John Barnard<br>Steven Lund USPAS<br>January 12-24, 2020 San Diego, California

## II. Envelope Equations

Paraxial Ray Equation
Envelope equations for axially
symmetric beams
Cartesian equation of motion
Envelope equations for elliptically symmetric beams

John Barnard Steven Lund
USPAS 1/2020
Roadmap:
Single particle equation with Lorentz force $q(E+v \times B)$


Make use of:

1. Paraxial (near-axis) approximation (Small $r$ and $r^{\prime}$ )
2. Conservation of canonical angular momentum
3. Axisymmetry $f(r, z)$

Paraxial Ray Equation for Single Particle

Next take statistical averages over the distribution function
$\Rightarrow$ Moment equations
Express some of the moments in terms of the rms radius and emittance
$\Rightarrow$ Envelope equations (axisymmetric case)
Some focusing systems have quadrupolar symmetry Rederive envelope equations in cartesian coordinates $(x, y, z)$ rather than radial $(r, z)$

Start with Newton's equations with the Lorentz force:

$$
\frac{d \underline{p}}{d t}=q(\underline{E}+\underline{v} \times \underline{B})
$$

In cartesian coordinates this can be written:

$$
\begin{aligned}
& \frac{d(\gamma m \dot{x})}{d t}=\gamma m \ddot{x}+\dot{\gamma} m \dot{x}=q\left(E_{x}+\dot{y} B_{z}-\dot{z} B_{y}\right) \\
& \frac{d(\gamma m \dot{y})}{d t}=\gamma m \ddot{y}+\dot{\gamma} m \dot{y}=q\left(E_{y}+\dot{z} B_{x}-\dot{x} B_{z}\right) \\
& \frac{d(\gamma m \dot{z})}{d t}=\gamma m \ddot{z}+\dot{\gamma} m \dot{z}=q\left(E_{z}+\dot{x} B_{y}-\dot{y} B_{x}\right)
\end{aligned}
$$

In cylindrical coordinates: (use $\frac{d \hat{e}_{r}}{d t}=\dot{\theta} \hat{e}_{\theta}$ and $\frac{d \hat{e}_{\theta}}{d t}=-\dot{\theta} \hat{e}_{r}$ ) (see next page).

$$
\begin{align*}
& \frac{d(\gamma m \dot{r})}{d t}-\gamma m r \dot{\theta}^{2}=q\left(E_{r}+r \dot{\theta} B_{z}-\dot{z} B_{\theta}\right)  \tag{I}\\
& \frac{1}{r} \frac{d\left(\gamma m r^{2} \dot{\theta}\right)}{d t}=q\left(E_{\theta}+\dot{z} B_{r}-\dot{r} B_{z}\right)  \tag{II}\\
& \frac{d(\gamma m \dot{z})}{d t}=q\left(E_{z}+\dot{r} B_{\theta}-r \dot{\theta} B_{r}\right) \tag{III}
\end{align*}
$$

In general $\underline{E}=-\underline{\nabla} \phi-\frac{1}{c} \frac{\partial \underline{A}}{\partial t} \quad$ and $\quad \underline{B}=\underline{\nabla} \times \underline{A}$
When $\frac{\partial}{\partial \theta}=0: \quad \underline{E}=\hat{e}_{r}\left[\frac{-\partial \phi}{\partial r}-\frac{\partial A_{r}}{\partial t}\right]+\hat{e}_{\theta}\left[-\frac{\partial A_{\theta}}{\partial t}\right]+\hat{e}_{z}\left[\frac{-\partial \phi}{\partial z}-\frac{\partial A_{z}}{\partial t}\right]$

$$
\underline{B}=\widehat{e}_{r}\left[-\frac{\partial A_{\theta}}{\partial z}\right]+\widehat{e}_{\theta}\left[\frac{\partial A_{r}}{\partial z}-\frac{\partial A_{z}}{\partial r}\right]+\widehat{e}_{z}\left[\frac{1}{r} \frac{\partial\left(r A_{\theta}\right)}{\partial r}\right]
$$

To calculate the rate of change of the momentum $p$ in cylindrical coordinates we must take into account that the unit vectors change directions as the particle moves:
$\underline{p}=p_{r} \hat{e}_{r}+p_{\theta}^{*} \hat{e}_{\theta}+p_{z} \hat{e}_{z}=\gamma m \underline{v}$ where $p_{r}=\gamma m \dot{r}$

$$
\begin{aligned}
& p_{\theta}^{*}=\gamma m r \dot{\theta} \\
& p_{z}=\gamma m \dot{z}
\end{aligned}
$$

So $\frac{d \underline{p}}{d t}=\dot{p}_{r} \hat{e}_{r}+p_{r} \dot{\hat{e}}_{r}+\dot{p}_{\theta}^{*} \hat{e}_{\theta}+p_{\theta}^{*} \dot{\hat{e}}_{\theta}+\dot{p}_{z} \hat{e}_{z}$

$$
=\left(\dot{p}_{r}-p_{\theta}^{*} \dot{\theta}\right) \hat{e}_{r}+\left(p_{r} \dot{\theta}+\dot{p}_{\theta}^{*}\right) \hat{e}_{\theta}+\dot{p}_{z} \hat{e}_{z}
$$

where we have used:
$\frac{d \hat{e}_{r}}{d t}=\hat{e}_{\theta} \dot{\theta} \quad \frac{d \hat{e}_{\theta}}{d t}=-\hat{e}_{r} \dot{\theta}$
$\frac{d \underline{p}}{d t}=\left(\frac{d(\gamma m \dot{r})}{d t}-\gamma m r \dot{\theta}^{2}\right) \hat{e}_{r}+\left(\gamma m \dot{r} \dot{\theta}+\frac{d(\gamma m r \dot{\theta})}{d t}\right) \hat{e}_{\theta}+\frac{d(\gamma m \dot{z})}{d t} \hat{e}_{z}$
Note: second term $=\frac{1}{r} \frac{d}{d t}\left(\gamma m r^{2} \dot{\theta}\right)$
$\uparrow$
mechanical angular momentum

Projection of particle position at times $t a t+d t$


Algebraically

$$
\begin{aligned}
& \hat{e}_{r}=\widehat{e}_{x} \cos \theta+\widehat{e}_{y} \sin \theta \\
& \widehat{e}_{\theta}=-\widehat{e}_{x} \sin \theta+\widehat{e}_{y} \cos \theta \\
& \Rightarrow \quad \frac{d \widehat{e}_{r}}{d t}=-\widehat{e}_{x} \dot{\theta} \sin \theta+\widehat{e}_{y} \dot{\theta} \cos \theta=\widehat{e}_{\theta} \dot{\theta} \\
& \text { and } \frac{d \widehat{e}_{\theta}}{d t}=-\widehat{e}_{x} \dot{\theta} \cos \theta-\widehat{e}_{y} \dot{\theta} \sin \theta=-\widehat{e}_{r} \dot{\theta}
\end{aligned}
$$

## Conservation of Canonical Angular Momentum

Now the RHS of eq. Il multiplied by $r$ can be written:

$$
\begin{align*}
& q r\left(E_{\theta}+\dot{z} B_{r}-\dot{r} B_{z}\right)=q\left(-\frac{\partial r A_{\theta}}{\partial t}-\dot{z} \frac{\partial r A_{\theta}}{\partial z}-\dot{r} \frac{\partial r A_{\theta}}{\partial r}\right) \\
&=-q\left[\frac{\partial}{\partial t}+\underline{v} \cdot \frac{\partial}{\partial \underline{x}}\right]\left(r A_{\theta}\right) \\
&=-q \frac{d\left(r A_{\theta}\right)}{d t} \tag{IV}
\end{align*}
$$

So eq. II and eq. IV =>

$$
\frac{d}{d t}\left(\gamma m r^{2} \dot{\theta}+q r A_{\theta}\right)=0
$$

Define:

$$
\begin{gathered}
p_{\theta} \equiv \gamma m r^{2} \dot{\theta}+q r A_{\theta} \equiv \text { canonical angular momentun } \\
\Rightarrow \quad \frac{d p_{\theta}}{d t}=0
\end{gathered}
$$

Note that the flux $\psi$ enclosed by a circle of radius $r$ about the origin is given by:

$$
\begin{aligned}
& \psi=\int \underline{B} \cdot d \underline{S}=\int \underline{\nabla} \times \underline{A} \cdot d \underline{S}=\oint \underline{A} \cdot \underline{d l}=2 \pi r A_{\theta} \\
& \text { So } p_{\theta}=\gamma m r^{2} \dot{\theta}+\frac{q \psi}{2 \pi}
\end{aligned}
$$

is conserved along an orbit in axisymmetric geometries

$\mathrm{d} \underline{S}=$ element of area spanning circle; $\mathrm{d} \underline{l}=$ line element along circle
"External" electric and magnetic field with azimuthal symmetry $(\partial / \partial \theta=0)$ (cf. Reiser section 5.3)

Consider the field $\underline{E}_{\text {ext }}$ and $\underline{B}_{\text {ext }}$ created by external sources (time steady, vacuum fields):

$$
\begin{array}{lll}
\nabla \times \underline{B}_{e x t}=0 & \nabla \times \underline{E}_{e x t}=0 & \left(\Rightarrow E_{e x t}, B_{e x t} \sim \nabla \phi\right) \\
\nabla \cdot \underline{B}_{e x t}=0 & \nabla \cdot \underline{E}_{e x t}=0 & \left(\Rightarrow \nabla^{2} \phi=0\right)
\end{array}
$$

In cylindrical coordinates:
$\nabla^{2} \phi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\left(\frac{\partial^{2} \phi}{\partial z^{2}}\right)$
Let $\phi(r, z)=\sum_{v=0}^{\infty} f_{2 v}(z) r^{2 v}=f_{0}(z)+f_{2}(z) r^{2}+f_{4} r^{4}+\ldots$
$\nabla^{2} \phi=0 \quad \Rightarrow \quad \sum_{v=1}^{\infty}(2 v)^{2} f_{2 v}(z) r^{2 v-2}+\sum_{v=0}^{\infty} f_{2 v}^{\prime \prime}(z) r^{2 v}=0$
Let $B_{z}(0, z)=B(z)=-f_{0}^{\prime}(z)$ and let $\phi(0, z)=V(z)=f_{0}(z)$
$B_{z}(r, z)=-\frac{\partial \phi(r, z)}{\partial z}=-f_{0}^{\prime}(z)+\frac{1}{4} f_{0}^{\prime \prime \prime}(z) r^{2}-\frac{1}{64} f_{0}^{\prime \prime \prime \prime \prime}(z) r^{4}+\ldots$
$=B(z)-\frac{r^{2}}{4} \frac{d^{2} B(z)}{d z^{2}}+\frac{r^{4}}{64} \frac{d^{4} B(z)}{d z^{4}}+\ldots$
$B_{r}(r, z)=-\frac{\partial \phi(r, z)}{\partial r}=\frac{1}{2} f_{0}^{\prime \prime}(z) r-\frac{1}{16} f_{0}^{\prime \prime \prime \prime}(z) r^{3}+\ldots$

$$
=-\frac{r}{2} \frac{d B(z)}{d z}+\frac{r^{3}}{16} \frac{d^{3} B(z)}{d z^{3}}+\ldots
$$

## Similarly, for the electric field define

Let $\phi(0, z)=V(z)=f_{0}(z)$

$$
\begin{aligned}
& \phi(r, z)=V(z)-\frac{r^{2}}{4} \frac{d^{2} V(z)}{d z^{2}}+\frac{r^{4}}{64} \frac{d^{4} V(z)}{d z^{4}}+\ldots \\
& \begin{aligned}
E_{r}(r, z)=-\frac{\partial \phi(r, z)}{\partial r} & =\frac{1}{2} f_{0}^{\prime \prime}(z) r-\frac{1}{16} f_{0}^{\prime \prime \prime \prime}(z) r^{3}+\ldots \\
& =\frac{r}{2} V_{0}^{\prime \prime}(z)+\frac{r^{3}}{16} \frac{d^{4} V(z)}{d z^{4}}+\ldots \\
E_{z}(r, z)=-\frac{\partial \phi(r, z)}{\partial z} & =-f_{0}^{\prime}(z)+\frac{1}{4} f_{0}^{\prime \prime \prime}(z) r^{2}-\frac{1}{64} f_{0}^{\prime \prime \prime \prime \prime}(z) r^{4}+\ldots \\
& =-V_{0}^{\prime}(z)+\frac{r^{2}}{4} \frac{d^{3} V(z)}{d z^{3}}-\frac{r^{4}}{64} \frac{d^{5} V(z)}{d z^{5}}+\ldots
\end{aligned}
\end{aligned}
$$

returning to the radial component or the momentum equation. in cyundrical coordinates (eq):

$$
\begin{equation*}
\frac{d}{d t}\left(\gamma_{m} \dot{r}\right)-\gamma_{m r} \dot{\theta}^{2}=q\left(E_{r}+r \dot{\theta} B_{z}-\dot{z} B_{0}\right) \tag{I}
\end{equation*}
$$

for the external field use (keeping only terms through linear order in $r$ )

$$
\begin{aligned}
& E_{r \text { ext }}=\frac{r}{2} v^{\prime \prime}+O\left(r^{3}\right) \\
& B_{\text {text }}=B_{z}(z)+O\left(r^{3}\right) \\
& B_{\theta \text { ext }}=0 \quad\left[\text { since } \frac{\left.\left.\partial \phi_{\text {mo v }}\right)=0\right]}{\partial \theta}\right.
\end{aligned}
$$

for the self field use:

$$
\begin{aligned}
& E_{r \text { self }}=\text { non-zero (to be shown) } \\
& B_{z \text { self }}=0 \text { in paraxial approx. }\left(v_{\theta} B_{z \text { self }} \sim\left(\omega_{c} r_{b} / c\right)^{2} E_{r \text { self }}\right) \\
& B_{\theta \text { self }}=\text { non-zero (to be shown) }
\end{aligned}
$$

We let:

$$
\begin{aligned}
& \underline{B}=\underline{B}_{e x t}+\underline{B}_{s e l f} \\
& \underline{E}=\underline{E}_{e x t}+\underline{E}_{\text {self }}
\end{aligned}
$$

Paraxial ray equation:

$$
\frac{d(\gamma m \dot{r})}{d t}-\gamma m r \dot{\theta}^{2}=q\left(E_{r}+r \dot{\theta} B_{z}-\dot{z} B_{\theta}\right)
$$



Now use $s$ as the independent variable: $v_{z} d t=d s$

$$
v_{z} \frac{d\left(\gamma m v_{z} r^{\prime}\right)}{d s}-\gamma m v_{z}^{2} r \theta^{\prime 2}=q\left(\frac{V^{\prime \prime}}{2} r+r v_{z} \theta^{\prime} B(z)\right)+q\left(E_{r}^{\text {self }}-v_{z} B_{\theta}^{\text {self }}\right)
$$

Expanding $1^{\text {st }}$ term, using $v_{z}=\tilde{v}$ and dividing by $\gamma m v^{2}\left(=\gamma m \beta^{2} c^{2}\right)$ :

$$
\begin{equation*}
r^{\prime \prime}-r \theta^{\prime 2}+\frac{(\gamma \beta)^{\prime}}{\gamma \beta} r^{\prime}=\frac{q}{\gamma m \beta^{2} c^{2}}\left(\frac{V^{\prime \prime}}{2} r+r \beta c \theta^{\prime} B+E_{r}^{\text {self }}-v_{z} B_{\theta}^{\text {self }}\right) \tag{PI}
\end{equation*}
$$

Define $\omega_{c} \equiv q B / m$. Using definition of $p_{\theta}$ eliminate $\theta^{\prime}$ via:

$$
\theta^{\prime}=\frac{p_{\theta}-q \psi /(2 \pi)}{\gamma m r^{2} \beta c}=\frac{p_{\theta}}{\gamma m r^{2} \beta c}-\frac{q B}{2 \gamma m \beta c}=\frac{p_{\theta}}{\gamma m r^{2} \beta c}-\frac{\omega_{c}}{2 \gamma \beta c}
$$

Adding the two $\theta$ ' terms in equation ( PI ):

$$
\left.\begin{array}{rl}
-r \theta^{\prime 2}-\frac{r \omega_{c} \theta^{\prime}}{\gamma \beta c}= & \frac{-p_{\theta}^{2}}{\gamma^{2} m^{2} \beta^{2} c^{2} r^{3}}
\end{array}+\frac{p_{\theta} \omega_{c}}{\gamma^{2} m \beta^{2} c^{2} r}-\frac{r \omega_{c}^{2}}{4 \gamma^{2} \beta^{2} c^{2}}\right)=\begin{aligned}
& -\frac{p_{\theta} \omega_{c}}{\gamma^{2} m \beta^{2} c^{2} r}+\frac{r \omega_{c}^{2}}{2 \gamma^{2} \beta^{2} c^{2}} \\
= & \frac{-p_{\theta}^{2}}{\gamma^{2} m^{2} \beta^{2} c^{2} r^{3}}+\frac{r \omega_{c}^{2}}{4 \gamma^{2} \beta^{2} c^{2}}
\end{aligned}
$$

## So eq. P1 becomes:

$$
\begin{equation*}
r^{\prime \prime}+\frac{(\gamma \beta)^{\prime}}{\gamma \beta} r^{\prime}=\frac{q}{\gamma m \beta^{2} c^{2}}\left(\frac{V^{\prime \prime}}{2} r\right)-\frac{r \omega_{c}^{2}}{4 \gamma^{2} \beta^{2} c^{2}}+\frac{p_{\theta}^{2}}{\gamma^{2} m^{2} \beta^{2} c^{2} r^{3}}+\frac{q}{\gamma m \beta^{2} c^{2}}\left(E_{r}^{\text {self }}-v_{z} B_{\theta}^{\text {self }}\right) \tag{PD}
\end{equation*}
$$

Now

$$
\frac{d \gamma m c^{2}}{d t}=q \underline{E} \cdot \underline{v} \quad \Rightarrow \quad \gamma^{\prime} m c^{2}=q \frac{\underline{E} \cdot \underline{v}}{v_{z}} \cong q E_{z} \quad \text { so } \quad \gamma^{\prime \prime}=-\frac{q}{m c^{2}}\left(V^{\prime \prime}+\frac{\partial^{2} \phi^{\text {self }}}{\partial z^{2}}\right)
$$

How do we calculate $\frac{q}{\gamma m \beta^{2} c^{2}}\left(\frac{V^{\prime \prime}}{2} r+E_{r}^{\text {self }}-v_{z} B_{\theta}^{\text {self }}\right)$ ?

$$
\begin{aligned}
& \nabla^{2} \phi^{\text {self }}=-\frac{\rho}{\varepsilon_{0}} \quad \Rightarrow \quad \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi^{\text {self }}}{\partial r}\right)=-\frac{\rho}{\varepsilon_{0}}-\frac{\partial^{2} \phi^{\text {self }}}{\partial z^{2}} \\
& \Rightarrow \quad \frac{\partial}{\partial r}\left(r \frac{\partial \phi^{\text {self }}}{\partial r}\right)=-\frac{r \rho}{\varepsilon_{0}}-\frac{r \partial^{2} \phi^{\text {self }}}{\partial z^{2}} \\
& r \frac{\partial \phi^{\text {self }}}{\partial r}=-\frac{1}{2 \pi \varepsilon_{0}} \int_{0}^{r} 2 \pi \tilde{r} \rho(\tilde{r}) d \tilde{r}-\int_{0}^{r} \frac{\tilde{r} \partial^{2} \phi^{\text {self }}}{\partial z^{2}} d \tilde{r} \\
& \text { (Here we have }
\end{aligned} \quad \begin{aligned}
& =-\frac{\lambda(r)}{2 \pi \varepsilon_{0}}-\frac{r^{2}}{2} \frac{\partial^{2} \phi^{\text {self }}}{\partial z^{2}} \leftarrow \begin{array}{l}
\text { included only the lowest } \\
\text { order term for } \frac{\left.\partial^{2} \phi\right)^{e l f}}{\partial z^{2}}
\end{array} \\
& \Rightarrow E_{r}^{\text {self } \cong \frac{\lambda(r)}{2 \pi \varepsilon_{0} r}+\frac{r}{2} \frac{\partial^{2} \phi^{\text {self }}}{\partial z^{2}}}
\end{aligned}
$$

$$
\underline{\nabla} \times \underline{B}^{\text {self }}=\mu_{0} \underline{J} \quad \Rightarrow \quad 2 \pi r B_{\theta}^{\text {self }}=\mu_{0} \int_{0}^{r} 2 \pi \tilde{r} J_{z}(\tilde{r}) d \tilde{r}=\mu_{0} v_{z} \lambda(r)
$$

$$
B_{\theta}^{\text {self }}=\frac{\mu_{0} v_{z} \lambda(r)}{2 \pi r}=\frac{v_{z}}{c^{2}} \frac{\lambda(r)}{2 \pi \varepsilon_{0} r}
$$

$$
\begin{aligned}
\left(\frac{V^{\prime \prime}}{2} r+E_{r}^{\text {self }}-v_{z} B_{\theta}^{\text {self }}\right) & =\frac{r}{2}\left(V^{\prime \prime}+\frac{\partial^{2} \phi^{\text {self }}}{\partial z^{2}}\right)+\left(1-\frac{v_{z}^{2}}{c^{2}}\right) \frac{\lambda(r)}{2 \pi \varepsilon_{0} r} \\
& =-\frac{\gamma^{\prime \prime} m c^{2}}{2 q} r+\frac{1}{\gamma^{2}} \frac{\lambda(r)}{2 \pi \varepsilon_{0} r}
\end{aligned}
$$

Leading to the "Paraxial Ray Equation:"


Accelerative damping (of angle $r^{\prime}$ )

Solenoidal
focusing ( $v_{\theta} B_{z}$

- part of
centrifugal
term)
which together with the conservation of canonical angular momentum,

$$
p_{\theta} \equiv \gamma \beta m c r^{2} \theta^{\prime}+\frac{m \omega_{c} r^{2}}{2}
$$

and initial conditions, specifies the orbit a particle an axisymmetric field.

Moment Equations
Vlasev eqtu: $\frac{\partial f}{\partial s}+x^{\prime} \frac{\partial f}{\partial x}+x^{\prime \prime} \frac{\partial f}{\partial x^{\prime}}+y^{\prime} \frac{\partial f}{\partial y}+y^{\prime \prime} \frac{\partial f}{\partial y^{\prime}}=0$
Let $g=g\left(x, x^{\prime}, y, y^{\prime}\right) ; \quad N=\iiint \int f d x d x^{\prime} d y d y^{\prime}$
MULTivLy VLAIOU equation by $9 \$ \frac{1}{N} \iiint \int d x d x^{\prime} d y d y^{\prime}$

$$
\begin{aligned}
& \int d x d x^{\prime} d y d y\left[g \frac{\partial f}{\partial s}+g x^{\prime} \frac{\partial f}{\partial x}+g x^{\prime \prime} \frac{\partial f}{\partial x^{\prime}}+g y^{\prime} \frac{\partial f}{\partial y}+g y^{\prime} \frac{\partial f}{\partial y^{\prime}}\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d s}\langle g\rangle=\left\langle x^{\prime} \frac{\partial g}{\partial x}\right\rangle+\left\langle x^{\prime \prime} \frac{\partial g}{\partial x^{\prime}}\right\rangle+\left\langle y^{\prime} \frac{\partial g}{\partial y}\right\rangle+\left\langle y^{\prime} \frac{\partial g^{\prime}}{\partial y^{\prime}}\right\rangle \\
& \text { But } \frac{d g}{d s}=\frac{\partial g}{\partial x} x^{\prime}+\frac{\partial g}{\partial x^{\prime}} x^{\prime \prime}+\frac{\partial g}{\partial y} y^{\prime}+\frac{\partial g}{\partial y^{\prime}} y^{\prime \prime} \\
& \Rightarrow \frac{d}{d r}\langle g\rangle=\left\langle g^{\prime}\right\rangle
\end{aligned}
$$

So $\quad \frac{d}{d s}\left\langle x^{2}\right\rangle=2\left\langle x x^{\prime}\right\rangle$

$$
\begin{aligned}
& \frac{d}{d s}\left\langle x^{\prime 2}\right\rangle=2\left\langle x^{\prime} x^{\prime \prime}\right\rangle \quad \text { ofc. } \\
& \frac{d}{d s}\left\langle x x^{\prime}\right\rangle=\left\langle x x^{\prime \prime}\right\rangle+\left\langle x^{\prime \prime}\right\rangle
\end{aligned}
$$

Envelore Equefion for Axisimmethic Beame

$$
\begin{aligned}
& \text { LET } r_{b}^{2}=2\left\langle r^{2}\right\rangle=2\left(\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle\right)=\begin{array}{l}
4\left\langle x^{2}\right\rangle \\
\\
\text { for an } \\
\text { axisymmenic } \\
\text { bear }
\end{array} \\
& 2 r_{b} r_{b}^{\prime}=4\left\langle r r^{\prime}\right\rangle \Rightarrow r_{b}^{\prime}=\frac{2\left\langle r r^{\prime}\right\rangle}{r_{b}} \\
& r_{b}^{\prime \prime}=\frac{2\left\langle r^{\prime \prime}\right\rangle+2\left\langle r^{\prime 2}\right\rangle}{r_{b}}-\frac{2\left\langle r^{\prime}\right\rangle}{r_{b}^{2}}\left(\frac{2\left\langle r^{\prime}\right\rangle}{r_{b}}\right) \\
& =2\left\langle r^{\prime \prime}\right\rangle+\frac{4\left\langle r^{2}\right\rangle\left\langle r^{\prime 2}\right\rangle-4\left\langle r^{\prime}\right\rangle^{2}}{r_{b}}
\end{aligned}
$$

What is <rriy?


$$
r^{\prime \prime}-r^{\prime 2}+\frac{\gamma^{\prime}}{\rho^{2} \gamma} r^{\prime}=\frac{q}{\gamma m \beta^{2} c^{2}}\left(\frac{V^{\prime}}{2} r+r p c \theta^{\prime} B+E_{r}^{s e l t}-v_{z} B_{\theta}^{\text {self })},\right.
$$

P1 man be rewirstrun:

$$
\begin{aligned}
& r^{\prime \prime}-r \theta^{\prime 2}+\frac{\gamma^{\prime}}{\rho^{2} \gamma} r^{\prime}=\frac{q}{\gamma m \rho^{2} c^{2}}=\left[\frac{-m c^{2}}{q} \frac{\gamma^{\prime \prime} n}{2}+\frac{\lambda(r)}{\gamma^{2} 2 \pi \epsilon_{0} r}+r \beta \theta^{\prime} B\right] \\
& r^{\prime \prime}+\frac{\gamma^{\prime}}{\gamma^{2} \gamma} r^{\prime}+\frac{\gamma^{\prime \prime}}{2 \beta^{2} \gamma} r-\frac{q}{\gamma^{3} m v_{E}^{2}} \frac{\lambda(r)}{2 k_{0} r}-\frac{\omega_{c}}{\gamma_{\beta} c} \theta^{\prime} r-r \theta^{\prime 2}=0 \\
& \text { What is 〈rwi?? }
\end{aligned}
$$

Using $r_{b}^{2} \equiv 2\left\langle r^{2}\right\rangle \& r_{b}^{\prime}=\frac{2\left\langle r r^{\prime}\right\rangle}{r_{b}}$
ENVELOPE EQUHTION

$$
\left.\Rightarrow \begin{array}{r}
r_{b}^{\prime \prime}+\frac{\gamma^{\prime}}{\beta^{2} \gamma} r_{b}^{\prime}+\frac{\gamma^{\prime \prime}}{2 \gamma^{2} \gamma} r_{b}+\left(\frac{\omega_{c}}{2 \gamma_{p} c}\right)^{2} r_{b}+ \\
\\
\frac{-4\left\langle p_{\theta}\right\rangle^{2}}{\left(\gamma_{m p} c\right)^{2} r_{b}^{3}}-\frac{\varepsilon_{r}^{2}}{r_{b}^{3}}-\frac{Q}{r_{b}}=0
\end{array} \right\rvert\,
$$

$$
\left.\omega_{\text {Henf }} \varepsilon_{r}^{2}=4\left(\left\langle r^{2}\right\rangle\left\langle r^{\prime 2}\right\rangle-\langle r r\rangle^{2}+\left\langle r^{2}\right\rangle\left\langle r^{2} \theta^{\prime}\right\rangle\right\rangle-\left\langle r^{2} \theta^{\prime}\right\rangle^{2}\right)
$$

$$
\begin{aligned}
& \left\langle r r^{\prime \prime}\right\rangle=\frac{\gamma^{\prime}}{\beta^{2} \gamma}\left\langle r r^{\prime}\right\rangle+\frac{\gamma^{\prime \prime}}{2 \beta^{2} \gamma}\left\langle r^{2}\right\rangle-\frac{q}{\gamma^{3} m v_{z}^{2}}\langle\lambda(r)\rangle, \\
& \frac{\left\langle\langle\theta\rangle^{2}\right.}{\left(\gamma_{m p} \beta\right)^{2}\left\langle\left.\right|^{2}\right\rangle}-\frac{\omega_{c}^{2}\left\langle r^{2}\right\rangle}{4\left(\theta^{2} \beta c\right)^{2}}-\frac{\left\langle r^{2} \theta^{\prime}\right\rangle^{2}}{\left\langle r^{2}\right\rangle}+\left\langle r^{2} \hat{\theta}^{\prime \prime}\right\rangle \\
& r_{b}^{\prime \prime}=\frac{2\left\langle r r^{\prime \prime}\right\rangle}{r_{6}}+\frac{4\left\langle r^{2}\right\rangle\left\langle r^{2}\right\rangle-4\left\langle r^{\prime}\right\rangle}{r_{b}^{3}} \\
& =\frac{\gamma^{\prime}}{\rho^{2} \gamma} \frac{2\left\langle r r^{\prime}\right\rangle}{r_{b}}+\frac{\gamma^{\prime \prime}}{2 \rho^{2} \gamma} \frac{2\left\langle r^{2}\right\rangle}{r_{b}}-\frac{2 q}{\gamma^{2} m v_{z}^{2}} \frac{\langle\lambda(r)\rangle}{2 \pi \varepsilon_{0}} \frac{1}{r_{b}} \\
& +\frac{\left\langle p_{p}\right\rangle}{\left(\gamma_{\text {wp }} \beta\right)^{2}} \frac{2}{\left\langle\left\langle r^{2}\right\rangle r_{b}\right.}-\frac{\omega_{c}^{2}}{4\left(\gamma|c|^{2}\right.} \frac{2\left\langle r^{2}\right\rangle}{r_{b}}-\frac{2\left\langle r^{2} \theta^{\prime}\right\rangle^{2}}{r_{b}\left\langle r^{2}\right\rangle} \\
& +\frac{2\left\langle r^{2} 6^{\prime 2}\right\rangle}{r_{b}}+\frac{4\left\langle r^{2}\right\rangle\left\langle r^{\prime 2}\right\rangle-4\left\langle r r^{\prime}\right\rangle^{2}}{r_{b}^{3}}
\end{aligned}
$$

GNVELOPE EQUATION - - CONTHNER

$$
\begin{aligned}
& r_{b}^{\prime \prime}+\frac{\gamma^{\prime}}{\beta^{2} \gamma} r_{b}^{\prime}+\frac{\gamma^{\prime \prime}}{2 p^{2} \gamma} r_{b}+\left(\frac{\omega_{c}}{2 \gamma_{\beta C}}\right)^{2} r_{b}-\frac{4\langle p\rangle^{2}}{\left(\gamma_{m \beta c}\right)^{2} r_{b}^{3}} \\
& \frac{-\varepsilon_{r}^{2}}{r_{b}^{3}}-\frac{Q}{r_{b}}=0
\end{aligned}
$$

Combre with the single fratce partuite flay Eountow:

$$
\varepsilon_{r}^{2}=4\left(\left\langle n^{2}\right\rangle\left\langle n^{\prime 2}\right\rangle-\langle r r\rangle^{2}+\left\langle r^{2}\right\rangle\left\langle r^{2} \theta^{2}\right\rangle-\left\langle r^{2} \theta^{\prime}\right\rangle^{2}\right)
$$



$$
\begin{aligned}
& \left\langle r^{2}\right\rangle=\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle=2\left\langle x^{2}\right\rangle \\
& \Rightarrow 2\left\langle r r^{\prime}\right\rangle=4\left\langle x^{\prime}\right\rangle \\
& A\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle=2\left\langle x^{\prime 2}\right\rangle=\left\langle r^{\prime 2}\right\rangle+\left\langle r^{2} \theta^{\prime 2}\right\rangle
\end{aligned}
$$

DEFINE $\varepsilon_{K}^{2}=16\left(\left\langle x^{2}\right\rangle\left\langle x^{12}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}\right)$

$$
\Rightarrow \varepsilon_{r}^{2}=\varepsilon_{x}^{2}-4\left\langle r^{2} \theta^{\prime}\right\rangle^{2}
$$

ExAmples of
Systeus with AxiAC Symmetry

- Peripdic Solendids
- Einzel lenses
- Continuous focusing

Examples of
Systems asithout Axife Sivmeregiy

- Electric on magyetic Quabrutole.
$\Rightarrow$ Use caltesian coondinhates caith
Eblitiche srate ehatog summetry

Exampies of Axisummerice syrsems


Example of NON-AXISYmmetac SUSTEM


Figure 3.1. Schematic of magnet sets producing an alternatinggradient quadrupole field with axial periodicity length $S$.


Figure 3.3. Schematic of conductor configuration with applied voltages producing an alternating-gradient quadrupole electric field with axial periodicity length $S$.


Figure 3.7. Alternating step-function model of a periodic quadrupole lattice with filling factor $\eta$ for the lens elements. The figure shows a plot of the quadrupole coupling coefficient $\kappa_{q}(s)$ versus $s$ for one full period $(S)$ of the lattice. Such a configuration is often called a FODO transport lattice (acronym for focusing-off-defocusing-off).

0T. Banning
$2 \equiv$ BEAM OPTICS AND FOCUSING SYSTEMS WITHOUT SPACE CH
From
Rester, pHi

$$
\begin{aligned}
& E_{x}=-E^{\prime} x \\
& E_{y}=E^{\prime} y
\end{aligned}
$$



Figure 3.15. Electrodes and force lines in an electrostatic quadrupole.

$$
\begin{aligned}
& B_{x}=B^{\prime} y \\
& B_{y}=B^{\prime} x
\end{aligned}
$$

$$
F_{x}=-q v_{z} B^{\prime} x
$$

$$
\mathrm{y} \quad F_{y}=q v_{z} B^{\prime} y
$$



MAGNET Quads
Heavy ion accelerators use alternating gradient
quadrupoles to confine the beams

PPPI

Space charge reduces betatron phase advance


Envelore Equations for Nen-Axisymmethe Sustems

$$
\begin{aligned}
r_{x}^{2} & \equiv 4\left\langle x^{2}\right\rangle \quad r_{y}^{2} \equiv 4\left\langle y^{2}\right\rangle \\
2 r_{x} r_{x}^{\prime} & =8\left\langle x x^{\prime}\right\rangle \\
r_{x}^{\prime} & =\frac{4\left\langle x x^{\prime}\right\rangle}{r_{x}} \\
r_{x}^{\prime \prime} & =\frac{4\left\langle x x^{\prime \prime}\right\rangle}{r_{x}}+\frac{4\left\langle x^{\prime 2}\right\rangle}{r_{x}}-\frac{\left.4<x x^{\prime}\right\rangle}{r_{x}^{2}} \\
& =\frac{4\left\langle x x^{\prime \prime}\right\rangle}{r_{x}}+\frac{16\left\langle x^{\prime 2}\right\rangle\left\langle x^{2}\right\rangle}{r_{x}^{3}}-\frac{\left.16<x x^{\prime}\right\rangle^{2}}{r_{x}^{3}}
\end{aligned}
$$

Dgitine $\varepsilon_{x}^{2}=16\left(\left\langle x^{2}\right\rangle\left\langle x^{12}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}\right)$

$$
\Rightarrow r_{x}^{\prime \prime}=\frac{4\left\langle x x^{\prime \prime}\right\rangle}{r_{x}}+\frac{\varepsilon_{x}^{3}}{n_{x}^{3}}
$$

So how do we ealcultite $\left\langle x x^{\prime \prime}\right\rangle$ ?
return to single iafticle equation (in cantesian coovidinates)


To be continued...
$\qquad$
Quadnorole Focusing
Now, relax radial symmety:
For $\nabla \cdot E=0$ or $\nabla \times B=0$
Exiano field in chlinpuicar "multtoles":

$$
\begin{aligned}
& E_{r, 1} B_{r}=\sum_{n=1}^{\infty} f_{n} r^{n-1} \cos (n \theta) \\
& E_{\theta,} B_{\theta}=\sum_{n=1}^{\infty} f_{n} r^{n-1} \sin (n \theta) \\
& n=1 \Rightarrow \text { dipole } \quad \begin{array}{l}
E_{x}=E_{r} \cos \theta-E_{\theta} \sin \theta \\
E_{y}=E_{r} \sin \theta+E_{\theta} \cos \theta
\end{array} \\
& \begin{array}{l}
E_{n}=f_{1} \cos \theta \Rightarrow \\
E_{\theta}=-f_{1} \sin \theta
\end{array} \Rightarrow \begin{array}{l}
E_{x}=f_{1} \\
E_{y}=0
\end{array}
\end{aligned}
$$

$$
n=2 \Rightarrow \text { quadrupole }\left\{\begin{array}{l}
E_{r}=f_{2} r \cos 2 \theta \\
E_{\theta}=f_{2} r \sin 2 \theta
\end{array} \Rightarrow \begin{array}{l}
E_{x}=f_{2} x \\
E_{y}=-f_{2} y
\end{array}\right.
$$

Nore: Above expansion is valid whan Emb $\neq$ functidea $z$ ).
FOF MAGNETTS OF FIDITE AXIHL EXTENT, FOL EACH FUNDAMONTFLL n-pble, A SET. DF HIGHEX QLDEL MOLTI'OLES With 'SAME'AZAMUTHAS


FON EXAMILF FOL A FUNOHMENTRL QUMONUIOLE THE FIELD WHY bF EXANMER:

$$
\begin{aligned}
& E_{r}=\sum_{\nu=0}^{\infty} f_{2,4}(z)[1+\nu] r^{1+2 v} \cos [2 \theta] \\
& E_{v}=\sum_{\nu=0}^{\infty}-f_{2, v}(z) r^{1+2 \nu} \sin [2 \theta] \\
& E_{z}=\sum_{\nu=0}^{\infty} \frac{1}{2} \frac{d f_{2, v}}{d z} r^{2+2 \nu} \cos 2 \theta \\
& \text { with } f_{2, \nu+1}(z)=\frac{-1}{4(v+1)(v+3)} \frac{d^{2} f_{2 \nu v}(z)}{d z^{2}}
\end{aligned}
$$

SEE LUND, S.M. (1996)
pol Eramice. HIF uodequ LLNL:

