a complicated
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Summary: Envelope band instabilities and growth rates for periodic
solenoidal and quadrupole doublet focusing lattices have been described

Envelope Mode Instability Growth Rates

Solenoid (1 = 0.25) Quadrupole FODO (17 =0.70)
1.07 r 1.0 |
I ln"Yi ‘ 0.5 I
0.8} | 0.8 :
'{— | 0.0
06 attice D06
\b y Res. Band Q
O 04l ' 0.4
Lattice
02! Res. 0.2
Band .
0.01 l ' 0.0 . L . . X
100 120 140. 160 180 100 120 140 160 180
Gy (deg/period) Gp (deg/period)
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Summary Discussion: Envelope modes in periodic focusing lattices

*Envelope modes are low order collective oscillations and since beam
mismatch always exists, instabilities and must be avoided for good
transport

* KV envelope equations faithfully describe the low order force balance
acting on a beam and can be applied to predict locations of envelope
instability bands in periodic focusing

* Absence of envelope 1nstabilities for a machine operating point 1s a
necessary condition but not sufficient condition for a good operating point

- Higher order kinetic instabilities possible: see lectures on Transverse Kinetic Theory

* Launching pure modes 1n alternating gradient periodic focusing channels

requires analysis of the mode eigenvalues/eigenvectors

- Even at symmetrical points in lattices, launching conditions can be surprisingly
complex

*Driven modes for periodic focusing will be considerably more complex
than for continuous focusing

- Can be analyzed paralleling the analysis given for continuous focusing and likely
have similar characteristics where the envelope is stable.
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S9: Transport Limit Scaling Based on
Matched Beam Envelope Models for Periodic Focusing

For high intensity applications, scaling of the max beam current (or perveance Q)
that can be transported for particular focusing technology is important when
designing focusing/acceleration lattices. Analytical solutions can provide valuable
guidance on design trade-offs. When too cumbersome, numerical solutions of the
envelope equation can be applied.

+ Transport limits inextricably linked to technology limitations

- Magnet field limits

- Electric breakdown
- Vacuum

+ Higher-order stability constraints (i.e., parameter choices to avoid kinetic
instabilities) must ultimately also be explored to verify viability of results for
applications: not covered in this 1dealized case
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Review example covered in Intro Lectures adding more details:
Transport Limits of a Periodic FODO Quadrupole Transport Channel

Lattice:

Parameters:
i (S)A o= ) 3 L, = 2L = Lattice Period
T e ‘ —Vs‘ ------------ : L = Half-Period
F Quad i"‘dib—iddib 77 S (07 1] — Occupancy
1 | | ; > ik = Strength
- - D Quad j
0 - Characteristics:
""""""""""""""""""""" R ) L=/¢=F/D L
~ L d oL ! /D Len
Lattice Period (0 — an/Q (]_ — 77>L = d = Drlft Len
Matched beam envelope equations :
20 2
r" (8) + Ky (8)rpm(s) — — 2 =0
) e ) T ) 5,
20 o5
!/ Yy
m(s) — — =0
Tym(s) + /iy(S)Ty (S) Ta:m(S) i Tym(s) Tgm(s)
Pem (S + Lp) = Tum(s) Tem(8) > 0
rym (s + Lp) = Tym(S) rym(s) >0
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Expand the periodic «,(s) as a Fourier series:

* Choose coordinate zero in s-middle of a x-focusing quadrupole so that
can be expanded as an even function in s

- Make symmetrical as possible to simplify analysis to the extent possible!

( )‘ ( ) | G
KRyl vz T Ry | —~ _ < _ _
s T ~ _ ) BuelBp Elec. Foc
5 d Lood | e Mag. Foc
FQuad - >;L-4 »i-q > | [ B p] g- .
R — -
- . D Quad | S ¢ ope -
~ i vy — 22  TFlec. Foc.
------- e R U TN 0B LBl e F
| : 5 = —1 ag. Foc.
| L,=2L > d=(1—n)L \ Y P
l Lattice Period . !

with this choice :

Ke(S) = Z Ky COS (%)
n=1

Ky = %/OQL Kz (S) cos (?) = % [1—(—1)"]sin (@)

ni
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Take : (vfBp) =0 <= No Acceleration
g =€y =€ <= Isotropic Beam

Expand the periodic matched envelope according to:

Tem = Tp |1 + Acos(ws/L)| + Z Ay, cos(nms/L)

n=2

Tym = 7p [1 — Acos(mws/L)] + Z A,y cos(nms/L)
n=2

r, = const = Average Beam Radius
|A| = const < 1
Agn, Ay = constants with [Ag,|, |Ayn| < |A]

Insert expansions in the matched envelope eqn and neglect:
e All terms order A? and higher
o Fast oscillation terms ~ cos(nms/L) with n > 2
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To obtain two independent matched beam constraint equations:

2AR 2
Average (CODSt): Iif,"b Sln(ﬂ-TI/Q) — Q — 8_3 — (0
T 2 4RTy .
Fundamental: —A (—) ry 4+ —— sin(7n/2) +
L
(ox cos(ms/L))

2A\e?

3
Ty

=0

These equations can be solved to express the matched envelope edge
excursion (beam size) as:

y

N 4|k|L? sin(mn/2)

Max|rgm] = Max|rym| @ (1 + |A]) =7, ¢ 1

\

T (1_w

2
\ =Ty

).

4
and the beam perveance (1.e., transportable current) as:

~272, .2 2

B , o R°L*r} €

Q = 8sin(rn/2) (o)
w2r§
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Lattice Design Strategy:

Outline for FODO quadrupole focusing in context with the previous derivation,

but pattern adaptable to other cases

Step 1) Choose a lattice period 2L, occupancy 7 , clear bore “pipe” radius 7p
consistent with focusing technology employed.
- Here estimate in terms of hard-edge equivalent idealization

Step 2) Choose the largest possible focus strength < (i.e., quadrupole current or
voltage excitation) possible for beam energy with undepressed particle phase

advance:

oo < 807 /Period

“Tiefenback Limit”
See Lectures on Transverse Kinetic Stability

- Larger phase advance corresponds to stronger focus and smaller beam
cross-sectional area for given values of: (), ¢,

- Weaker focusing/smaller phase advance tends to suppress various envelope
and kinetic instabilities for more reliable transport

- Specific lattices likely have different focusing limits for stability:
For example, solenoid focusing tends to have less instability
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Step 3) Choose beam-edge to aperture clearance factor Ap:

rp = Max|rgpm| + Ay A, = Clearance

To account for:
- Centroid offset (from misalignments + initial value)
- Limit scraping of halo particles outside the beam core
- Nonlinear fields effects (from magnet fill factor + 1image charges)
- Vaccum needs (gas propagation time from aperture to beam ...)
- + Other effects

Step 4) Evaluate choices made using theory, numerical simulations, etc. Iterate
choices to meet performance needs and optimize cost.

Effective application of this procedure requires extensive practical knowledge:
e Nonideal effects: collective instabilities, halo, electron and gas interactions (
Species contamination, ...)
e Technology limits: voltage breakdown, normal and superconducting magnet
limits, ....
Details and limits vary with choice of focusing and application needs.
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Maximum Current Limit of a quadrupole FODO lattice

At the space-charge limit, the beam is “cold” and the emittance defocusing term is
negligible relative to space-charge. Neglect the emittance terms in the previous
equations to find the maximum transportable current for a FODO lattice

li r =

swlgo d ¥ Full space-charge
lim 0. =0 Depression

gy—0 Y

In this limit, the maximum transportable perveance (current) is obtained:

lim € = @max

Ex,Ey—0

Taking this limit in our previous results for a FODO quadrupole lattice obtains:

7.‘.

4| k| L?
1iII(1) Max|rym| = 1 {1 + — "f‘ sin(ﬁn/Z)}
e—>

lim Q = Quax = 8 [sin(mn/2)]” &* L]
e—
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Transport Limits of syncopated quadrupole FODO transport channel

Lattice:‘
()] | (K =-%,)

i A
i N Attt ' T —— -
dy \MLy2, dy n € (0,1] Occupancy
F Quad R ~

| >
P D Quad s
ML/ i
_________________________ H— I/ _ a€]0,1/2] Syncopation
r... L, ... d;=a(l-n)L, Factor
Lattice Period . dp= (1—(1)(1—1])Lp o = 1/2 — FODO

Material to be added from based on
supplemental 2008 pdf scan USPAS notes
* Not simple analytical calculation but summary of results
to 1llustrate how results change 1n situations with less
symmetry
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Transport Limits of a Solenoidal Transport Channel

Covered in homework!
* Much easier than quadrupole cases!
* May summarize results from homework here in future notes
for completeness
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S10: Centroid and Envelope Descriptions
via 1* Order Coupled Moment Equations

When constructing centroid and moment models, it can be efficient to simply
write moments, differentiate them, and then apply the equation of motion.
Generally, this results in lower order moments coupling to higher order ones and

an infinite chain of equations. But the hierarchy can be truncated by:
+ Assuming a fixed functional form of the distribution in terms of moments
+ And/Or: neglecting coupling to higher order terms

Resulting first order moment equations can be expressed in terms of a closed set
of moments and advanced in s or ¢ using simple (ODE based) numerical codes.
This approach can prove simpler to include effects where invariants are not easily
extracted to reduce the form of the equations (as when solving the KV envelope
equations in the usual form).

Examples of effects that might be more readily analyzed:
+ Skew coupling in quadrupoles
+ Chromatic effects in final focus

* Dispersion in bends See: references at end of notes and
J.J. Barnard, lecture on

Heavy-lon Fusion and Final Focusing
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Resulting 1* order form of coupled moment equations:

d
—M =FM
- (M)

M = vector of moments, and their s derivatives, generally infinite
F = vector function of M, generally nonlinear

+ System advanced from a specified initial condition (initial value of M)

Transverse moment definition:

B f A’z f d’x’ oo fL Can be generalized if other
<. : > 1L = f 2, f dsz_ L Vari.ables such as off mqmentum
are included in distribution f

Differentiate moments and apply equations of motion:

i<> _dexJ—fCFxJ_ [ds ]fJ—
ds + [ d?x, [d?2’) 1

d
+ apply equations of motion to simplify i
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When simplifying the results, if the distribution form is frozen in terms of
moments (Example: assume uniform density elliptical beam) then we use

constructs like:

n:/dzaf’l fL

n(M)

to simplify the resulting equations and express the RHS in terms of elements of M

1* order moments:

X =(x1)1L

(x| )1

/
1

ODs

S

A=

) = (9)

+ possible others if more variables. Example

Centroid coordinate

Centroid angle

Centroid off-momentum
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2" order moments:
It 1s typically convenient to subtract centroid from higher-order moments

r=x—X ' =a — X'
j=y—-Y gy =y -Y
b=5—A

X-moments y-moments Xx-y Cross moments dispersive moments

@1 (T (@) (#0), (§0)
@)L (y')L (@'g)o, @y)L (@'9), (J'9)
@) (g% @) (0%)

3" order moments: Analogous to 2™ order case, but more for each order

<533>J_7 <£2g>l7
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Many quantities of physical interest are expressed in transport can then be
expressed in terms of moments calculated when the equations are numerically
advanced in s and their evolutions plotted to understand behavior
* Many quantities of physical interest are expressible in terms of
1* and 2" order moments

Example moments often projected:

Statistical beam size: Statistical emittances:
(rms edge measure) (rms edge measure)
- - s 1/2
re = 2(32) /2 er = 4 [(#2) L (F%) L — (37)2] "
. - - o 1/2
ry = 2(5%)"/? ey =4 [0 L@ ?) L — @y)1]

Kinetic longitudinal temperature:
(rms measure)

T, = const x (62)
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[llustrate approach with the familiar KV model

Truncation assumption: unbunched uniform density elliptical beam 1n free space
+ 0 =0, no axial velocity spread 7 A

+ All cross moments zero, i1.e. (Zy)y1 =0 v A A
d / d, o — ! .
£<CC>L —_— <a;' >L £<$ >L — 2(:13% >l Yop \ ;I?“f ;
d d
R =" ) =20,
_ >

Use particle equations of motion within beam, neglect images, and simplify
* Apply equations in S2 with E*, = 0

v (wbBe) 20 -
B T G @ () = 0
v (wB) B 20) B -

By Y T T Gy, W W) =0
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Resulting system of 1st and 2nd order moments
1* order moments:

(x) 1 (@)1
d | @ | | —re(s){@)L
ds | (y)L (') L
WL | | —Ry(s) (w1
2" order moments:
(%)) - 2(z’) | ]
(7 | (#2) | — r(5)(32) |+ —— QL
o) )
72 _2 x LT 1/2 xf 2J_ 1/2
i <'CC~ >J_ _ ji (S)<QZ‘QZ >J—+ <~2>J_/ [<~2>J_/ _|_<~2>J_/]
ds <y2>¢ 2(yy') 1 s
()1 (5721 — kg ()FP) L+ T
B )
/2 —2 5y’ 1/2 y?lJ 2J_ 1/2
Bl Sy ST+ e T

+ Express 1st and 2nd order moments separately in this case since uncoupled
+ Form truncates due to frozen distribution form: all moments on LHS on RHS
+ Integrate from initial moments values of s and project out desired quantities
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Using 2" order moment equations we can show that
iez =0 = ia‘Q
ds * ds 7

E

2
— T
ey = 16 [(y*) L (y"*) L — (yy')1] = const

Using this, the 2" order moment equations can be equivalently expressed in the
standard KV envelope form:

dr., d 2 2
L:7“(,’,3; — 1+ KTy — @ S
ds ds ry+ry TS
dry, , d 20 e
ds "y ds Ty T RyTy re + 7y TS

+ Moment form fully consistent with usual KV model .... as it must be

+ Moment form generally easier to put in additional effects that would violate
the usual emittance invariants
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Relative advantages of the use of coupled matrix form versus reduced equations

can depend on the problem/situation

Coupled Matrix Equations

M = Moment Vector
F = Force Vector

+ Easy to formulate
- Straightforward to incorporate
additional effects
+ Natural fit to numerical routine
- Easy to numerically code/solve

SM Lund, USPAS, 2017

Reduced Equations

X"+ Kk, X =0

20) g2

/7

Ty 4+ KTy — ——5 =0
re+ry, T

etc.

Reduction based on identifying
invariants such as
ez = 16 [(2%) 1(2"%) 1 — (22)7 ]
helps understand solutions
+ Compact expressions can help
analytical understanding
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References showing use of coupled moment formulations of centroid and

envelope evolution:
+ Use truncated moment chain to describe beam with implicit fixed form
distribution closure to calculate a broad range of effects

J.J. Barnard, H.D. Shay, S.S. Yu, A. Friedman, and D.P. Grote, “Emittance Growth in
Heavy-Ion Recirculators,” 1992 PAC Proceedings, Ontario, Canada, p. 229

J.J. Barnard, J. Miller, I. Haber, “Emittance Growth in Displaced Space Charge
Dominated Beams with Energy Spread,” 1993 PAC Proceedings, Washington, p. 3612
(1993)

J.J. Barnard, “Emittance Growth from Rotated Quadrupoles in Heavy Ion
Accelerators,” 1995 PAC Proceedings, Dallas, p. 3241 (1995)

R.A. Kishek, J.J. Barnard, and D.P. Grote, “Effects of Quadrupole Rotations on the
Transport of Space-Charge-Dominated Beams: Theory and Simulations Comparing
Linacs with Circular Machines,” 1999 PAC Proceedings, New York, TUP119, p. 1761
(1999)

J.J. Barnard, R.O. Bangerter, E. Henestroza, I.D. Kaganovich, E.P. Lee, B.G. Logan,
W.R. Meier, D. Rose, P. Santhanam, W.M. Sharp, D.R. Welch, and S.S. Yu, “A Final
Focus Model for Heavy Ion Fusion System Codes,” NIMA 544 243-254 (2005)

J.J. Barnard and B. Losic, “Envelope Modes of Beams with Angular Momentum,”
Proc. 20th LINAC Cont., Monterey, MOE12 (2000)
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2017

Redistributions of class material welcome. Please do not remove author credits.
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References: For more information see:

These course notes are posted with updates, corrections, and supplemental material at:

https://people.nscl.msu.edu/~lund/uspas/bpisc_2017
Materials associated with previous and related versions of this course are archived at:
JJ Barnard and SM Lund, Beam Physics with Intense Space-Charge, USPAS:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2015 2015 Version
http://hifweb.1bl.gov/USPAS_2011 2011 Lecture Notes + Info

http://uspas.tnal.gov/programs/past-programs.shtml (2008, 2006, 2004 )

JJ Barnard and SM Lund, Interaction of Intense Charged Particle Beams with
Electric and Magnetic Fields, UC Berkeley, Nuclear Engineering NE290H
http://hifweb.1bl.gov/NE290H 2009 Lecture Notes + Info
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References: Continued (2):

Image charge couplings:

E.P. Lee, E. Close, and L. Smith, “SPACE CHARGE EFFECTS IN A BENDING
MAGNET SYSTEM,” Proc. Of the 1987 Particle Accelerator Conf., 1126 (1987)

Seminal work on envelope modes:

J. Struckmeier and M. Reiser, “Theoretical Studies of Envelope Oscillations and
Instabilities of Mismatched Intense Charged-Particle Beams in Periodic Focusing
Channels,” Particle Accelerators 14, 227 (1984)

M. Reiser, Theory and Design of Charged Particle Beams (John Wiley, 1994, 2008)

Extensive review on envelope instabilities:
S.M. Lund and B. Bukh, “Stability properties of the transverse envelope equations
describing intense 1on beam transport,” PRSTAB 7 024801 (2004)

Efficient, Fail-Safe Generation of Matched Envelope Solutions:

S.M. Lund and S.H. Chilton, and E.P. Lee, “Efficient computation of matched
solutions of the Kapchinskij-Vladimirskij envelope equations, ” PRSTAB 9,
064201(20006)

A highly flexible Mathematica -based implementation is archived on the course web
site with these lecture notes. This was used to generated many plots in this course.
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KV distribution:

F. Sacherer, Transverse Space-Charge Effects in Circular Accelerators, Univ. of
California Berkeley, Ph.D Thesis (1968)

I. Kaphinskij and V. Vladimirskij, in Proc. Of the Int. Conf. On High Energy Accel.
and Instrumentation (CERN Scientific Info. Service, Geneva, 1959) p. 274

S.M. Lund, T. Kikuchi, and R.C. Davidson, *“,Generation of initial kinetic
distributions for simulation of long-pulse charged particle beams with high space-
charge intensity,” PRSTAB 12, 114801 (2009)

Symmetries and phase-amplitude methods:

A. Dragt, Lectures on Nonlinear Orbit Dynamics in Physics of High Energy Particle
Accelerators, (American Institute of Physics, 1982), AIP Conf. Proc. No. 87, p. 147

E. D. Courant and H. S. Snyder, “Theory of the Alternating-Gradient Synchrotron,”
Annals of Physics 3, 1 (1958)

Analytical analysis of matched envelope solutions and transport scaling:

E. P. Lee, “Precision matched solution of the coupled beam envelope equations for a
periodic quadrupole lattice with space-charge,” Phys. Plasmas 9, 4301 (2005)

O.A. Anderson, “Accurate Iterative Analytic Solution of the KV Envelope Equations
for a Matched Beam,” PRSTAB, 10 034202 (2006)
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