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Problem 1 
 
Consider a round uniform ion beam with a current of 
1 ampere, composed of Hg+ ions (atomic mass A =200), a 
kinetic energy of 2 MeV, a beam radius of 2 cm and 
normalized emittance of 1 mm-mrad. 
 
Calculate for these beam parameters (to 1 or 2 significant 
figures): 
 
a) β = v0/c  (assume non-relativistic beam) 
b) n = number density of ions in beam 
c) kT = transverse temperature (express in eV) 
d) λD = transverse Debye length 
e) Q = generalized perveance 
f) Λ  = plasma parameter 
g) Δφ = potential difference between center and edge of   
beam. 
 
For reference: 
 
e = 1.6 x 10-19 C  [proton charge] 
kB= 1.38 x 10-23 J/K [Boltzmann's constant] 
ε0 = 8.854 x 10-12 F/m [permittivity of free space] 
c = 3 x 108 m/s  [speed of light in free space] 
mamu = 1.66 x 10-27 kg  [atomic mass unit] 
mamuc2 = 931.1 x 106  eV  [atomic mass unit in eV] 
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Problem 2 
 
Show that: 
 
 

where g is any beam quantity that is a function of r only. 
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Problem 3 
 
Let the equation of motion for a single particle be: 

Here x is the usual transverse coordinate and s is the 
longitudinal coordinate.  α(s) is a coefficient that 
depends only on s.
 
Calculate the derivative with respect to s of the square of 
the emittance: 



Problem 4 (TPD 1) - Lamor Frame

For a uniform solenoidal channel:

Ba
z (s) = B0 = const.

with no acceleration
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and an axisymmetric (∂/∂θ = 0) beam with
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the particle equations of motion reduce to:

x′′ =
qB0

mγbβbc
y′ − q

mγ3bβ
2
b c

2

∂φ

∂r

x

r

y′′ = − qB0

mγbβbc
x′ − q

mγ3bβ
2
b c

2

∂φ

∂r

y

r

a) Parralel steps taken in the class notes to transform the quations of motion to a co-rotating
frame:

x̃ = x cos(kls) + y sin(kls)

ỹ = −x sin(kls) + y cos(kls)

Find an expression for kl to reduce the equations of motion to the decoupled form:
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and identify k̂ = const.

Hint:

The transformation can be carried out directly. But you may find the algreba simpler using
complex coordinates as in the class notes:

z = x+ iy i =
√
−1 eiθ = cos θ + i sin θ

z̃ = x̃+ iỹ
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b) If the direction of the magnetic field is reversed:

B0 → −B0

how will the dynamics be influenced?

c) Neglect space-charge:

φ = 0

and sketch a typical orbit in the rotating Lamor frame. Will this orbit appear more complicated
in the Laboratory frame? Why?

Bonus:

Sketch the orbit taking advantage of simple choices of inital conditions that can always be
made through choice of coordinates.
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Problem 5 (TPD 14) - Lamor Frame

a) From the Lorentz Force equation, show that a static magnetic field ~Ba cannot change the
kinetic energy of a particle; E = (γ − 1)mc2 = const.

m
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= q~β × ~Ba Lorentz Force Equation
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Here γ and ~β are exact (unexpanded) forms that should not be confusd with γb and βbẑ.

b) In Class, it was shown for a solenoid magnet with azimuthal symmetry ( ∂∂θ = 0), that the
magnetic field can be expanded in terms of the on-axis field as:
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z (r = 0, z) on-axis field

Take E ' Eb and apply the paraxial equations of motion (see Sec. S1G class notes) to show
that if nonlinear applied force terms are dropped (∝ x2, xy, xy′, etc.), the equations of motion
are:
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c) Qualitative only : If there are no axial acceleration fields, we take γbβb = const., [Bρ] = const.,
are the results of part b) inconsistent with part a)? If so, could they still be OK to use?

d) Show if we take ~Ba = ∇× ~A, we can generate the linear field components:
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e) Paraxial approximate the canonincal angular momentum

Pθ =
[
~x×

(
~p+ q ~A

)]
· ~z

as

Pθ ≡ mγbβbc(xy′ − yx′) + q
Bz0
2

(
x2 + y2

)
Use equation of motion in part b) to show that

d

dz
Pθ = 0 ⇒ Pθ = const.

for a beam with φ = φ(r).
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Problem 6 (TPD 4)

A thin lense changes the angle of a particle trajectory but not the coordinate: This action can be

specified by transfer matrices applied at s = si(
x
x′

)
= M(s|si)

(
xi
x′i

)
Focusing:

MF =

(
1 0
− 1

f 1

)
f > 0

Defocusing:

MD =

(
1 0
1
f 1

)
f > 0

From TPD Problem 2 a), free space drift of length L has a transport matrix:

M0 =

(
1 L
0 1

)
Consider a lattice of period 2L made up of equally spaced F and D lenses with eqaul values of f .

a) Use the transfer matrix analysis developed in class to find the range of f for which the particle
orbit is stable.

b) Calculate cosσ0 where σ0 is the particle phase advance.

c) For the case of f chosen to correspond to the stability limit, sketch the motion of a particle
initial conditions:

lim
s→si

x(s) = x0

lim
s→si

x′(s) = xo/L

where s = si is the axial location of a focusing thin lens kick, and s → si is just before the
kick. Sketch the particle orbit for focusing strength slightly larger than the stability limit.
Superimpose the orbit sketch on a diagram of the lattice (see below):
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