Problem 1
Consider a round uniform ion beam with a current of 1 ampere, composed of Hg^{+}ions (atomic mass $\mathrm{A}=200$), a kinetic energy of 2 MeV , a beam radius of 2 cm and normalized emittance of 1 mm -mrad.

Calculate for these beam parameters (to 1 or 2 significant figures):
a) $\beta=v_{0} / c$ (assume non-relativistic beam)
b) $n=$ number density of ions in beam
c) $k T=$ transverse temperature (express in eV)
d) $\lambda_{D}=$ transverse Debye length
e) $Q=$ generalized perveance
f) $\Lambda=$ plasma parameter
g) $\Delta \phi=$ potential difference between center and edge of beam.

For reference:
$e=1.6 \times 10^{-19} \mathrm{C}$ [proton charge]
$k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ [Boltzmann's constant]
$\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ [permittivity of free space]
$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ [speed of light in free space]
$m_{\text {amu }}=1.66 \times 10^{-27} \mathrm{~kg}$ [atomic mass unit]
$m_{a m u} c^{2}=931.1 \times 10^{6} \mathrm{eV}$ [atomic mass unit in eV]

Lund/Barnard USPAS 2017

Problem 2

Show that:
$\left\langle r \frac{\partial \phi}{\partial r}\right\rangle=-\frac{\lambda}{4 \pi \varepsilon_{0}}$
for a charge distributionin which $\rho(r, \theta)=\rho(r)$ only.
Here $\lambda=$ line charge density $=\int_{0}^{\infty} 2 \pi r \rho(r) d r$
$\langle g\rangle=\frac{1}{\lambda} \int_{0}^{\infty} g(r) 2 \pi r \rho(r) d r$
where g is any beam quantity that is a function of r only.

Problem 3

Let the equation of motion for a single particle be:
$x^{\prime \prime}=-\alpha(s) x^{n}$
Here x is the usual transverse coordinate and s is the longitudinal coordinate. $\alpha(s)$ is a coefficient that depends only on s.

Calculate the derivative with respect to s of the square of the emittance:
$\varepsilon^{2}=16\left(\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}\right)$
Express $\frac{d \varepsilon^{2}}{d s}$ in terms of $\left\langle x^{2}\right\rangle,\left\langle x x^{\prime}\right\rangle,\left\langle x^{\prime} x^{n}\right\rangle$, and $\left\langle x^{n+1}\right\rangle$.
For what value of n is $\frac{d \varepsilon^{2}}{d s}$ identicallyzero?

Problem 4 (TPD 1) - Lamor Frame

For a uniform solenoidal channel:

$$
B_{z}^{a}(s)=B_{0}=\text { const } .
$$

with no acceleration

$$
\gamma_{b} \beta_{b}=\text { const } .
$$

and an axisymmetric $(\partial / \partial \theta=0)$ beam with

$$
\frac{\partial \phi}{\partial \vec{x}_{\perp}}=\frac{\partial \phi}{\partial r} \frac{\partial r}{\partial \vec{x}_{\perp}}=\frac{\partial \phi}{\partial r} \frac{\vec{x}_{\perp}}{r} \quad r=\sqrt{x^{2}+y^{2}}
$$

the particle equations of motion reduce to:

$$
\begin{aligned}
x^{\prime \prime} & =\frac{q B_{0}}{m \gamma_{b} \beta_{b} c} y^{\prime}-\frac{q}{m \gamma_{b}^{3} \beta_{b}^{2} c^{2}} \frac{\partial \phi}{\partial r} \frac{x}{r} \\
y^{\prime \prime} & =-\frac{q B_{0}}{m \gamma_{b} \beta_{b} c} x^{\prime}-\frac{q}{m \gamma_{b}^{3} \beta_{b}^{2} c^{2}} \frac{\partial \phi}{\partial r} \frac{y}{r}
\end{aligned}
$$

a) Parralel steps taken in the class notes to transform the quations of motion to a co-rotating frame:

Find an expression for k_{l} to reduce the equations of motion to the decoupled form:

$$
\begin{aligned}
& \tilde{x}^{\prime \prime}+\hat{k} \tilde{x}=\frac{-q}{m \gamma_{b}^{3} \beta_{b}^{2} c^{2}} \frac{\partial \phi}{\partial r} \frac{\tilde{x}}{r} \\
& \tilde{y}^{\prime \prime}+\hat{k} \tilde{y}=\frac{-q}{m \gamma_{b}^{3} \beta_{b}^{2} c^{2}} \frac{\partial \phi}{\partial r} \frac{\tilde{y}}{r}
\end{aligned}
$$

and identify $\hat{k}=$ const.
Hint:
The transformation can be carried out directly. But you may find the algreba simpler using complex coordinates as in the class notes:

$$
\begin{aligned}
& z=x+i y \quad i=\sqrt{-1} \quad e^{i \theta}=\cos \theta+i \sin \theta \\
& \tilde{z}=\tilde{x}+i \tilde{y}
\end{aligned}
$$

b) If the direction of the magnetic field is reversed:

$$
B_{0} \rightarrow-B_{0}
$$

how will the dynamics be influenced?
c) Neglect space-charge:

$$
\phi=0
$$

and sketch a typical orbit in the rotating Lamor frame. Will this orbit appear more complicated in the Laboratory frame? Why?

Bonus:
Sketch the orbit taking advantage of simple choices of inital conditions that can always be made through choice of coordinates.

Problem 5 (TPD 14) - Lamor Frame

a) From the Lorentz Force equation, show that a static magnetic field \vec{B}^{a} cannot change the kinetic energy of a particle; $E=(\gamma-1) m c^{2}=$ const.

$$
\begin{array}{r}
m \frac{d}{d t}(\gamma \vec{\beta})=q \vec{\beta} \times \vec{B}^{a} \quad \text { Lorentz Force Equation } \\
\gamma=\frac{1}{\sqrt{1-\vec{\beta}^{2}}} \quad \vec{\beta}=\frac{1}{c} \frac{d \vec{x}}{d t}
\end{array}
$$

Here γ and $\vec{\beta}$ are exact (unexpanded) forms that should not be confusd with γ_{b} and $\beta_{b} \hat{z}$.
b) In Class, it was shown for a solenoid magnet with azimuthal symmetry $\left(\frac{\partial}{\partial \theta}=0\right)$, that the magnetic field can be expanded in terms of the on-axis field as:

$$
\begin{aligned}
B_{r}^{a}(r, z) & =\sum_{\nu=1}^{\infty} \frac{(-1)^{\nu}}{\nu!(\nu-1)!} \frac{\partial^{2 \nu-1} B_{z 0}(z)}{\partial z^{2 \nu-1}}\left(\frac{r}{2}\right)^{2 \nu-1} \\
B_{z}^{a}(r, z) & =B_{z 0}(z)+\sum_{\nu=1}^{\infty} \frac{(-1)^{\nu}}{(\nu!)^{2}} \frac{\partial^{2 \nu} B_{z 0}(z)}{\partial z^{2 \nu}}\left(\frac{r}{2}\right)^{2 \nu} \\
B_{z 0}(z) & \equiv B_{z}^{a}(r=0, z) \quad \text { on-axis field }
\end{aligned}
$$

Take $E \simeq E_{b}$ and apply the paraxial equations of motion (see Sec. S1G class notes) to show that if nonlinear applied force terms are dropped ($\propto x^{2}, x y, x y^{\prime}$, etc.), the equations of motion are:

$$
\begin{array}{r}
x^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} x^{\prime}-\frac{B_{z 0}^{\prime}}{2[B \rho]} y-\frac{B_{z 0}}{[B \rho]} y^{\prime}=\frac{-q}{m \gamma_{b}^{3} \beta_{b}^{2} c^{2}} \frac{\partial \phi}{\partial x} \\
y^{\prime \prime}+\frac{\left(\gamma_{b} \beta_{b}\right)^{\prime}}{\left(\gamma_{b} \beta_{b}\right)} y^{\prime}+\frac{B_{z 0}^{\prime}}{2[B \rho]} x+\frac{B_{z 0}}{[B \rho]} x^{\prime}=\frac{-q}{m \gamma_{b}^{3} \beta_{b}^{2} c^{2}} \frac{\partial \phi}{\partial y} \\
{[B \rho] \equiv \frac{\gamma_{b} \beta_{b} m c}{q} \quad B_{z 0}^{\prime}=\frac{\partial B_{z 0}(z)}{\partial z}}
\end{array}
$$

c) Qualitative only: If there are no axial acceleration fields, we take $\gamma_{b} \beta_{b}=$ const., $[B \rho]=$ const., are the results of part b) inconsistent with part a)? If so, could they still be OK to use?
d) Show if we take $\vec{B}^{a}=\nabla \times \vec{A}$, we can generate the linear field components:

$$
\begin{aligned}
& B_{r}^{a}=-\frac{1}{2} \frac{\partial B_{z 0}}{\partial z} r \\
& B_{z}^{a}=B_{z 0}
\end{aligned}
$$

from $\vec{A}=\frac{\hat{\theta}}{2} B_{z 0} r$

$$
\nabla \times \vec{A}=\hat{r}\left(\frac{1}{r} \frac{\partial A_{z}}{\partial \theta}-\frac{\partial A_{\theta}}{\partial z}\right)+\hat{\theta}\left(\frac{\partial A_{r}}{\partial z}-\frac{\partial A_{z}}{\partial r}\right)+\frac{\hat{z}}{r}\left(\frac{\partial\left(r A_{\theta}\right)}{\partial r}-\frac{\partial A_{r}}{\partial \theta}\right)
$$

e) Paraxial approximate the canonincal angular momentum

$$
P_{\theta}=[\vec{x} \times(\vec{p}+q \vec{A})] \cdot \vec{z}
$$

as

$$
P_{\theta} \equiv m \gamma_{b} \beta_{b} c\left(x y^{\prime}-y x^{\prime}\right)+q \frac{B_{z 0}}{2}\left(x^{2}+y^{2}\right)
$$

Use equation of motion in part b) to show that

$$
\frac{d}{d z} P_{\theta}=0 \Rightarrow P_{\theta}=\text { const } .
$$

for a beam with $\phi=\phi(r)$.

Problem 6 (TPD 4)

A thin lense changes the angle of a particle trajectory but not the coordinate: This action can be

specified by transfer matrices applied at $s=s_{i}$

$$
\binom{x}{x^{\prime}}=M\left(s \mid s_{i}\right)\binom{x_{i}}{x_{i}^{\prime}}
$$

Focusing:

$$
M_{F}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right) \quad f>0
$$

Defocusing:

$$
M_{D}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right) \quad f>0
$$

From TPD Problem 2 a), free space drift of length L has a transport matrix:

$$
M_{0}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

Consider a lattice of period $2 L$ made up of equally spaced F and D lenses with eqaul values of f.

a) Use the transfer matrix analysis developed in class to find the range of f for which the particle orbit is stable.
b) Calculate $\cos \sigma_{0}$ where σ_{0} is the particle phase advance.
c) For the case of f chosen to correspond to the stability limit, sketch the motion of a particle initial conditions:

$$
\begin{aligned}
& \lim _{s \rightarrow s_{i}} x(s)=x_{0} \\
& \lim _{s \rightarrow s_{i}} x^{\prime}(s)=x_{o} / L
\end{aligned}
$$

where $s=s_{i}$ is the axial location of a focusing thin lens kick, and $s \rightarrow s_{i}$ is just before the kick. Sketch the particle orbit for focusing strength slightly larger than the stability limit. Superimpose the orbit sketch on a diagram of the lattice (see below):

