Transverse Kinetic Stability”

Prof. Steven M. Lund
Physics and Astronomy Department
Facility for Rare Isotope Beams (FRIB)
Michigan State University (MSU)

US Particle Accelerator School (USPAS) Lectures on
“Beam Physics with Intense Space-Charge”
Steven M. Lund and John J. Barnard

US Particle Accelerator School Summer Session
Northern Illinois University, 12-23 June, 2017

(Version 20170702)

* Research supported by:
FRIB/MSU, 2014 onward via: U.S. Department of Energy Office of Science Cooperative
Agreement DE-SC0000661and National Science Foundation Grant No. PHY-1102511

and
LLNL/LBNL, before 2014 via: US Dept. of Energy Contract Nos. DE-AC52-07NA27344 and
DE-AC02-05CH11231

SM Lund, USPAS, 2017 Transverse Kinetic Stability 1

Transverse Kinetic Stability: Outline
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Transverse Kinetic Stability: Detailed Outline

Section headings include embedded links that when clicked on will direct you to
the section

1) Overview: Machine Operating Points
Notions of Beam Stability
Tiefenback's Experimental Results for Quadrupole Transport

2) Overview: Collective Modes and Transverse Kinetic Stability
Possibility of Collective Internal Modes
Vlasov Model Review
Plasma Physics Approach to Understanding Higher Order Instability

3) The Linearized Vlasov Equation
Equilibrium and Perturbations
Linear Vlasov Equation
Method of Characteristics
Discussion

4) Collective Modes on a KV Equilibrium Beam
KV Equilibrium
Linearized Equations of Motion
Solution of Equations
Mode Properties
Physical Mode Components Based on Fluid Model
Periodic Focusing Results
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Detailed Outline - 2

5) Global Conservation Constraints
Conserved Quantities
Implications
6) Kinetic Stability Theorem
Effective Free Energy
Free Energy Expansion in Perturbations
Perturbation Bound and Sufficient Condition for Stability
Interpretation and Example Applications
7) rms Emittance Growth and Nonlinear Forces
Equations of Motion
Coupling of Nonlinear Forces to rms Emittance Evolution
8) rms Emittance Growth and Nonlinear Space-Charge Forces
Self-Field Energy
rms Equivalent Beam Forms
Wangler's Theorem
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Detailed Outline - 3

9) Uniform Density Beams and Extreme Energy States
Variational Formulation
Self-Field Energy Minimization

10) Collective Relaxation of Space-Charge Nonuniformities and

rms Emittance Growth

Conservation Constraints

Relaxation Processes

Emittance Growth Bounds from Space-Charge Nonuniformities

11) Emittance Growth from Envelope Mismatch Oscillations
To be added

12) Non-Tenuous Halo Induced Mechanism of Higher Order Instability

in Quadrupole Focusing Channels
Halo Model for an Elliptical Beam
Pumping Mechanism

Stability Properties
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Detailed Outline - 4

13) Non-Tenuous Halo Induced Instability in Solenoidal Focusing Systems
To be added

14) Phase Mixing and Landau Damping in Beams
(to be added, future editions)
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S1: Overview: Machine Operating Points

Good transport of a single component beam with intense space-charge
described by a Vlasov-Poisson type model requires:
1. Lowest Order:
Stable single-particle centroid: o9 < 180°  see: Transverse Particle Dynamics
Transverse Centroid and Env.
2. Next Order:

Stable rms envelope:

3. Higher Order:
“Stable” Vlasov description: To be covered these lectures

00, 0/0¢ both outside see: Transverse Centroid and
of envelope bands Envelope Descriptions

Transport of a relatively smooth initial beam distribution can fail or
become “unstable” within the Vlasov model for several reasons:

+ Collective modes internal to beam become unstable and grow
- Large amplitudes can lead to statistical (rms) beam emittance growth

+ Excessive halo generated
- Increased statistical beam emittance and particle losses

+ Combined processes above
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Transport limits in periodic (FODO) quadrupole lattices that result from
higher order processes have been measured in the SBTE experiment.
These results had only limited theoretical understanding over 20+ years

Limits defined with respect to reasonable (smooth) initial distributions

[M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)] _ 0% Space-Charge

=) > 1.0 Intensity
S g - i ) i Transport
0 100% core Stable oo
0 95% core Emittance Blow Up/
0.8 Particle Losses
gl) -- Not Practical for
;r,e; S o 0.6 Stable Applications
08
5 b 0.4 Empirical Fit to
g« o9 < 85° Higher-Order
w 0.2 Instability Boundary
: 5 5 1
: og — 0% = ~(120°)?
5 .00 . . | 2
= 0 30 60 90 120 150 180
yl]gh Splucle— . o (degreeS) f
harge Intensity . )
Transport  Min Focusing Strength Max

SM Lund, USPAS, 2017 Transverse Kinetic Stability 8




Comments:
In this schematic picture used only two parameters
op Provide a measure of focusing strength for
fixed form lattice functions Kz, Ky
o / 0o <=  Normalized measure of space-charge intensity

Depending on lattice and beam, these may not be the only relevant parameters
Example: Focusing strength measure from analysis of matched env equation
+ Solenoid: Envelope flutter relates to both o¢ and occupancy 7
+ FODO Quadrupole: Envelope flutter largely scales with o, weak in 7

Tz | max 1o { (1 —cos UO)M Solenoidal Focusing

_ 6
T (1 — cos ag)/ 2% Quadrupole Focusing

Solenoidal Focusing FODO Quadrupole Focusing
[ OSp e e
n=0.25
0.4 04 ;' T
el o O n="0728 03 /f
==l ., n =050 "—=lr'.‘_‘£-1 0aE .
=10 \r""____ B R YT
0.1 S ——
—  N——— 0.1
0
L. . - . - . - . - - - . | 0 " - - . - . - . . - . .
50 o 120 80 90 120
oy (degrees) oy (degrees)
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Summary of beam stability with intense space-charge in a
quadrupole transport lattice: centroid, envelope, and theory
boundary based on higher order emittance growth/particle losses

Min —» 1.0 .
Stable Theory stablmy

2, 0.8 boundary points

g <

2o s . » Lund and Chawla, NIMA 561

T O ~ B

§ 5) g 04 4 Envelope 203 (2006)

& 02 ] Mooty + Lund, Barnard, Bukh, Chawla,

’ i and Chilton, NIMA 277
Max —» 00 3('] 173 (2007)

0 60 90 120 150 180
T oo (degrees/period) ?
Min Focusing Strength Max

Theory analyzes AG transport limits without equilibria

*+ Suggests near core, chaotic halo resonances driven by matched beam envelope flutter

can drive strong emittance growth and particle losses

+ Results checked with fully self-consistent simulations
Analogous mechanisms (with much smaller region of parameters leading to “instability”)
exist for solenoidal transport
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S2: Overview:
Collective Modes and Transverse Kinetic Stability

In discussion of transverse beam physics we have covered to date:

“Equilibrium” Matched Envelope
+ Used to estimate balance of space-charge and focusing forces
- KV model for periodic focusing
- Continuous focusing equilibria for qualitative guide on space-charge effects
such as Debye screening and nonlinear equilibrium self-field effects

Centroid/Envelope Modes and Stability
+ Lowest order collective oscillations of the beam
- Analyzed assuming fixed internal form of the distribution
+ Model only exactly correct for KV equilibrium distribution
- Should hold in a leading-order sense for a wide variety of real beams
+ Predictions of instability regions are well verified by experiment
- Significantly restricts allowed system parameters for periodic focusing lattices
+ Envelope and Centroid instability can be avoided using focusing sufficiently weak to
avoid envelope instability by taking oy < 90°for both solenoid and quadrupole
focusing channels
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Example — Envelope Modes on a Round, Continuously Focused Beam

y Breathing Mode (+)

Quadrupole Mode (-) /Envc]opc
Envelope
\

. Breathing
?rx Mode (+)
Quadrupole
Mode (-)

/
Matched Beam -
Envelope 'm er

Quadrupole and
Breathing Modes

The rough analogs of these modes in a periodic focusing lattice can be
destabilized
* Constrains system parameters to avoid band (parametric) regions of instability
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Reminder (lecture on Centroid and Envelope Descriptions of Beams):
Instability bands of the KV envelope equation are well understood in
periodic focusing channels

Envelope Mode Instability Growth Rates

Solenoid (1= 0.25) Quadrupole FODO ((_=0.70)

1.0

T I
! ln‘yi | ! ln"yB’ Q‘ 1.0
- TsYo 0.0
Lattice
DQ 0.6 DQ 0.6 Band
~ Y ~
© 04 * © 04
Lattice
02| Res. | 0.2
Band !
0.0 : ! 0.0
100 120 140 160 180 100 120 140 160 180
G (deg/period) Gy (deg/period)
[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)]
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A lack of centroid and envelope instabilities is a necessary but not
sufficient condition for good transport.
Also need stability with respect to wave distortions in a more complete
Vlasov model based kinetic theory including self-consistent space-charge

Higher-order Collective (internal) Mode Stability
+ Perturbations will generally drive nonlinear space-charge forces
+ Evolution of such perturbations can change the beam rms emittance
+ Many possible internal modes of oscillation should be possible relative to
moment (envelope) oscillations
- Frequencies can differ significantly from envelope modes
- Creates more possibilities for resonant exchanges with a periodic focusing
lattice and various beam characteristic responses opening many
possibilities for system destabilization

KV Envelope Mode Higher Order Mode
(breathing)
n(r n(r
© 4 A = const @ A = const
Tb Tho 1" Tb Th0 r'
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Plasma physics approach to beam physics:

Resolve:

f(x1,x),8) = fL({Ci}) +0fL(x0, %, 8)

equilibrium / perturbation /; > 0f1]

and carry out equilibrium + stability analysis

Comments:
+ Attraction is to parallel the impressive successes of plasma physics
- Gain insight into preferred state of nature
+ Beams are born off a source and may not be close to an equilibrium condition
- Appropriate single particle constants of the motion unknown for
periodic focusing lattices other than the KV distribution
- Not clear if smooth equilibria exist for finite radius beams
+ Intense beam self-fields and finite radial extent vastly complicate equilibrium
description and analysis of perturbations relative to plasma physics
- Influence of beam edge (finite plasma) and intense (generally nonlinear)
self-fields complicate picture relative to neutral plasma physics which support

(approximately) local force free thermal equilibrium.
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Review: Transverse Vlasov-Poisson Model: for a coasting, single species beam
with electrostatic self-fields propagating in a linear focusing lattice:

/ . .
X1, X) transverse particle coordinate, angle
/
qg, m charge, mass f 1 (XL, X, 5) single particle distribution
Yo, Bo axial relativistic factors H, (X 1, X/J_, S) single particle Hamiltonian

Vlasov Equation (see Barnard, Introductory Lectures; Lund, Transverse Eq. Dists.):

d 0 dx, 0 dx', 0
ds 0s ds Ox, ds 0x/|
Particle Equations of Motion:
d - oH. A, OH
ds ox'| ds"*t 7 ox,
Hamiltonian (see: S.M. Lund, lectures on Transverse Equilibrium Distributions):
1,2 1 9, 1 2 q
HJ_ = §XJ_ +§/€x(8)x +§/€y($>y +W¢

Poisson Equation:

0? 0? q 2./
s I ey L

+ boundary conditions on ¢
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Review: Focusing lattices, continuous and periodic
(simple piecewise constant):

a) Continuous

K| (k=x,=kEy =const) Lattice Period Ly,
Ko
- Occupancy 7
’ 0,1]
b) Periodic Solenoid n € [ ’
Ky(s) (ry=%) A
K
Solenoid description
carried out implicitly in
. Larmor frame
a2 nL, . dn [see: S.M. Lund, lectures on
e d=(1-njL, Transverse Particle Dynamics]
c) Periodic Quadrupole Doublet
K,(5) (K, =1) A )
i Syncopation Factor «
dy L2, d
F Quad = 1
D Quad s a € [07 _]
-~ 2
NL,/2
,{gq _ 1
L, d;=a(ln)L, = B = FODO
Lattice Period dy=(1-a)(1-n)L,
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. . 2
Continuous Focusing: Ky = Ky = k,BO = const

1
H, = 5 x| +2 kﬂOXJ_+

é Will be using primarily
c? this form in these lectures

3ﬂ2

Solenoidal Focusing (in Larmor frame variables): Rz = Ry = K(s)

1 1
Hio= x4+ -3 +—L

2 2 m; BEc?
Quadrupole Focusing: Az = —HKy = Kq (s)
1,2 1 2 1 2
HL = éxl + §/€q$ — ilﬂ?qy + m’ybIB202¢

We will concentrate (mostly) on the continuous focusing model in these
lectures and will summarize some results on periodic focusing
+ Kinetic theory is notoriously complicated even in this (simple) case
+ By analogy with envelope mode results expect that kinetic theory of
periodic focusing systems to have many more possible instabilities
+ As in equilibrium analysis, the continuous model can give simplified insight
on a range of relevant kinetic stability considerations
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Expression of Vlasov Equation
See also lectures on Transverse Equilibrium Distributions
Hamiltonian expression of the Vlasov equation:

d 8fl dXL afl_i_dxl afl

_ = = e e =0
ds fu s ds 0x, ds 0x/|
_O0fL OH, 0fi OH, 9fL _
0s ox'| Ox; Ox; Ox/
Using the equations of motion:

d 0L

ds +t ox' L

d_, oH, [ . . ¢ 06
%XL = ——aXL = (nzxx + Kyyy + 3,6,?@ %,

Gives the explicit form of the Vlasov equation:
+ Use in these lectures with continuous focusing: Ky = Ky = kﬁo = const

q 09\ Ofs
mypBic 0x, ) 0%/

Continuous ofL / 8fJ. 2 q 0¢ ofL
— - —_— k: —_———m— . =
Focusing — s txL BoXL + mypBEc? x, ) 0%/
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—S—i—xL-T—(imwm—i—yRyy—i— =0
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Comments on Vlasov-Poisson Model

+ Collisionless Vlasov-Poisson model good for intense beams with many particles
- Collisions negligible, see: J.J. Barnard, Introductory Lectures
+ Vlasov-Poisson model is solved as an initial value problem

1) fi(x1,x,s =s;) = Initial "condition” (function) specified
2) Vlasov-Poisson model solved for subsequent evolution in s
for fi(x,x/ ,s) for s > s;

+ The Vlasov distribution function f 1 > 0 can be thought of as a probability
distribution evolving in X — x | phase-space.
- Particles/probability neither created nor destroyed
- Flows along characteristic particle trajectories in x| — X,J_ phase-space
given by the particle equations of motion
- Vlasov equation can be thought of as a higher-dimensional continuity
equation describing incompressible flow in x| — x’l phase-space

+* Normalization of the 4D (transverse) distribution  is chosen such that:
- See also discussion in Transverse Equilibrium Distributions

PZQ/dzﬂUlfL )\:q/dzau /dlefl = const
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+ The coupling to the self-field via the Poisson equation makes the
Vlasov-Poisson model highly nonlinear

0? 0? p
. 2./ _ _— = ——
p—q/de_fJ_ <3m2+8y2>¢ €o

+ aperture boundary condition on ¢

+ Vlasov-Poisson system is written without acceleration, but the transforms
developed to identify the normalized emittance in the lectures on
Transverse Particle Dynamics can be exploited to generalize all

result presented to (weakly) accelerating beams (interpret in tilde variables)

+ For solenoidal focusing the system can be interpreted in the rotating
Larmor frame, see: lectures on Transverse Particle Dynamics

+System as expressed applies to 2D (unbunched) beam as expressed
- Considerable difficulty in analysis for 3D version for
transverse/longitudinal physics
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S3: Linearized Vlasov Equation

Because of the complexity of kinetic theory, we will limit discussion to a simple
continuous focusing model Vlasov-Poisson system for a coasting beam within a

round pipe Fop = Fiy = k?&o = const

df . o 0 / 0 2 q 09 0 / o
ds {83 X 0% (ICBOXL + mypBEc? 0x, ) Ox/| frlxer,xy,8) =0

V3 oxss) = —L / @', f1(x1,%),5)

o(|x1| =rp,s) = const

Then expand the distribution and field as:

Comment:

The Poisson equation connects

f1L and ¢ so,0f1 and d¢
cannot be independently specified.
We quantify the connection shortly.

fr = fo(Ho) + 6fL
¢ = o + 0¢

equilibrium  perturbation

At present, there is no assumption that the perturbations are small
+ Use subscript zeros to distinguish equilibrium quantities in the absence of
perturbations to set up perturbation analysis
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The equilibrium satisfies:
(see: S.M. Lund, lectures on Transverse Equilibrium Distributions)
1

1
H() = §X12 —+ Ekéoxi +

q
m’yg’ [)’g c?

%o

fo(Ho) >0 (any non-negative function)

10 6(,250 q / 2

—— | =—/d H

ror (T or ) €0 71 Jo(Ho)

The unperturbed distribution must then satisfy the equilibrium Vlasov equation:
0 0 / 0 2 q 8¢0 0 _

(e (o ot ) ot =0

’ (9 2 q 8¢0 8 _
{Xl . (kﬁ‘)xl TR axi) o/, } folHo) =0

Because the Poisson equation is linear, and @0 satisfies the equilibrium Poisson
equation, the Perturbed Poisson Equation for §¢ is:

V23¢(x1,8) = —% /d2ml OfL(x1,%,8)

0o(|x 1| =1rp,s) = const
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Insert the perturbations in Vlasov's equation and expand terms:

0
Qe 709 6 0 O
{&"‘ X/I/E - <k[230XL + Wﬁ) . 3x’l} fOV(HO) equilibrium term
o 0 0 (2 g 060\ 0
* {05 txL ox (k(aoXL * mvgﬂgCQ ox ox'| of1
_ q 06¢ 0 q 0y 0
T omApBRc? 0x, 0%/ Jo(Ho) + mypBEc? Ox 0%/
perturbed field
linear correction term

Take the perturbations to be small-amplitude:

fo(Ho) > [0f1]
0o > dop <--- follows automatically from distribution/Poisson Eqn

equilibrium characteristics
of perturbed distribution

ofL

nonlinear term  ~ §2

and neglect the nonlinear terms to obtain the linearized Vlasov-Poisson system:

0 , 0 2 q 8¢0 0 ’
{&“i oxl (’W” Wa?) ' E}‘W’”””’S)
q  06¢(x1,s) 0

= . H
m’ygﬁgﬁ ox| ox'| fo(Ho)

V3 6d(xy,8) = —% /dQ:c’J_ Sfi(x1,x,s) 8¢(|x1| =1p, ) = const
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Solution of the Linearized Vlasov Equation: Use the method of
characteristics to recast in a more manageable form for beam applications

The linearized Vlasov equation is an integral-partial differential equation system
+ Highly nontrivial to solve!
+ The structure of the equations suggests that the Method of Characteristics can
be employed to simplify analysis

Note that the equilibrium Vlasov equation is:

0 , d 5 q Ao 9 -
{ 9s XL x. (kaoxl + mRRE ox. ) Bl fo=0
d
s 4 fo=0
Interpret: eq. orbit
o / 9 2 q telo) 0 d
Os Ak 3,59 9 a._. |~ = —
{as e 231 ( po¥L + mypBEc? 0x, ) Ox/| A5 | oq. orbit

as a total derivative evaluated along an equilibrium particle orbit in the
continuum approximation beam equilibrium. This suggests employing the
method of characteristics.
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Method of Characteristics:
Orbit equations of motion of a “characteristic particle” in equilibrium:
d_ . o g~
TXLE) =XL6)

d_, - s g 9¢o(x.(5))
EXL (S) - _k%Oxl(S) - m/ygﬁgcz 8)~CJ_(§)

“Initial” conditions of characteristic orbit chosen such that particle passes through
. ! ~
phase-space coordinates X1, X at § =S ! Charcteristic Pasticle Orbit

Then the linearized Vlasov equation can be equivialently exprés:ssed as:

; g 036(%.(3) 3 (Ho(x1(3).%(3)))

G ELB X8 = s s o )

i

Integrate:

—o0 q s ~ )N(L 3 o
my; B2c? /oods 9% (3) 8” fo(Ho(%x1(5),%(5)))

Transverse Kinetic Stability 26

SM Lund, USPAS, 2017

Neglect initial conditions at § — —00 to analyze perturbations that grow in s:

/_S 6fL(Xl(8)7XL( );8) = 0fi(xu,X,s) = Tim 6f1(%1(5),%L(5),3)

~§f(x1,%,s)

Giving:

g / PRGN

T,L,ygﬁch 0%, (;) (HO(iL (§)7)~(/J_(§)))

Of1(x1,%),8) =

Insert this expression in the perturbed Poisson equation:

V20¢(x1,8) = _ei /d%l
0

(5fJ_(XJ_,XIL,8)

0¢(|x1| =rp,s) = const

To obtain the characteristic form of the perturbed Vlasov equation:

Summary:
Linearized Vlasov-Poisson system expressed in the method of characteristics

, _00p(x,(8)) O .
V200(19) = ot [, [ as PO G (5). %, 3))

0¢(|x1| =1p,s) = const

With characteristic orbits in the equilibrium beam satisfying:

—=X1(3) =% (3)

. ds
Eqns of Motion: o (s
| D 5= o (s) OO0l (5)
ds + A0 mypBEc? 0% (S)
Initial X1 (5=15)=x1
Conditions: X (5=s)=x

Vi0g(x,s) = mfo%ﬂb(’Q /d2 / / a5 66¢~ S)) ox/| fo(Ho(%..(5),%1.(5)))

0¢(|x1| =1p,s) = const
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Gives the self-consistent evolution of the perturbations
+ Similar statement for nonlinear perturbations (Homework problem)

Effectively restates the Poisson equation as a differential-integral equation that is
solved to understand the evolution of perturbations
+ Simpler to work with .... but still very complicated to solve in general cases due to
nonlinear equilibrium characteristics which, other than special (KV) cases, are

difficult to solve for analytically
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Formulation can be applied with no modification to any equilibrium distribution
+ Need not be continuous focusing
+ Method is used with a periodic focused KV equilibrium distribution to
analyze the stability of normal mode perturbations about a KV equilibrium
- Equilibrium function of linear field Courant-Snyder invariants
- Formulation very difficult to solve

To apply method of characteristics to construct linear normal mode perturbations:

1) Take harmonic variation with s dependence
5p(x1,8) = dpy (x1 )e i=v-1

0¢n(x1) = eigenfunction

2) Find (via expansion) form of §¢,, (x J_) that satisfies the integral-
differential equation and boundary conditions
+ Expect solutions to exist only for certain values of k (dispersion relation)
and specific symmetry eigenfunctions §¢,, (x )
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S4: Collective Modes on a KV Equilibrium Beam

Unfortunately, calculation of normal modes is complicated even in continuous
focusing. Nevertheless, the normal modes of the KV distribution can be
analytically calculated and give insight on the expected collective response of a
beam with intense space-charge.

Review: Continuous Focusing KV Equilibrium
# see: SM Lund, lectures on Transverse Equilibrium Distributions

~ 5 Undepressed
n € kgo = betatron wavenumber
fL(H)= -0 (HL— 5> _
2m 27"b r, — Beam edge radius
. . . 7. = Beam number density
Express equilibrium parameters in normalized forms . .
as before to provide a “guide” to other systems: Q= Dimensionless perveance
Applied Focusing: € = rms edge emittance
2
g0
K, = (—) = const Q el
B0 L 2 P
p j g = 00~ 7713 = 3
Matched Envelope: " (ro/Lyp) Ty
412 =2 2 2 2
Ty = o 4]%08 e = const kﬁog = 0382 = (0/00)2
=|— = = =
2k3, Q? QQL% [1—(0/00)?]?
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Further comments on the KV equilibrium: Distribution Structure

Equilibrium distribution for non-continuous focusing channels:

f; ~ 0[Courant-Snyder invariants]

Forms a highly singular hyper-shell in 4D phase-space
/

o X1
Schematic: . 4D singular hyper-shell surface

X1

+ Singular distribution has large “Free-Energy” to drive many instabilities
- Low order envelope modes are physical and highly important
(see: S.M. Lund, lectures on Centroid and Envelope Descriptions of Beams)
+ Perturbative analysis shows strong collective instabilities
- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)
- Higher order instabilities (collective modes) have unphysical aspects
due to (delta-function) structure of distribution and must be applied
with care (see following lecture material)
- Instabilities can cause problems if the KV distribution is employed
as an initial beam state in self-consistent simulations
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A full kinetic stability analysis of the elliptical beam KV equilibrium

distribution is complicated and uncovers many strong instabilities
[ I. Hofmann, J.L. Laslett, L. Smith, and I. Haber, Particle Accel. 13, 145 (1983);
R. Gluckstern, Proc. 1970 Proton Linac Conf., Batavia 811 (1971) ]

Expand Vlasov's equation to linear order with:
| fi — f1(CS. Invariant) + 6f; |
Solve the Poisson equation:
V260 = —% /de’ 51
using truncated polynomials for §¢ internal to the beam to represent a
“normal mode” with pure harmonic variation, i.e., 0¢ ~ func(z, y)e ks

f1(C.S. Invariant) = equilibrium

6f1 = perturbation

n n—2
5 = e~ iks {Z Ag)(s)xn—mym + Z A,(%)(S)Z'n_m_%jm I }

m=0 m=0
k = const = Mode Wavenumber n =2,3,4,--- “order” of mode

i=v—-1

m can be restricted to even or odd terms

+ Truncated polynomials can meet all boundary conditions (Glukstern, Hoffmann)
+ Eigenvalues of a Floquet form transfer matrix analyzed for stability properties
- Lowest order results reproduce KV envelope instabilities
- Higher order results manifest many strong instabilities
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Higher order kinetic instabilities of the KV equilibrium are strong and
cover a wide parameter range for periodic focusing lattices

Example: FODO Quadrupole Stability

4™ order (n = 4) even mode

[Hofmann et. al, Particle Accel. 13, 145 (1983)]

T T e
F 4 Comment:
L o =120° . 1  Hofmann et al

Q Instabilities 4 notation on

"1 space-charge
parameter:

1o, dQ
1 @F

] # Our Q

Q' scale not
defined in paper

5010

ofog—1 o/og — 0

(space-charge parameter)
(undepressed) --> increasing space-charge -->

(fully depressed)
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The continuous focusing limit can be analyzed to better understand
properties of internal modes on a KV beam
[S. Lund and R. Davidson, Physics of Plasmas 5, 3028 (1998): see Appendix B, C]

Continuous focusing, KV equilibrium beam: ¢ — ey =¢

ko (s) = hy(s) = k%o = const Ty =Ty =Ty

Search for axisymmetric (3/00 = 0) normal mode solutions with ~ e~ ***
variations with:

k = const = Mode Wavenumber (generally complex)
8p = Sy (r)e ke

Find after some analysis:
*+ See Appendix A, derived using method of characteristics and solving a radial
eigenvalue equation

0¢pn (1) = Truncated Polynomial in r

Mode Eigenfunction (2# “order” in the sense of Hoffman et. al.):

Ay, r? r?
56, L Pa(1-25) + R (1-25)], 0<r<n,
rp, < T

’ A,, = const

n=1,2 3, -

P,(z) = n"order Legendre polynomial
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Plots of radial eigenfunction help illustrate normal mode structure:

Potential Density ( 9, = —€0Vi¢n/q )

80,(r) / 8¢,(r=0), Potential
8N, (r) / 81,(r=0), Density

0 02 DiA D.‘B 0.8 1.0
r/ry, Radius

r/r, Radius

+ Polynomial eigenfunction has n-1 density profile “wiggles” and tends to vary
more rapidly near beam edge for higher » values

+ FEigenfunction structure suggestive of wave perturbations often observed
internal to the beam in simulations for a variety of beam distributions
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Corresponding dispersion relation has degenerate branches for each eigenfunction
some of which go strongly unstable for n > 2

Dispersion Relation

on 4 L= (0/00)* |:an1 (k/’fﬂt)) B, (k/kmﬂ _ 0

(0/00)? a/oo a/og
1, ji=0
(a/2)2-0% (a/2)°~22 = (a/2)°-(-1* , _
where: Bj(@) ={ (/= (a/2)7=37 "~ (a/2)21j2 J=13,5"

(/2)°~12 (a/2) -3 (a/2)°—(—1)*
(@/2)?=22 (@/2)2=22 """ " (a/2)2 7

71=2,4,6,---

+ n distinct branches for nth order (real coefficient) polynomial dispersion
relation in (k/kgo)?
+ Some range of /00 unstable for all n > 1
- Instability exists for some n for o/o¢ < 0.3985
- Growth rates are strong

Plot dispersion relation roots in real and imaginary parts to analyze stability
properties of each eigenmode
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Continuous focusing limit dispersion relation results for KV beam stability

IRe o /v,l, Oscillation Frequency Ilm @ /v,l, Growth Rate

; et Notation Change:
2 Z.
g . § No Instability k/kBO = LU/I/O
n=1,and = =
envelope ~ " O’/O’O = I//VU
mode 3 T N
curves s - \
1 £ — Y.
overiap _— = Envelope Mode:
R P N »=s | (breathing mode)
= T A g / \ + See lectures on:
g4 487 \] Transverse Centroid and
e Envelope Models
n=4 P - e n=4
ES g e
3 3., o4 = 1/202 + 202
g, £ + 0
:i [S. Lund and R. Davidson,
& Physics of Plasmas 5, 3028 (1998):
see Appendix B, C]

v/v, Tune Depression VIV, Tune Depression
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Summary stability results for a continuously focused KV beam with
axisymmetric perturbations

Stability results are highly pessimistic and inconsistent with simulation and
experiment which show:
+ Internal collective waves with at times strong similarity to stable branches of
the KV distribution but without the strong instabilities predicted
+ Smooth initial distributions likely to be present in the lab transport well with no
instability or pronounced growth of phase-space area
- Particularly true in ideal continuous focusing systems
- Lesser degree of stability found for periodic focusing systems (see S12).

If we take the KV results literally transport would be precluded by one or more
collective mode being unstable when o/o¢ < 0.3985
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For continuous focusing, fluid theory shows that some branches and
features of the KV kinetic dispersion relation are physical
[S. Lund and R. Davidson, Physics of Plasmas 5, 3028 (1998)]

KV model kinetic instabilities are a paradox:
Low-order features physical:
+ Envelope equations well verified and assoc instabilities must be avoided in design

Higher-order collective modes:
+ Perturbations seen in simulations/lab similar in form to the normal mode radial
eigenfunctions
+ BUT perturbations on real, smooth beam core not typically unstable where the
KV model predicts strong bands of parametric instability

How is this situation resolved? Partial answer suggested by a fluid theory model of the
KV equilibrium that eliminates unphysical aspects of the singular KV equilibrium core

Fluid theory:
+ KV equilibrium distribution is reasonable in fluid theory
- No singularities
- Flat density and parabolic radial temperature profiles
+ Theory truncated by assuming zero heat flow
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Results of normal mode analysis based on a fluid theory:
Mode eigenfunctions:

Exactly the same as derived under kinetic theory!

Potential Density ( 6n, = —e,V36¢n/q )

5 T T > 3 T T T T
E 1.0 %
<] [=]
o

a5 =
= )
g I
g ‘ ‘ ‘ . 5
© 95 a2 0.4 LX 0.8 10 ~ 29 2z oz as ] 10

r/r, Radius
Mode dispersion relation:

ko 2+2(i>2(2n2—1)

kgo o

r/rp, Radius

n=1,2,3, -

+ Agrees well with the stable high frequency branch in kinetic theory

Results show that aspects of higher-order KV internal modes are physical!
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Continuous focusing limit dispersion relation results for KV beam stability

IRe ® /vyl, Oscillation Frequency IIm @ fv,l, Growth Rate .
e ‘ - Notation Change:
z Z.
s s No Instability k/k‘ﬁo = w/l/o
g 5
n=1, o
envelope J/GO = l//VO
mode . z
curves 8 =« 3
£ g
overlap = . =,

Red: Fluid Theory
(no instability)
Black: Kinetic Theory

(unstable branches)

1Re & IVl
1Im @ Il

IRe @ /vyl
Tm o fvyl

1Re ® Vgl

[S. Lund and R. Davidson,
Physics of Plasmas 5, 3028 (1998)]

1 @ 1Yol

v/v, Tune Depression v/v, Tune Depression
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Appendix A: Solution of the Small Amplitude Perturbed Vlasov Equation
for a Continuously Focused KV Beam

Not yet typeset.

See handwritten note supplements from previous courses on:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2011/lec_set_08/tks_sup.pdf
Section 4: USPAS 2008, UC Berkeley 2009
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S5: Global Conservation Constraints

Apply for any initial distribution, equilibrium or not.

+ Strongly constrain nonlinear evolution of the system.

+ Valid even with a beam pipe provided that particles are not lost from the system and
that symmetries are respected.

+ Useful to bound perturbations, but yields no information on evolution timescales.

1) Generalized Entropy

U(;:/d%cl /d?:[;'L G(fL) = const

G(f.) = Any diffrentiable functions satisfying G(f, — 0) =0

+ Applies to all Vlasov evolutions
- Need not be continuous focusing here!

/I Examples
Line-charge: A=gq / Pz / dzxﬁ_ f1 = const

G(fu)=qft —
() = 121 (1})

., /d2xl /(123nl % (%) = const
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Entropy: fo positive constant

SM Lund, USPAS, 2017

2) Transverse Energy in continuous focusing systems

€|Vig|?

2 2 2
Ue —/d ﬂu/d { 2+ ngoXL}fL +/d zy IR

= const

Here,

/ d*a’ / d*z, x
/d2gg’l /d2xL ik%oxifl- ~ Potential Energy

of applied focusing forces
2
/ 2z, & €o|Vigl®
2m’yb Bb 2m3 52c2

+ Does not hold when focusing forces vary in s
- Can still be approximately valid for rms matched beams where energy will
regularly pump into and out of the beam
+ Self field energy term diverges in radially unbounded 2D systems (no aperture)
- Still useful if an appropriate infinite constant is subtracted (to regularize)
- Expression adequate as expressed for system with a round conducting,
perfectly conducting aperture

~ Kinetic Energy

~ Self-Field Energy (Electrostatic)
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Comments on system energy form:

2
Ug:/ /dzri { xE+ kﬁoxl}fi +/d2 ol Vil = const
2m 'Vbﬂ

Analyze the energy term:
) .

[Jtnn L = [0, 190 oovi6) — [ a Joavio
or 1nf1n1te constant

Employ the Poisson equation' in free space

/d2ml fl
2 1
= / s L = e, [ Jaor,
Giving: 2 2

1
U.g—/d2 ! /d%u { Xt + kﬂo L+2%}fi = const

symmetry factor - '

zero for grounded aperture
“in finite system

+ Note the relation to the system Hamiltonian with a symmetry factor to not double
count particle contributions 1 q
p Hy =-x) T kﬂoxi + 37224’
2 m; By
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Comments on self-field energy divergences:

In unbounded (free space) systems, far from the beam the field must look like a
line charge: 9 ¢ A

“or 2meor

r> Tlarge

Resolve the total field energy into a finite (near) term and a divergent term:

2 2 2 )
/dsz €|V.19| :/ &2, €0|V.19| LA / arl
2 < Tlarge 2 4meg r

Tlarge

total finite term logarithmically

divergent term

+ This divergence can be subtracted out to thereby regularized the system energy
- Renders energy constraint useful for application to equilibria in radially
unbounded systems such as thermal equilibrium
- Details on regulating self-field divergences can be found in:
Lund, Barnard, and Miller, PAC 1995, p. 3278
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3) Angular Momentum

Ug = /d%L /d%l (y'z — 2'y)f1 = const

+ Can apply to periodic (solenoidal and Einzel lens focusing) systems
+ Focusing and beam pipe (if present) must be axisymmetric
- Useful for typical solenoidal magnetic focusing with a round beam pipe

+ Does not apply to alternating gradient quadrupole focusing since such
systems do not have the required axisymmetry

+ Subtle point: This form is really a Canonical Angular Momentum and
applies to solenoidal magnetic focusing when the variables are expressed
in the rotating Larmor frame (i.e., in the “tilde” variables)

- see: S.M. Lund, lectures on Transverse Particle Dynamics

4) Axial Momentum

U, = /deJ_ /de'J_ myBye f1 = const

+ Trivial in present model, but useful when equations of motion are

generalized to allow for a spread in axial momentum
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Comments on applications of the global conservation constraints:

+ Global invariants strongly constrain the nonlinear evolution of the system
- Only evolutions consistent with Vlasov's equation are physical

- Constraints consistent with the model can bound kinematically accessible
evolutions

+ Application of the invariants does not require (difficult to derive) normal mode
descriptions

- But cannot, by itself, provide information on evolution timescales

+ Use of global constraints to bound perturbations has appeal since distributions in
real machines may be far from an equilibrium. Used to:
- Derive sufficient conditions for stability
- Bound particle losses [O'Neil, Phys. Fluids 23, 2216 (1980)] in nonneutral
single-species, plasma columns (important for antimatter storage).
- Bound changes of system moments (for example the rms emittance)
under assumed relaxation processes; see S10

SM Lund, USPAS, 2017 Transverse Kinetic Stability 48




S6: Kinetic Stability Theorem for continuous focusing equilibria
[Fowler, J. Math Phys. 4, 559 (1963); Gardner, Phys. Fluids 6, 839 (1963);
R. Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990)]
Resolve:

fr=fo(Ho)+dfL
fo(Hp) = Equilibrium (subscript 0) distribution

0f1L = Perturbation about equilibrium
Denote the equilibrium potential as ¢ = ¢g

9 (0
im(ﬂ):__/d% Fo(Ho)

¢o(r =rp) = const

p=1q / @4, fo(Ho)

Then by the linearity of Poisson S equation,
Vig= - /d%: fi
0
¢(r =rp) = const
the perturbed potential 6¢ = ¢ — ¢o must satisfy,

q ’
Viso—-2L [, 55

0
0¢(r = rp) = const
SM Lund, USPAS, 2017
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Employ generalized entropy and transverse energy global constraints (S5):
Ug = /dzzl /dzzﬁ_ G(fL) = const
€| Vigl

2 2 2
Ug—/dxl/dxl{ x 2 4 kﬁoxJ_}fL—I—/dzl 2m’yb3ﬂgcz

Apply to equilibrium and full distribution to form an effective “free-energy” F:
AUg = Ug — Ugo = const
AUg = Ug — Ugp = const

= const

Both total and equilibrium hold
individually, so can subtract

F = AUg + AUg = const

= /d2xﬁ_ /d2IL {%X/f + %kéoxi} [fL - fO(HO)]

€0 ‘VUMZ \VJ.¢0|2
7”71,/8502 /deL { 2 } /d2 /dzml (f1) = G(fo)]

Conservation of free energy applies to any initial distribution for any smooth,
differentiable function G
+ Use freedom in choice of G and constant value of F' to make choices to
allow us to bound perturbations
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First manipulate self-field energy term in F:

substitute ¢ = ¢g + d¢ in

3 [Ear {19208 = 19000} = 5 [@ar {19006 +2V .00 V.50)

0 Div Theorem, and free to take
do(r =rp) =

— %/d2xl |VJ_5¢|2 /deJ_ {VJ_ bV L60) — ¢0Vi(5¢}

“Note: Can take other
ref on pipe and works
but then need to use
more care. Also works
in free-space.

using the Poisson equation: V230 = —— /d2u ofL
1
= 5 /d2$l |VL5¢|2 %/dQ.’E /d2$i ¢06fL

Using these results, the free energy expansion is then equivalently expressed as:

/d2 ! /d2wl { X + kﬁO L+ qj;gcz}éfl

n €0 /dz |vi6¢|2 /d2 /dzx [G(fL) — G(fo)]

3 322
m; BEc
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= const

SM Lund, USPAS, 2017

Up to this point, no assumptions whatsoever have been made on the magnitude of
the perturbations:

Take [0f1] < fo and Taylor expand G to 2™ order:

2 2
G(f1) = Gfo+6f1) = G(fo) + dGJgfo)éf dgf%m (6f2u

Without loss of generality,we choose to eliminate the term o< [d3’ ---6f

+0(0f1)

dG 1 1
=== (3t o + i)
+ This choice can always be realized
Then
*G(fo)  0Hy _ -1
dfs 9fo  9fo(Ho)/0H,

and the expression for the free energy reduces to:

€|V 39| 2 (0f1)? 3
F:/dza:l_ {7— &’y ——— +0O( = const
2mr B2 c? L dfo(Hy)/0H, (0f1)
*If Jfo(Ho)/OHp < 0 then F is a sum of two positive definite terms and
perturbations are bounded by F = const

SM Lund, USPAS, 2017

Transverse Kinetic Stability 52




[, [T [y GLE Y
F‘:/dmL{ZWWﬂﬁa T ap ) om, § T

H . P
St concavity — o

» Value of F set by initial

in function F e ot perturbgtlobns al:id

space _ concav.lty ounds

~ fuHY) excursions
.,
H sf

Drop zero subscripts in statement of stability bound result:
Kinetic Stability Theorem

If f, (H) is a monotonic decreasing function of H with
Of1(H,)/O0H, <0 then the equilibrium defined by fi (H ) is stable to
arbitrary small-amplitude perturbations.

+ Kinetic stability theorem is a sufficient condition for stability
- Equilibria that violate the theorem satisfy a necessary condition for instability
but may or may not be stable
- But intuitively expect energy transfer to drive instability in such cases
+ Mean value theorem can be used to generalize conclusions for arbitrary amplitude
- see R. Davidson proof
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/I Example Applications of Kinetic Stability Theorem

KV Equilibrium:
it
fL(Hy) = %5(15& —Hy)

H |, = const o

Of1/OH, changes sign
inconclusive stability by theorem
+ Full normal mode analysis in Kinetic theory shows many strong instabilities when space-

charge becomes strong
+ Instabilities not surprising: delta function represents a highly inverted population in phase-

space with “free-energy” to drive instabilities 1

Hy H

Waterbag Equilibrium:
fL(Hy) = foO(Hi, — Hy)
OfL/0H, = —fod(HyL —Hy) <0

fo = const > 0

Hy, H

monotonic decreasing (marginal satisfied), stable by theorem
Thermal Equilibrium:

fL(HL) = foexp(—BH.),

OfL/OH | = —foBexp(=BHL) <0

monotonic decreasing, stable by theorem T " /!
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B = const > 0

Implications of density inversion theorem and the kinetic stability theorem

In the SM Lund lectures on Transverse Equilibrium Distributions, we showed in a
continuous focusing channel that knowledge of the beam density profile n(r) is
equivalent to knowledge of the equilibrium distribution function f; (H ) which
generates the density profile if the density profile is a monotonic decreasing
function of r
+ Consequence of Poisson's equation for the equilibrium and the connection
between f1 (H1) and the density n(r)

Density Inversion Theorem

1 0n _ 1 onr)/or
fr(HL) =~ 2w |y 2m OY(r)/Or |y,
1
o0 = o’ +

Expect for a distribution with sufficiently rapid fall-off in the radial density profile
from concavity and this result that

dH | Stability (Kinetic Stability Theorem)
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Comment:
+ Result does not apply to periodic focusing systems
- Still expect more benign stability if beam density projection fall off monotonically in
the radial coordinate
- Density fall-off can be abrupt consistent with Debye screening for a cold beam core
+ Expect stability issues with radially hollowed beam density profiles
- However, does not prove instability
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S7: rms Emittance Growth and Nonlinear Forces

Fundamental theme of beam physics is to minimize statistical beam emittance
growth in transport to preserve focusability on target

Return to the full transverse beam model with:
q 09

— 555 o Applied Nonli Field T
362 Ox + Applied Nonlinear Field Terms

2+ kgx = —

and express as:

2" (s) + ko (s)z(s) = fr (s)x(s) + F'E (2,9, 5)

fE(s) = Linear Space-Charge Coefficient

F;V L (x,y,s) = Nonlinear Forces or Linear Skew Coupled Forces
(Applied and Space-Charge)
/I Examples:
fL ( s) _ Q Self-field forces within an axisymmetric (mismatched) KV
! ==

r% (5) beam core in a continuous focusing model

F, i\f L (z,y,s) x Re sextupole optic based on multipole expansions

(see: lectures on Particle Equations of Motion)  //

X (£ +iy ) 2 Electric (with normal and skew components)
93
Tp
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From the definition of the statistical (rms) emittance:
0 = 4(2%) 1) 1 — (w312

it is clear that it will be easier to derive an evolution equation for the square of the
emittance and that will give us the evolution equation for the emittance since

—si =2e,—¢,

ds ds
Differentiate the squared emittance Ei moments and apply the chain rule:
cancel
d—(isi = 32[(m'>%f'2h +(a?) L (2'z") 1~ <$$’>%$'2>L — (z2’) L (z2") 1]

= 32[(2?) L{¢'z") L — (za') 1 (za") ]
Apply the equation of motion:
" + kpx = fla+ FNT

To eliminate = in the moments and simplify. The linear terms o< x cancel to
show for any beam distribution that:

—e2 =32[(a®) L@ FN") L — (zal) L (xF]N) 1]
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Implications of:

%53 =32 [(2®) L (@' F' ") 1 — () (e F)F) o]
+ Emittance evolution/growth driven by nonlinear or linear skew coupling forces
- Nonlinear terms can result from applied or space-charge fields
- More detailed analysis shows that skew coupled forces
cause x-y plane transfer oscillations but there is still a 4D quadratic invariant
+ Minimize nonlin/skew forces to preserve emittance and maintain focusability
+ This result (essentially) has already been demonstrated in the problem sets for
JJ Barnard's Introductory Lectures and SM Lund lectures on Centroid and
Envelope Descriptions
If the beam is accelerating, the equations of motion become:
" + ('Ybeb),m/ T kpr = le, + FNL
(765) ‘ ’
and the result above can be generalized (see homework problems) in terms of the
normalized emittance to account for x-x' phase space area damping with accel.
+ No need to use normalized coordinates: straightforward direct proof

Enx = 'Ybﬁng

& 2 =820 (@) @ EN) L~ (a2 F Y]

SM Lund, USPAS, 2017

Transverse Kinetic Stability 59

These results motivate that if nonlinear and skew focusing terms are minimized
that the envelope equations can be integrated with:

No Accel: Constant rms edge emittance

422y (@)1 — (za”)? ]2 = const

Ex

Accel: Constant normalized rms edge emittance

Ene = W0sex = MWOpa[(x2) 1 (x?) 1 — (z2')2]/? = const

+ Special case of solenoid focusing symmetry skew coupling is removable by
using Larmor frame variables
- If Larmor frame variables are not used regular emittances are expected
to strongly evolve when the beam enters and exits a solenoid
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S8: rms Emittance Growth and Nonlinear Space-Charge Forces
[Wangler et. al, IEEE Trans. Nuc. Sci. 32, 2196 (1985), Reiser, Charged Particle Beams, (1994)]

In the continuous focusing m%del , all nonlinear forces are from space-ggarge:

" 2 q @ NL q

= — = F - —_—— ——
vt Jgf myBEc? Ox myp BEc? Ox

Insert this F, ~ in the emittance evolution formula of S7 to obtain:

+ Any linear self-field component in F¥* will subtract out (see steps in S7)

d 2= 32q
dse m’yb 382 my3B32c2

@)1 5001~ (o a0 |

For any axisymmetric (0/00 = 0) beam it can be shown (see following slides)

that: 96 1 06 A\
D <x%>J‘ - §<TE>L - " 8re €
0 W= ?O/d% IV 1o
,00 , 00 1 dW

2) (' =), = < =) == — self-field energy
Ox ar't " 2X ds (per unit axial length)

no_ L, dmey, 50 dWy W, = W for an rms equivalent
3) (@)L =50 =——5 (@)1 : .
2 A ds uniform density beam
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Reminder: rms Equivalent Beam Definition

An rms equivalent beam is a uniform density (KV) beam with the same 2™ order
moments as the physical beam. For an rms equivalent axisymmetric (9/96 = 0)

beam:
n(r)

rms Equiv

AN AN N NN NN

r=r, T
Rms equivalance: beam replaced by a i ( 982)1_ _
uniform density KV beam with same (at
location measured) 2™ order moments as
physical beam

(@)1 |KV

<$/2>L — <xl2>l|}(v

Ty = 2(%2)1/2 = Tplky

e =4/(2%) L (2"?) 1L = elky

—

+ The KV replacement for rms equivalance will generally evolve in s
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Energy of rms Equivalent Beam:
For a uniform density beam the Poisson equation can be directly solved, or more
simply, apply Gauss’ Law in 2D to obtain the radial electric field as:

o A 1, r<mp
= r=r,)=20
rar( 81") ﬂrfeo {O, > o 2
A
b 00 _ [ r<n
6T 2mepr? r>Th

Using this result the energy of the uniform density rms equivalent beam can be

. T
calculated as: - € /d2:r Vg2 = 7r€0/ drr <8¢>
2 o or

2 Th 2 Tp 1
= X {/ dr 7'T—4 - / dr r—z]
dmeo [ Jo Ty - r
A2 T1 T
= Z4+In( -2
4meg [4 tn (rb)]

Giving the energy of the uniform density rms equivalent beam as:

Wims cq = Wu = 25 |3 +1n (22)]

# This expression can also be applied for a beam in free space by appropriately
interpreting with 7, — oo (giving infinite constant term)
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/I Aside: Derivation of moment relations 1), 2), 3) for Wangler’s Theorem
0¢ ¢ A

D (I%M = §<7“E>¢ -

+ Has been derived in homework problems: will review here

From axisymmetry:

dp. 9o, 1, 0¢
(xah = <y8_y>l = 5<’“5>¢

Line charge within

Frorn Poisson’s equation: Integrate: radius - —
3¢>> _qn o6 A(r) v
— — —r— = = rrn(r
7'6'7' ( ar @ o Do (r) 27rq/0 dr in(7)
Using this expression for @ in the moment along with n(r) = / ' fy
and A\ (1) _ 2mrn(r) or
dr
8¢ [ dPxy [dP) r% f, _ Jd?x r%n B 2m [y dr v (Tg_f> n(r)
"or o Sz, [d2!, fo n fd%vL n o A g
_ 1 s LA (r) r=r,
- 27r60/\/0 drde(r) =g = = Ar()lr=
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But:
! A 0
d
(rB¢) = -2 MOIZy = -5 [A%‘w - Ar/:m - —ia
This proves the quoted result for an arbitrary axisymmetric beam:

0¢ 0¢ A
ot =3l =

8meg

00, ,0¢ 1 dWw
) (= 8:6> ( 8r> 2\ ds
From axisymmetry:
09,00 0r zx' O¢
(e 83:>J' 5 or 695> L= r 8r>
09, 09 0r yy' 0o
(y 8y> =y = B 8y> =gt
and: (ol 190} 1 190} 1,,00
/ _ 199 xx' +yy' _ L, .99
<$6—x>L_<y 81/) 2< r 8r> 2< 8r>
since: dr zz’ + yy' B zz’ + yy

/I
r=Velty = TSRS Er s

We can apply Poisson’s equation and integration by parts to recast ¥ as
+ Take reference ¢ = 0 on pipe at = 7, without loss of generality

0
w=3 /d% Vgl = %/d% {v- {g/‘w - ¢V?}

:g/dean
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In an axisymmetric system we can regard the unbunched beam as a collection of 3) (z2), = — dmeg @), AWy,
charged charged cylindrical shells with density A2 ds
N = Number Cylindrical shells AN = A For a uniform density beam, we explicitly calculated the field energy:
Aq = Charge per unit axial length of shell W, = 47760 [ +In ( )]
r; = radius ]Z\,th;(heu ) Differentiate: Result A)
- r—n 2 2 d 4dmegry AW,
_/\qz o dWy A ilnrb _ A Ldn dry 71'631“17 .
i=1 N ds dreg ds Armegry ds ds A ds
— _4q 2 _ N _
W= § /d zon = 7 Z¢(T o ri) Use: Result B)
i= ’
Differentiate this expression for W with respei; to s: y = 2<x2>i/2 — % _ 2((25;71% — (), = %@2)1/2%
A, 00 o
i Z ri =W 2" gy dr
8r 2 i—1 T lr=r, Eliminating Z"® in result B) with result A) then gives the result quoted:
But within this charged shell p1cture we also can express the moment directly as: ds
9(15
- 47eg aw,
o’ Br h= NZ (za’) 1 :—7<$2>L s
Comparison of these two equatlons proves the result quoted:
(o 8¢> <r 8¢> _1dw
't T2V ar’t T 2nds I
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Using moment expressions 1), 2), and 3) in the emittance evolution equation :

2)
d €2 = 32q 2, 4 100 / ¢
ds mfybﬁbc2 [(;r J1le 8m>l (e >L<x8m>l
0P A ol 1 dWw
Xr— = — =z = —
DR 17) ) 8meg D axh 2\ ds
dmey , o AW,
3) (waf)L = 2 (=) 1 I
d o 32¢q 9 , 00 , 100}
— = (@G0 — )
_ 32¢q ( 2> 1 dW 47r€0 (ac2> aw, A
N m’yb ﬂch 2\ ds A2 17ds 8meo
2 o d |[W =W,
= —32re | — 20 Ball BASEAAT]
32meo [QWeomvbﬂbcz] (@ >lds { A2
d [W-Ww,
= *327T€0Q<CU2>LCT [T] Could also pull A
s through s derivative but
. qA _ group with I to set scale
- 2meomap BEc? const A = const since W ~ A2
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This derives Wangler’s Theorem describing the emittance evolution of a
nonuniform density beam due to nonlinear space-charge forces:

d 2 e > d (W —W, W = Field energy (nonuniform) beam
s 0 ds A2

W, = Field energy of rms equivalent
uniform density beam

Alternatively, without the scale grouping, this can be expressed as:

d € = _16g/A
ds'® m’yb 32 my3B2c2

(@) L )

+ Result sometimes called “Wangler's Theorem” in honor of extensive work by
Wangler on the topic
- Also derived by Laposolle earlier but less was done with the result
+ Applies to both radially bounded and radially infinite systems
+ Result does not require an equilibrium for validity — only axisymmetry
+ Result can be partially generalizable [J. Struckmeier and I. Hofmann,
Part. Accel. 39, 219 (1992)] to an unbunched elliptical beam
- Result may have implications to the structure of nonuniform
density Vlasov equilibria (if they exist) in periodic focusing channels: W = W,
implies that equilibrium emittance must vary periodically in s when
unless the density profile evolves self-similarly (see later analysis)
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Application: Using Wangler's theorem to estimate emittance changes from
the relaxation of space-charge nonuniformities
Wangler's theorem:

42 goreoua?), L (M)

W = Field energy (nonuniform) beam

ds ) ds A2 W., = Field energy of rms equivalent
uniform density beam
If the rms radius does not change much in the beam e\éolution:

-
r, = 2(2?)/? ~ const = (%), = Zb ~ const

Then the equation can be trivially integrated, showing that:

Ayi(e2) =~ —32meQriA <WA_—2W)

Ayi(--+) = Final State Value — Initial State Value

So if the initial and final density profiles are known, the change in beam emittance
can be simply estimated by calculating associated field energies for the initial and
final nonuniform and rms equivalent uniform beams

+ Change in space-charge energy is converted to thermal energy (emittance)

# Will find in most reasonable cases this effect should be small (see S10)

Is it reasonable to assume that the beam radius may not change much?
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Consider the rms envelope equation for a continuous focusing system to better
understand what is required for r, = 2(:52)1/ % ~ const

2

1 2 Q 530
+ kg — < — 2 =0

b po Tb ’I"g’

+ Valid in an rms equivalent sense with €, # const for a non-KV beam

If the emittance term is small relative to the perveance term

2
Q > 8_ — 0
Ty b
and the initial beam starts out as matched we can approximate the equation as
k%o’f‘b — 7‘9 ~0 - I'p kT
b 30
then it is reasonable to expect the beam radius to remain nearly constant with
modest emittance growth factors for a space-charge dominated beam. This
ordering must be checked after estimating the emittance change based the final to
initial state energy differences. See S9 and S10 analysis for a better understanding
on the range of validity of this ordering.
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Results to help better understand significance of Wangler's Theorem
Wangler's theorem:

d 4 9
&2 = —327¢Q il
ds"® S2meQ >Lds A2

KV Beam:

(axisymmetric focus/beam, matched or mismatched, cont or s-varying focusing)

W=W, <= KV beam
Then d
Esi =0 <= &, =const
This shows that Wangler's theorem is consistent with the known result that a KV
distribution evolves with rms edge emittance €, = const
+ Result holds whether or not the (axisymmetric) KV beam is matched to the applied

focusing lattice or whether the focusing is constant or not

d <W — Wu) W = Field energy (nonuniform) beam

W.,, = Field energy of rms equivalent
uniform density beam

Self-Similarly Evolving Beam:
It can be shown that W = W, for a beam with a self similarly evolving density
profile and this holds regardless of the form of evolution!
%Ei =0 <= ¢, =const
+ See derivation next pages
+ Generalizes KV result
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d
Proof: pi (W —W,) =0 for a self-similarly evolving beam

S

Consider a beam evolving with a self-similarly evolving density profile:

/\ 2
q(r) = —=g (r_2> rpy = rp(s) with arb evolution

with )
A= q/d zin ro = 2(2?) )/ = /202y |

and g(x) is any shape function satisfying the two constraints

D g(a) =1

satisfied

2\ [P 72 rg/rf
:>)\:/d2xlqn :—2/ drrg(—Z) :)\/ dz g(z)
ry Jo ry 0

r2/ry _ 1
2) fo drxzg(xr) =35

satisfied
1 T 3 2.2
B _ihdre(E) e ag(e)

2 [y ()
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Calculate the electrostatic energy for the self-similar profile:

€ s o6\ ?
W:—O/d%ﬂvmﬁ :mo/ drr(—>
2 0 or

Using the axisymmetric solution to Poisson’s equation [see steps in moment 1) ]:

10 [ 0¢ qn dp (1) /T .
(P E) = 22 —_—t = r(r)=2
B <r 81") « O = Zrear Ar(r) = 2mg | dr in(7)
Gives:
2
W = meg [y drr (%f) = 477150 fop% A (r)
But:

r o r A 72 /Ty
Ar(r) = 27rq/ dr in(r) = 27T/ di F—5g (—2> = / dz g(x)
0 0 71'7’b Tb 0

Giving:
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Differentiating the field expression

r2 /13
W= L / d—sz(x)
0

" 8meo T
with respect to s and employing the normalization condition

2.2
7";,/71;

de g(x) = G(r2/r) = 1

obtains

aw_ 1 Ndn
ds  Admweg Ty ds

2
independent of the specific form of the charge distribution ¢gn(r) = iz g (T—)

2
Ty Ty

This result also applies to a uniform density beam with W = W/,
AW, 1 Adr

ds _471'60 r_bE

+ Can also verify this directly by differentiating the expression for the energy of
a uniform density beam [see steps in moment derivation 3) ]
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Inserting these results in Wangler’s theorem shows there is no emittance change
for a self-similarly evolving beam

d 2 2 d W _”u dW )\2 d?“b
— et =-32 _ — - el
dSsx 3 WEOQ(‘T >J_ds ( 22 ) ds = 47T€() ™ ds
AW, 4 A2 dry

= —4meg— —

d o —0 ds 07y ds

—
ds *

Showing that €, = const for an arbitrary self-similar evolution in the
density profile of the beam core

Comments:
+ Shows it is not only a uniform density KV beam that can have constant
emittance but self-similar density evolutions also: regardless of amplitude
+ Implies that if density evolution is nearly self-similar like might be the case
with a low over collective mode distortion in the core that there would be little
emittance evolution
- However, collective modes do not evolve self-similarly
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S9: Uniform Density Beams and Extreme Energy States

Variationally construct minima of the self-field energy per unit axial length (W):

W= %0 /d%u V.o

for an axisymmetric beam ( 9/96 = 0 ) which need not be continuously focused:

subject to:

A = const ... fixed line-charge

rp = 1/2(r?) L = const ... fixed rms equivalent beam radius

Use the method of Lagrange multipliers to incorporate the fixed rms-radius
constraint, by varying (Helmholtz free energy):

= 2 2 |VJ_¢|2 2 _ "
F=W —puMq){r")L < [dxy eonmnn [ = cons

and require that variations satisfy the Poisson equation and conserve charge to
satisfy the fixed line-charge constraint.

¢ == Variation d¢

n  — Variation dn
SM Lund, USPAS, 2017

Poisson equation relates §¢, on
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Poisson equation:

v26p=—Lon
€0

5¢|b0undary =0

Charge conservation:

/dQIJ_(;TL =0

Take variations of F (terminate at 2™ order) giving:
+ Infinite order result: No approximation!

= Variations satisfy A\ = const

(5F0(—/d23u {ur2+const} on + eo/dleVﬂZ%VL&zﬁ + %O/d2xL|VL6¢|2

Here, we added zero to the equation:
const /deJ_ on =0
to help clarify a reference choice in ¢ in steps that follow

Integrating the 2™ term by parts and employing the Poisson equation then gives:
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5Fo</d2xl {qd)—urQ—const}én + %O/deJJVJ_&;SF

For an extremum, the first order variation term must vanish, giving within the
beam:
q¢ = pr? + const

From Poisson's equation within the beam, this constraint on ¢ gives:

2,4 10 (00 _ 4 _ _deop _
VJ'¢_ GOn ﬁ r@r (T(?r - EOn é n= q2 —CODSt

This is the density of a uniform, axisymmetric beam, which implies that a
uniform density axisymmetric beam is the extreme value state of W

This extremum is a global minimum since all variations about the extremum (2nd
term of boxed equation above) are positive definite:

5F|uniform beam X /d2wl‘vla¢|2 2 0
Result:

At fixed line charge and rms (envelope) radius, a uniform density beam
minimizes the electrostatic self-field energy
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The result:

At fixed line charge and rms radius, a uniform density beam
minimizes the electrostatic self-field energy

combined with Wangler's Theorem (see S8):

iei = —32me0Q(2?)

d (W —-W, W = Field energy (nonuniform) beam
ds ( )

Lds 22

W, = Field energy of rms equivalent
uniform density beam

with (x?), = r?/4 ~ const shows that:
+ Self-field energy changes from beam nonuniformity drives emittance evolution
+ Expect the following local in s trends in an evolving beam density profile
- Nonuniform density => more uniform density <=> local emittance growth
W —W, decreasing ins, —d(W —W,)/ds>0
- Uniform density => more nonuniform density <=> local emittance reduction
W — W, increasing in s, —d(W —W,)/ds <0
+ Should attempt to:
maintain beam density uniformity to preserve beam emittance and focusability

+ Results can be partially generalized to 2D elliptical beams

- See: J. Struckmeier and I. Hofmann, Part Accel. 39, 219 (1992)
SM Lund, USPAS, 2017 Transverse Kinetic Stability 81

S10: Collective Relaxation of Space-Charge Nonuniformities and
rms Emittance Growth

The space-charge profile of intense beams can be born highly nonuniform out of
nonideal (real) injectors or become nonuniform due to a variety of (error)
processes. Also, low-order envelope matching of the beam may be incorrect due
to focusing and/or distribution errors.

How much emittance growth and changes in other characteristic parameters may
be induced by relaxation of characteristic perturbations?

+ Employ Global Conservation Constraints of system to bound possible changes
+ Assume full relaxation to a final, uniform density state for simplicity

What is the mechanism for the assumed relaxation?
+ Collective modes launched by errors will have a broad spectrum

- Phase mixing can smooth nonuniformities — mode frequencies incommensurate
+ Nonlinear interactions, Landau damping, interaction with external errors, ...
+ Certain errors more/less likely to relax:

- Internal wave perturbations expected to relax due to many interactions

- Envelope mismatch will not (coherent mode) unless amplitudes are very large

producing copious halo and nonlinear interactions
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Motivation for rapid phase-mixing mechanism for beams with intense space-
charge: strong spread in distribution of particle oscillation frequencies in the core
of the beam

Thermal equilibrium beam core results, see S.M. Lund lectures on
Transverse Equilibrium Distributions, S7

Lund, Friedman, and Bazouin, PRSTAB 14, 054201 (2011)
30
£S ]
g‘ 25t /oo =0.9 ]
2 ]
z 20F 1
£ 15
é) O'/O'O =0.1 0.8 E
> 10} / ]
g 0.7 ]
S st 02 03 ... 0.6 ]
=, ]
&
[

00 02 04 06 08 10
Oscillation Frequency, kg/kgo
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Estimate emittance increases from relaxation of nonlinear space-charge
waves if an initial nonuniform beam to a uniform density beam
+ Should result in max estimate since uniform density beam has lowest energy
as shown in S9

Nonuniform Initial Beam Uniform Final Beam

Relaxation
Processes

—>

Density, n(r)
Density, n(r)

Radius, r Radius, r
Reference: High resolution self-consistent PIC simulations shown in class
+ Continuous focusing and a more realistic FODO transport lattice
- Relaxation more complete in FODO lattice due to a richer frequency spectrum
+ Relaxations surprisingly rapid: few undepressed betatron wavelengths

observed in simulations
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Initial Nonuniform Beam Parameterization

A 1-n ()
n(r) = n[l—‘_T(E)}’ Osrsre
0, Te <1 <7Tp

h = hollowing parameter
n(r=0)/n(r=re)

p = radial index

re = edge radius

12 [(@+2)(ph+4)

A= /dQ.TJ_ n = ﬂquTz {M Ty = 2<I2>L = (p+4)(ph + 2)7“e

(p+2)h

Normalize profiles to compare common rms radius ( 7' ) and total charge ( )\ )

Hollowed Initial Density Peaked Initial Density

3. p=8 hollowed 12 peaked
= h=1/4 = h=4
q
5 E 1.
S S 08 .
5 uniform § : u}nioqm
3 (h=1) < 06 (h=1)
3 X
z / Z 04
7 : z
g ' g 02
0 " " " H L 0 L " H L
0 02 04 06 08 1. 1.2 14 0 02 04 06 08 1. 12 14

Radius.”/Te
+ Analogous definitions are made for the radial temperature profile of the beam
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Radius, 7/Te
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Example Simulation, Initial Nonuniform Beam
o/oo = 0.2 Initial density: h=1/4, p=8 Initial Temp: / = infinity, p=2

U Bt eross = 000 Und. Betabon Periods = 080

Uekp BetibonPeos = 051

2 -
a b e
7 o %s
¢ i £
T T T T T T Sio 1ol %m
b: Max Value (2Theory Limit) H H i
110 !‘ Fluctuation Max 1 e os] o4
< .
s KotV F amvem B kmdvam
o
1o} — T —— s vt - 430
o
3 d e i f
< Z1s| ] 213
£ 105 f
£
g ' e H
» ! Average "Relaxed" Value H H
= . |
o a: Initial H - ) 1 o3
= 5 5 = 5 % = 5 5
100 : I . KV
' 3 Relaxation Distance
L : st o1 o e« 720 v U nrena < 733
L L . T -
0 2 4 3 8 8 ih !
Undpressed Betatron Periods " i
Foo s £
H H
h . f 1 : 05, o3 05
Show movie of evolution

= & £ = e e

[Lund, Grote, and Davidson, Nuc. Instr. Meth. A 544, 472 (2005)]
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Hollowed beam simulation/theory results for strong space-charge
+ Peaked beam shows very small emittance growth

Initial beam Relaxed and transient beam
ai/ap Density Temperature Emittance growth Undep. betatron periods to relax
h P h o Theory Simulation
0.1 0.25 4 1 arb. 1.57 1.42 (157,123 35
oe 2 1.45(1.57. 13 3.0
0.5 1.41 (1.57 3.0
0.25 8 1 arb, 1.43 1.33 (1.43.1.28-1.38) 3.5
o 2 1.35 (143, 1.30-1.40 4.5
0.5 1.32 (1.43,1.26-1.38) 4.0
0.20 0.25 4 1 arb. 1.17 111 (116, 1.09-1.13) 4.5
oo 2 112 (1.16. 1.10-1.13) 3.0
0.5 111 (116, 1.09-1.13) 4.0
0.25 8 1 arb. 112 1.08 (1.12.1.06-1.09) 5.5
o 2 1.08 (1.12.1.07-1.09) 4.0
0.5 1.08 (1.12,1.06-1.09) 45

Theory results based on conservation of system charge and energy used to calculate the
change in rms edge radius between initial (i) and final (f) matched beam states

(rog/roa)® =1 p(L= W)+ p+ 3+ p)h] (p+2>(ph+4>rif}:0

1 —(0i/00)? (p+2)(p+4)(2+ph)? (p+4)(ph+2) 1o

Ratios of final to initial emittance are then obtainable from the matched envelope eqns:

af _ Tof [ (rop/mi)® = [L = (03/00)?]
Eai Tbi (0i/00)?
SM Lund, USPAS, 2017
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Movies (mpg format) shown in class are on the course web site:

Continuous Focusing:
https://people.nscl.msu.edu/~lund/bpisc_2015/lec_set_08/tks_relax_cf.mpg
+ Evolution case similar to one detailed on previous slides

Periodic Quadrupole Focusing:
https://people.nscl.msu.edu/~lund/bpisc_2015/lec_set_08/tks_relax_ag.mpg

+ Via D.P. Grote, LLNL: Evolution case for FODO quadrupole case with
strong space-charge, and an extremely hollowed density initial beam
that is rms envelope matched to the focusing lattice. The initial
temperature spread is uniform. Specific parameters unknown.

+ Note that relaxation may be more complete than for the continuous
focusing case

- Likely a much broader spectrum of modes launched in periodic focus case
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Theory estimates from global conservation constraints work well. What changes if
the beam relaxes to a smooth thermal equilibrium instead? -- Very little change

1

Tnitial g‘ 0999
- nitia s z\‘oggg
S Donetorn Regard 0.7%
z asatwo-step 3
Z 0995
& relaxation g 0sss 2
h and apply - 099130 02 0406 08 1
3
Step 1: Radius, 7 conservation  Foss
Peaked to uniform steps between & ° 2.5%
E < 0985
Intermediate, z 3 k=]
= Uniform ~ i each Step ,E 0%
T Density é @ 0975 b)
z c 2 o
7 F— N L 02 0.4 06 08 1
o) - |3 NIT
g b
Step 2: 5 i~ om 4.5%
B : Radius, r - . % 097
Uniform to Thermal Essentially €
Final, no rms Ea c)
= Thermal - -~ ’2 0. 0.4 0.6 0.8
¥ Equilibrium changes &
= Density . nd s
e - in 2™ ste =
z p 5 16
a
— -d_j 12
Radius, r 2 . - d)
Lund, Barnard, and Miller, PAC 1995, p. 3278 Tune Depression, o; /oy
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Comments:

+ Due to such small changes in rms radius and emittance undergoing relaxation
from a uniform density beam to a smooth equilibrium profile (thermal
equilibrium case shown) we can neglect the small changes induced by the 2™
step when estimating emittance growth

+ Note that changes are maximum at intermediate values of oy ~ 0.5 rather than
for small with o9 < 0.5 where space-charge is strongest

- Space charge stronger but there is less change in profile under relaxation
when oy < 0.5

+ Not surprisingly, changes are also small for weak space charge with oy ~ 1

since the strength of the space -charge field is weak
- Result in spite of the density profile being far from uniform since space
charge too weak for significant Debye screening of the applied foucus force

+ Emittance decreasing on relaxation from uniform density distribution to a
nonuniform density distribution is consistent with the expected trends
predicted by Wanglers” Theorem discussed in S10

SM Lund, USPAS, 2017 Transverse Kinetic Stability 90

S11: Emittance Growth from Envelope Mismatch Oscillations

Emittance growth from envelope mismatch oscillations
Similar energy conservation methods can be applied to estimate the effect on
emittance growth if the initial beam is envelope mismatched and the energy of the
mismatch oscillation is converted into emittance if the beam relaxes
+ See Reiser, Theory and Design of Charged Particle Beams, 1994, 2008
Q e

" 2
ry +kgory —— — =5 =0
b B0 ry T

i ~ Max|(ry — 1p0) k% Term can be large

0 = Matched Radius
kp = Breathing Mode Wave Number <k23 = 4k3, — 2%)
b0
Large emittance increases can result from the relaxation of mismatch oscillations,
but simulations of beams with high space-charge intensity suggest there is
no mechanism to rapidly induce this relaxation
+ Envelope oscillations are low-order collective modes of the beam and are thereby
more likely to be difficult to damp.
+ Possible exception: Lattice with large nonlinear applied focusing forces
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S12: Non-Tenuous Halo Induced Mechanism of Higher Order Instability
in Quadrupole Focusing Channels

In periodic focusing with alternating gradient quadrupole focusing (most
common case), it has been observed in simulations and the laboratory that good
transport in terms of little lost particles or emittance growth is obtained when the
applied focusing strength satisfies:

o) 5 85° little dependence on o /o

For 40+ years it was unclear what primary mechanism(s) cause this transport
limit in spite of the effect being strongly expressed in simulations and laboratory
experiments. It was long thought that collective modes coupled to the lattice were
responsible. However:

+ Modes carry little free energy (see S10) to drive strong emittance growth

+ Particle losses and strong halo observed when stability criterion is violated

+ Collective internal modes likely also pumped but hard to explain on the basis

of KV mode instabilities

The theory outlined here clarifies how this limit comes about via a strong halo-
like resonance mechanism affecting near edge particles

+ Does not require an equilibrium core beam
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Review: In the SBTE experiment at LBNL:
Higher order Vlasov instability with strong emittance growth/particle
losses observed in broad parametric region below envelope band

[M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)]
Stable

Min — 1.0

m 0 100% core
0.8 ¢ O 95% core

0.6 Stable

Envelope
Instability

Space-Charge
Strength
o/og

=)
~
Q
=}
I
o
H- - = U1

e
(Y

Max 0 30 60 90 120 150 1?0
4 oo (degrees)
Min Applied Focus Strength Max

Results summarized by oy < 85° for strong space-charge
+ Reliably applied design criterion in the lab
+ Limited theory understanding for 20+ years; Haber, Laslett simulations supported
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Self consistent Vlasov stability simulations were carried out with a wide
range of parameters/distributions to quantify characteristics of instability
+ Carried out using the WARP PIC code from LLNL/LBNL
+ High resolution/stat 2D x-y slice simulations time-advanced to s-plane
+ Non-singular, rms matched distributions loaded:
- semi-Gaussian
- Continuous focusing equilibrium f (H ) with self-consistent
space-charge transformed to alternating-gradient symmetry:
(see Transverse Equilibrium Distributions, S10B)
waterbag
parabolic
Gaussian/Thermal

+ Singular KV also loaded - only to check instability resolutions

More Details:

Stability simulations:

Lund and Chawla, “Space-charge transport limits of ion beams in periodic quadrupole
focusing channels,” Nuc. Instr. Meth. A 561, 203 (2006)

Initial Loads applied:
Lund, Kikuchi, Davidson, “Generation of initial distributions for simulations with high
space-charge intensity,” PRSTAB 14, 054201 (2011)
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Parametric simulations of non-singular, initially rms matched distributions have
little emittance evolution outside of instability regions experimentally observed

Example: initial thermal equilibrium distribution
* Density along x- and y-axes for 5 periods
+ Emittance growth very small -- 5 period initial transient shown
Emittance Evolution
o9 =45° o/op=0.2
b +1%

Superimposed Density Snapshots
oo =45° o/09=0.2

,]?ensity

-1%
5
0° o/op=0.2

090 ="170° o/09=0.2 (i g 70—
- e i T o/og ee/eals —0) 1%
X-ax1s y-axis X R

2
O )10 -
3t

2]
s

> 0 =

§ TN oo 180 5

Qm [ — s=0 { E}m — s=0 !

R =8k | ] ZEk |

—izE Jo-EE /25 =0) -1%
O it E
x y Lattice Periods
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Parametric PIC simulations of quadrupole transport agree with experimental
observations and show that large rms emittance growth can occur rapidly

1
Parameters: oo = 110°, 6/09 = 0.2 (L, = 0.5 m, n = 0.5)

/oo

for initial semi-Gaussian distribution

Dlat Deall L yeivpe [ETrET T L Y

T R ———— %0

| | 100% 1
g 3

E 15- = ]

= E

g L .

sl é;, ]

[} e

w

< w 2 g

L s i

2 T 1

£ 100 % g

> x ]

< } 1 .

1 0‘\% ]
0 1015 0 5 10 15 20
Lattice Periods Lattice Periods
Higher oy < 85° makes the onset of emittance growth larger and more rapid
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Parametric simulations find broad instability region to the left of the
envelope band -- features relatively insensitive to the form of the
(non-singular) matched initial distribution

Essential instability feature -- particles evolve outside core of the beam
precludes pure “internal mode” description of instability

40
] .
+ Where unstable, growth becomes larger and faster with increasing g g NN Instantaneous, rms equivalent
2 30 plpoc 0 measure of beam core:
g [
Example Parameters: o = 110‘?, o/o9p=0.2 (L, =0.5m, n=0.5) % a5 ) ‘ Ty = 2(1:2)1/2
e 0 !
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S /a0 2 15 ol Waterbag
= g ol y
L% 331 0 : 1.0 = c‘ﬂb Elliptical
P 0 oo 180 0 10 20 30 40 Beam ,
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Self-consistent Poincare plots generated for the case of instability show Extensive simulations carried out to better understand the parametric
large oscillation amplitude particles have halo-like resonant structure -- region of strong emittance growth
qualitative features relatively insensitive to the initial distribution . . .
+ All simulations advanced 6 undepressed betatron periods
. . . N - Enough to resolve transition boundary: transition growth can be larger if run longer
Lattice period Poincare strobe \i & X PIION DOURCITY En ¢ ¢
— 110° — 029 ‘ + Strong growth regions of initial distributions all similar (threshold can vary)
. UQ - U/ oo =Y. et . - Irregular grid contouring with ~200 simulations (dots) thoroughly probe instabilities
Semi-Gaussian Thermal Equilibrium hitial G . nitial Waterb
x—x" Poincare Plot: s/Lp = [ 2.25,19.25], strobe = 1.00 x—x' Poincare Plot: s/l = [ 2.25,19.25], strobe = 1.00 nitial semi-(raussian mitia aterba
crran b beree beeea Lo b ' T " T i T "
: 1 # [Initial thermal/Gaussian + Initial KV similar with extra unstable
- ] almost identical internal modes deep in stable region
= = 10 1.0
* E w5 ] o N
3% 3 1 IR B Brince
s R ] 8 I %oy >Ex-002] ) > Eralo)
3 = 3= “euom : s
= = i [ . > Bxpl 062) t - > Expl061]
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+ Only part.icles evol.ving n.early along x-axis accumylated to generate clearer picture LRI ey e 0 80 90 100 110 1o
- Including off axis particles does not change basic conclusions o0 (deg/Period) 0 (deg/Period)
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Motivated by simulation results -- explore “halo”-like mechanisms to
explain observed space-charge induced limits to quadrupole transport

+ Resonances can be strong: driven by matched envelope flutter and
strong space-charge
+ Not tenuous halo:
Near edge particles can easily evolve outside core due to:
- Lack of equilibrium in core
- Collective waves
- Focusing errors, ....
Most particles in beam core oscillate near edge

+ Langiel first attempted to apply halo mechanism to space-charge limits
Langiel, Nuc. Instr. Meth. A 345, 405 (1994)
Appears to concluded overly restrictive stability criterion: g < 60°
+ Refine analysis: examine halo properties of particles launched just outside
the rms equivalent beam core and analyze in variables to reduce “flutter”
associated with the matched core oscillations in periodic focusing
Lund and Chawla, Nuc. Instr. Meth. A 561, 203 (2006)
Lund, Barnard, Bukh, Chawla, and Chilton, Nuc. Instr. Meth. A 577, 173 (2007)
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Core-Particle Model --- Transverse particle equations of motion for a test particle
moving inside and outside a uniform density elliptical beam envelope

2QF
! X iptica
2 4 Rpt = Ty g .

(ry +1ry)rs
2QF, x
1 Yy
y' + Ry =y
Y (rgy +1y)ry
_ A
- 2meomEBEc?

y

dimensionless perveance

Q

Outside the beam:

Where: Inside the beam I 3
F,=1 Fy = (o +1y)— RelS]
=1 T ~

F, = —(ry +1r,)2Im[S
with )= (s ) 2ImIS]
§=_ 2 pn-yh1- o) i=ztiy

2 _ 2 2 .
r2—r2 z i= V=1
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Particles oscillating radially outside the beam envelope will experience
oscillating nonlinear forces that vary with space-charge intensity and can
drive resonances

Continuous Focusing Axisymmetric Beam Radial Force

2.0
Beam Edge oic,=04
o 13 ‘
o
= olg, =06
8 %
E 1.0 cig,=038
o
2 olc, = 1.0
2 oos | Y o/g, =00
0.0
0.0 0.5 1.0 15 2.0

Radius, r/rb
+ Nonlinear force transition at beam edge larger for strong space-charge
+ Edge oscillations of matched beam enhance nonlinear effects acting on particles

moving outside the envelope
+ In AG focusing envelope oscillation amplitude scales strongly with o
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For quadrupole transport, relative matched beam envelope excursions increase

with applied focusing strength
+ Larger edge flutter increases nonlinearity acting on particles evolving outside the core

Le ds
—— = Fras)
Tr ’ /0 Ly
n=05 L,=05m
Q=5x10""
€z = £y = 50 mm-mrad

1.4
1.2
1.0
0.8 o /o0

0.6

00 02 04 06 038 1.0
Lattice Period, s/L,

Space-charge nonlinear forces and matched envelope flutter strongly drive
resonances for particles evolving outside of beam edge
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Core-particle simulations: Poincare plots illustrate resonances associated with
higher-order halo production near the beam edge for FODO quadrupole transport

+ High order resonances near the core are strongly expressed

Core-particle simulations: Poincare phase-space plots illustrate stability regions
where near edge particles grow in oscillation amplitude: launch [1.1,1.2]x core

C (stable): o9 =95°, 0/0¢ = 0.67
1

+ Resonances stronger for higher 0o and stronger space-charge 1.0 N 13
# Can overlap and break-up (strong chaotic transition) allowing particles launched 08 . ’
near the core to rapidly increase in oscillation amplitude w2 0s
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S [}
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Core-particle simulations: Amplitude pumping of characteristic “unstable”
phase-space structures is typically rapid and saturates whereas stable cases
experience little or no growth

0'0:600, 0'/0'0—01

»
el
=2
<
Q
w
0 20 40 60 80 100 120 140  ynidal 0 20 40 60 80 100 120 140
Lattice Periods Load
4 Runge\gQ
$ 2 <
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= s
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8\'«; g\‘
B I, @ E-10
4 -20 sl ol
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Scaled x 1.2 Scaled x 3.2
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Core particle simulations: Stability boundary data from a “halo” stability
criterion agree with experimental data for quadrupole transport limits

+ Start at a point (o, o) deep within the stable region
+ While increasing 00 vary o to find a point (if it exists) where initial launch groups
[1.05, 1.10] outside the matched beam envelope are pumped to max amplitudes of
1.5 times the matched envelope
- Boundary position relatively insensitive to specific group and amplitude growth choices

1.0
038 Stability boundary
points for two
= 06 swble : :
S . slightly different
~ H .
g 04 A Envelope amplitudes
02 i Instability (triangles, squares)
0.0 =

30 60 90 120 150 180
oo (degrees/period)

Other halo analyses of transport limits conclude overly restrictive limits:
[Lagniel, Nuc. Instr. Meth. A 345, 405 (1994)]
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Contours of max particle amplitudes in core particle model suggest
stability regions consistent with self-consistent simulations and experiment

Max amplitudes achieved for particles launched [1.05,1.1] times the core radius:
- Variation with small changes in launch position change picture little
" 10

Envelope
~+ Band
Edges

Tiefenback's
curve fit to
experimental

00

0 (deg

PIC Results £

stability
04 boundary
Threshold —__ S
Growth 02 Gargehglp itude
Black Contours: rowth Blue
Contours:

1.2,1.3,1.4

00 1.5,2.0,2.5, ..., 10

60 80 100 120 140
oy (degrees)
Note: consistent with PIC results, instability well above envelope band not found
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Discussion: Higher order space-charge stability limits in periodic
quadrupole transport

High-order space-charge related emittance growth observed in intense beam
transport in quadrupole focusing channels with oo 2 85°:
# SBTE Experiment at LBNL [M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)]
+ Simulations by Haber, Laslett, and others
A core-particle model suggests these space-charge transport limits result from a
strong halo-like mechanism:
# Space-Charge and Envelope Flutter driven
# Results in large oscillation amplitude growth -- strongly chaotic resonance chain
which limits at large amplitude rapidly increases oscillations of particles just
outside of the beam edge
+ Not weak: many particles participate -- Lack of core equilibrium provides pump of
significant numbers of particles evolving sufficiently outside the beam edge
+ Strong statistical emittance growth and lost particles (with aperture)

Mechanism consistent with other features observed:
+ Stronger with envelope mismatch: consistent with mismatched beams more unstable
+ Weak for high occupancy solenoid transport: less envelope flutter suppresses
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More Details:

Lund and Chawla, Space-charge transport limits of ion beams in periodic quadrupole
focusing channels, Nuc. Instr. Meth. A 561, 203 (2006)

Lund, Barnard, Bukh, Chawla, and Chilton, A core-particle model for periodically
focused ion beams with intense space-charge, Nuc. Instr. Meth. A 577, 173 (2007)

Lund, Kikuchi, and Davidson, Generation of intial kinetic distributions for simulation of
long-pulse charged particle beams with high space-charge intensity, PRSTAB 12,
114801 (2009)
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S13: Non-Tenuous Halo Induced Instability in Solenoidal Focusing

Here we will briefly outline application of the core particle procedure
applied in S12 for quadrupole focusing to analyze whether analogous
transport limits appear in solenoidal focusing
+ Will find limits occur but are much more benign than for quadrupole
focusing and do not appear to introduce significant additional
parameter restrictions beyond those occurring for envelope modes
- Reason: Solenoids have lesser degree of envelope flutter to drive
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Analogous core-particle stability studies have been carried out for periodic
solenoidal transport channels

Occupancy 7]

Ko(s) ¥ (ke = K,) € (0,1]
: ' : ! | =S
Cd2 gL, d2 o df2

d=(1-n)L,/2

47 Lp"%

Lattice Period

Solenoidal focusing weaker than quadrupole focusing:
- Less focusing strength than AG quadrupole for similar total field energies as beam
Kinetic energy increases
- Matched envelope flutter less, and scales strongly with 7]
- Limit 77 = 1 stable (continuous focusing) with no envelope flutter
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Flutter scaling of the matched beam envelope varies for quadrupole and
solenoidal focusing

Tl (1 — cos o) A-n)(1-n/2)
I max 1 ~ - B
T2 (1 — cosag)/ 2% Quadrupole Focusing

Based on: E.P. Lee, Phys. Plasmas, 9 4301 (2002)
for limit /o9 — 0

Solenoidal Focusing

+ Solenoids:
- Varies significant with both og and 7
# Quadrupoles:
- Phase advance 0 variation significant
- Occupancy 7) variation weak

Solenoidal Focusing FODO Quadrupole Focuqmg

0.8
" 0.3 =025
=l g=050 =

0.1 ??i 1'_D___——— __:______;___

L ————
50 o 120 90
oy (degrees) oy (degrees)
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Envelope band instabilities and growth rates for periodic solenoidal and
quadrupole doublet focusing lattices

Envelope Mode Instability Growth Rates

Similar space-charge dependent amplitude growth is observed as in
quadrupole focusing, but the effect is weaker and occupancy dependent
due to different matched envelope flutter scaling in solenoidal focusing

Carry out core particle study analogous to FODO quadrupole focus case launching
test particles [1.05,1.1]x outside the matched core and calculating max amplitudes
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[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)] o (degreed
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S14: Phase Mixing and Landau Damping in Beams

May cover in future editions of class notes
+ Likely inadequate time in lectures
+ Simulation illustration?
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future
editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2017

Redistributions of class material welcome. Please do not remove author credits.
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