Lund/Barnard USPAS 2017
Problem 1

Consider a round uniform ion beam with a current of

1 ampere, composed of Hg* ions (atomic mass A =200), a
kinetic energy of 2 MeV, a beam radius of 2 cm and
normalized emittance of 1 mm-mrad.

Calculate for these beam parameters (to 1 or 2 significant
figures):

a) f=v,/c (assume non-relativistic beam)

b) n = number density of ions in beam

C) kT = transverse temperature (express in eV)

d) A, = transverse Debye length

e) O = generalized perveance

f) A = plasma parameter

g) A¢ = potential difference between center and edge of
beam.

For reference:

e=1.6 x 1019 C [proton charge]

kz=1.38 x 10-23 J/K [Boltzmann's constant]

¢, = 8.854 x 1012 F/m [permittivity of free space]
c =3 x 108 m/s [speed of light in free space]

m, = 1.66 x 10?7 kg [atomic mass unit]

a

m,, c>=931.1x10° eV [atomic mass unitin eV]
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Problem 2

Show that;

2
or 4rme,

for a charge distributionn which p(r,0) = p(r) only.

Here A =line charge density= f2.7rrp(r)dr
0

e
(9) =7 [ g(r2mrp(rydr

where g is any beam quantity that is a function of r only.
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Problem 3

Let the equation of motion for a single particle be:
x'"'=-oa(s)x”

Here x is the usual transverse coordinate and s is the
longitudinal coordinate. a(s) is a coefficient that
depends only on s.

Calculate the derivative with respect to s of the square of
the emittance:

g = 16(<x2><x'2> - <xx'>2)
Express dd—iin terms of (x),(xx),(x'x"), and (x"*).
2

For what value of n is Cili identically zero?
\)



Problem 4 (TPD 1) - Lamor Frame

For a uniform solenoidal channel:
B(s) = By = const.
with no acceleration
Y8y = const.

and an axisymmetric (0/906 = 0) beam with

8:1) (9¢ or @ﬁ . /7x2+y2
or, Or &xl or r

the particle equations of motion reduce to:

2 = qBo y/ q 8¢ z
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a) Parralel steps taken in the class notes to transform the quations of motion to a co-rotating
frame:

/
/QL = COH.S"L = Lé‘fﬂ!d.‘"

Wavenom éef

T = zcos(ks) + ysin(k;s)
y = —xsin(k;s) + y cos(kys)

Find an expression for k; to reduce the equations of motion to the decoupled form:

7 ]% _ —q 8¢ €z
my; B2 my3B2¢2 or r
~// ];g — _q a¢ y

my; B my3B2¢2 or r

and identify k = const.
Hint:
The transformation can be carried out directly. But you may find the algreba simpler using

complex coordinates as in the class notes:

1y i=v-1 e = cos +isinf

+
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b) If the direction of the magnetic field is reversed:
By — — By
how will the dynamics be influenced?
c) Neglect space-charge:
¢=0

and sketch a typical orbit in the rotating Lamor frame. Will this orbit appear more complicated
in the Laboratory frame? Why?
Bonus:

Sketch the orbit taking advantage of simple choices of inital conditions that can always be
made through choice of coordinates.



Problem 5 (TPD 14) - Lamor Frame

a) From the Lorentz Force equation, show that a static magnetic field B® cannot change the
kinetic energy of a particle; E = (y — 1)mc? = const.

d /s = .
mo (75) = ¢S x B* Lorentz Force Equation
1 1dz

s [ Tea
Here v and E are exact (unexpanded) forms that should not be confusd with ~, and GyZ.

b) In Class, it was shown for a solenoid magnet with azimuthal symmetry (% = 0), that the
magnetic field can be expanded in terms of the on-axis field as:

" B (=1 0% Bo(z) fr\2v-L
Br(r,z) = Zl W — 1) 9z2v-1 (5)

oo

“ B (=1)” 0% B,o(z) [r\2¥
Bz (T‘, Z) - BZO(Z) + — (V!)Q 922V (2)
B.o(z) = B{(r =0,z) on-axis field

Take E ~ Ej and apply the paraxial equations of motion (see Sec. S1G class notes) to show
that if nonlinear applied force terms are dropped (o< 2, 2y, 23/, etc.), the equations of motion

are:
e~ S B = g 0
- G R B = i o
(B = ey OB

¢) Qualitative only: If there are no axial acceleration fields, we take 0, = const., [Bp] = const.,
are the results of part b) inconsistent with part a)? If so, could they still be OK to use?

d) Show if we take B =V x /T, we can generate the linear field components:

" 2 0z
B? = B,

from A = %Bzor

Vx A= (104 040 | 5 (04, 04
0z or
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e) Paraxial approximate the canonincal angular momentum

Py = [a?x (}5’+q[f>] .7

as
_ / / B:o 2 2
Py = myfoc(ay’ —ya') + g (@* +v7)
Use equation of motion in part b) to show that
d
—FPy=0 = Py = const.
dz

for a beam with ¢ = ¢(r).



Problem 6 (TPD 4)

A thin lense changes the angle of a particle trajectory but not the coordinate: This action can be

X Focus (F) G Defecos (D)
) | .c}hm: _ . ~ / = W
ﬂf/‘fk : ;f( L\
el dr'fp'&’i‘_’ﬂﬁﬂ'# | ‘?} \’ :;-
s S g S

specified by transfer matrices applied at s = s;

Focusing:
1 0
MF = (1 1) f >0
f
Defocusing;:
1 0
Mp = (1 1> f>0
f

From TPD Problem 2 a), free space drift of length L has a transport matrix:

1L
w=(o 1)

Consider a lattice of period 2L made up of equally spaced F and D lenses with eqaul values of f.

F D = n This 15 he
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a) Use the transfer matrix analysis developed in class to find the range of f for which the particle
orbit is stable.

b) Calculate cos og where o is the particle phase advance.

c) For the case of f chosen to correspond to the stability limit, sketch the motion of a particle
initial conditions:
li =
g, wle) =0

lim 2'(s) = x,/L

S—S;
where s = s; is the axial location of a focusing thin lens kick, and s — s; is just before the
kick. Sketch the particle orbit for focusing strength slightly larger than the stability limit.
Superimpose the orbit sketch on a diagram of the lattice (see below):






