
John Barnard
Steven Lund
USPAS
January 12-24, 2020
San Diego, California

II. Envelope Equations

Paraxial Ray Equation

Envelope equations for axially 
symmetric beams

Cartesian equation of motion

Envelope equations for elliptically 
symmetric beams



Roadmap:

Single particle equation with Lorentz force
q(E + v x B)

ß
Make use of:

1. Paraxial (near-axis) approximation
(Small r  and r' ) 

2.     Conservation of canonical angular momentum

3.   Axisymmetry f(r,z)
ß

Paraxial Ray Equation for Single Particle

Next take statistical averages over the distribution
function
Þ Moment equations
Express some of the moments in terms of the rms
radius and emittance
Þ Envelope equations (axisymmetric case)

Some focusing systems have quadrupolar symmetry
Rederive envelope equations in cartesian coordinates 

(x,y,z) rather than radial (r,z)
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Start	with	Newton's	equations	with	the	Lorentz	force:

In	cartesian	coordinates	this	can	be	written:

In	cylindrical	coordinates:	(use															and																		)
(see	next	page).		

When	



To	calculate	the	rate	of	change	of	the	momentum	p in	
cylindrical	coordinates	we	must	take	into	account	that	the	
unit	vectors	change	directions	as	the	particle	moves:

Note:	on	this	page	p*q = q-component of 
mechanical momentum, not to be 
confused with

canonical angular momentum.

mechanical	angular	momentum

Note:	second	term



Algebraically



Now	the	RHS	of	eq.	II	multiplied	by	r can	be	written:

So	eq.	II	and	eq.	IV	=>

(IV)

Define:

Conservation	of	Canonical	Angular	Momentum

=>		

Note	that	the	flux	y enclosed	by	a	circle	of	radius	r about
the	origin	is	given	by:	

is	conserved	along	an	orbit	in	axisymmetric	geometries

dS=element	of	area	spanning
circle;	dl=	line	element	along	
circle

r B

Aq

z



"External"	electric	and	magnetic	field	with	azimuthal	
symmetry																																(cf.	Reiser	section	5.3)

Consider	the	field	Eext	and	Bext	created	by	external	sources	
(time	steady,	vacuum	fields):

In	cylindrical	coordinates:



Similarly,	for	the	electric	field	define



for	the	self	field	use:

Er	self =	non-zero	(to	be	shown)

Bz	self =		0	in	paraxial	approx.	(	vq Bz	self ~	(wc rb/c)2 Er	self		)

Bq self =	non-zero	(to	be	shown)

We	let:

B =	Bext +	Bself

E=	Eext +	Eself

(keeping	only	terms	through		
linear	order	in	r)



Paraxial	ray	equation:

Inertial
Centrifugal vqBz

external
(solenoid) self-fields

Er
external
(from	field
gradient)

Now	use	s as	the	independent	variable:	vz dt = ds

Define	wc = qB/m.		Using	definition	of	pq eliminate	q '	via:

Adding	the	two	q '	terms	in	equation	(PI):

(PI)

Expanding	1st term,	using	vz =  v and	dividing	by	gmv2 (=gmb2c2):~



So	eq.	P1	becomes:	

Now

so

How	do	we	calculate	 ?

(Here	we	have	
included	only	the	lowest
order	term	for									).

(P2)



Leading	to	the	"Paraxial	Ray	Equation:"

Inertial

Accelerative
damping	(of	
angle	r')

Er from
converging
field	lines

Solenoidal	
focusing	(vqBz
– part	of	
centrifugal
term)

Part	of	
centrifugal
term

Self-field

which	together	with	the	conservation	of	canonical	angular	
momentum,	

and	initial	conditions,	specifies	the	orbit	a	particle	an	
axisymmetric	field.







vzBq
self)
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