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Section headings include embedded links that when clicked on will direct you to 
the section

0) Review: Equations of Motion and Approximations
1) Transverse Vlasov-Poisson Model

A. Vlasov-Poisson System
B. Review: Lattices: Continuous, Solenoidal, and Quadrupole
C. Review: Undepressed Particle Phase Advance

2) Vlasov Equilibria
A. Equilibrium Conditions
B. Single Particle Constants of the Motion
C. Discussion: Plasma Physics Approach to Beam Physics

Transverse Equilibrium Dist. Functions: Detailed Outline
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Detailed Outline - 2 
3) The KV Equilibrium Distribution

A: Hill's Equation with Linear Space-Charge Forces
B. Review: Courant-Snyder Invariants
C. Courant-Snyder Invariants for a Uniform Density Elliptical Beam
D. KV Envelope Equations 
E. KV Equilibrium Distribution
F. Canonical Form of the KV Distribution Function
G, Matched Envelope Structure
F. Depressed Particle Orbits
I. rms Equivalent Beams
J. Discussion/Comments on the KV model

Appendix A: Self-fields of a Uniform Density Elliptical Beam in Free Space
 Derivation #1, direct
Derivation #2, simplified  

Appendix B: Canonical Transformation of the KV Distribution
Canonical Transforms 
Simplified Moment Calculation
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Detailed Outline - 3 
4) The Continuous Focusing Limit of the KV Equilibrium Distribution

A. Reduction of Elliptical Beam Model
B. Wavenumbers of Particle Oscillations
C. Distribution Form
D. Discussion

5) Continuous Focusing Equilibrium Distributions
A. Equilibrium Form
B. Poisson's Equation 
C. Moments and the rms Equivalent Beam Envelope Equation
D. Example Distributions

6) Continuous Focusing: The Waterbag Equilibrium Distribution
A. Distribution Form
B. Poisson's Equation
C. Solution in Terms of Accelerator Parameters
D. Equilibrium Properties
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Detailed Outline - 4 
7) Continuous Focusing: The Thermal Equilibrium Distribution

A, Overview
B. Distribution Form
C. Poisson's Equation
D. Solution in Terms of Accelerator Parameters
E, Equilibrium Properties

8) Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam
A. Poisson's equation for the perturbed potential due to a test charge
B. Solution for characteristic Debye screening

9) Continuous Focusing: The Density Inversion Theorem
Relation of density profile to the full distribution function

10) Comments on the Plausibility of Smooth, non-KV Vlasov Equilibria in
       Periodic Focusing Lattices

A. Introduction 
B. Simple approximate pseudo-equilibrium distributions to approximate a smooth 

equilibrium
Contact Information
References
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S0: Review: Equations of Motion and Approximations
 Overview results from Transverse Particle Dynamics to frame formulation
Transverse particle equations of motion in terms of applied field components          
               were derived as:

Here,      is the beam self-field potential given by the solution to the Poisson 
equation with beam charge density    

Equations derived under assumptions:
 No bends (fixed x-y-z coordinate system with no local bends)
 Paraxial equations (      ) 
 No dispersive effects (     same all particles), acceleration allowed (                    ) 
 Electrostatic and leading-order (in       ) self-magnetic interactions 
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These equations can be reduced when the applied focusing fields are linear to:

where

These equations can be applied to:
Continuous Focusing:

Good qualitative guide but not physically realizable  
Solenoidal Focusing: (implicitly expressed within a rotating frame)
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Quadrupole Focusing: 

G is the field gradient which for linear applied fields is:  

If “normalized” variables are employed to compensate for acceleration induced 
damping of particle oscillations, the equations can then be analyzed using a 
coasting beam formulation with 

Using adjusted focusing strength  

See Transverse 
Particle Dynamics 
notes for details of 
interpretation
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Vlasov Equation (see J.J. Barnard, Introductory Lectures): 

S1: Transverse Vlasov-Poisson Model: for a 2D coasting, single species beam 
with electrostatic self-fields propagating in a linear  focusing lattice:

Particle Equations of Motion: 

Hamiltonian (see S.M. Lund, lectures on Transverse Particle Dynamics): 

Poisson Equation:

 + boundary conditions on 

charge, mass 
 axial relativistic factors 

transverse particle coordinate, angle 

single particle distribution

single particle Hamiltonian

Charge Density:
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Comments on Normalization
Normalization choices of distribution function 

Number of particles per unit axial length 
within                          of                 at 
lattice position s 

Transverse distribution        is actually projection of 3D distribution 

Number of particles within 
of                   at lattice position s 

Vlasov equation is more typically derived in 3D variables          in texts: 
“Particles” in 2D transverse model are really charged rods uniform in z
Later work will motivate how this 2D geometry can get the right answers in 
many contexts to physical 3D systems

- Analysis much easier in lower dimensions!

Project: 
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Line-Charge:
Constant of motion if particles not lost/created (see problem sets)
- Particles must go somewhere so total weight/number conserved

Integrate over coordinate to “project” distribution
● Certain projections have are needed to solve for beam self fields and have well 

developed interpretations
Number Density:

Charge Density:

Projections of Distribution
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Phase-Space Average:
Averaged quantity depends only on s

Averages over the distribution

Restricted (angle) Average:
Averaged quantity depends on  

Take projections of distribution with quantities of interest to average over the 
distribution

Phase-space 6D (4D here): Hard to see what is going on in high dimensions so 
take averages on projection to more easily interpret beam evolution

Example:  Statistical edge 
measure of beam x-edge  

Example:  x-plane flow 
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Hamiltonian expression of the Vlasov equation: 

In formal dynamics, a “Poisson Bracket” notation is often employed: 

Poisson Bracket

Using the equations of motion: 

Expression of Vlasov Equation

Reminder:
Hamiltonian form 
eqations of motion 
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Interpretation of Vlasov's Equation
The transverse Vlasov Equation is essentially a continuity equation for an 
incompressible “fluid” evolving in 4D phase-space. To see this, cast the Vlasov 
equation:

To express the Vlasov equation equivalently as

 Manifestly the form of a continuity equation in 6D phase-space, i.e., 
“probability”        is not created or destroyed 
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Alternatively, we note that the total derivative along a single particle orbit in the 
continuum model is

So the Vlasov equation can be equivalently expressed as

 Expresses that      is advected along characteristic particle orbits in the 
continuum and is therefore manifestly conserved 



SM Lund, USPAS, 2020 Transverse Equilibrium Distributions 17

Comments on Vlasov-Poisson Model
 Collisionless Vlasov-Poisson model good for intense beams with many particles 

- Collisions negligible, see: S.M. Lund, Transverse Particle Dynamics, S13
 Vlasov-Poisson model can be solved as an initial value problem

 The coupling to the self-field via the Poisson equation makes the
   Vlasov-Poisson model highly nonlinear

 The Vlasov distribution function                  can be thought of as a probability 
distribution evolving in                  phase-space.

- Particles/probability neither created nor destroyed
- Flows along characteristic particle trajectories in                   phase-space 
- Vlasov equation a higher-dimensional continuity equation describing 
   incompressible flow in                  phase-space
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 For solenoidal focusing the system can be interpreted in the rotating 
   Larmor Frame, see: lectures on Transverse Particle Dynamics 
 System as expressed applies to 2D (unbunched) beam as expressed

- Considerable difficulty in analysis for 3D version for 
  transverse/longitudinal physics

 Vlasov-Poisson system is written without acceleration, but the transforms 
   developed to identify the normalized emittance in the lectures on 
   Transverse Particle Dynamics can be exploited to generalize all 
    result presented to (weakly) accelerating beams (interpret in tilde variables)
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Review: Focusing lattices, continuous and periodic 
(simple piecewise constant):

Occupancy

Syncopation Factor

Lattice Period

Solenoid description
carried out implicitly in
Larmor frame 
[see: S.M. Lund, lectures on
 Transverse Particle Dynamics]
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Continuous focusing:

Quadrupole focusing:

Solenoidal focusing: (in Larmor frame variables)

Example Hamiltonians:
See S.M. Lund Lectures on Transverse Particle Dynamics for more details
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Review: Undepressed particle phase advance s
0 

is typically employed to 
characterize the applied focusing strength of periodic lattices:
see: S.M. Lund lectures on Transverse Particle Dynamics

Undepressed phase advance

x-orbit without space-charge satisfies Hill's equation

2 x 2 Transfer 
Matrix from 

to

Single particle (and centroid) stability requires:

Analogous equations hold in the y-plane
[Courant and Snyder, Annals of Phys.  3, 1 (1958)]

 Subscript 0x used stresses x-plane value and zero (Q = 0) space-charge effects
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The undepressed phase advance can also be equivalently calculated from:

 Subscript 0x stresses x-plane value and zero (Q = 0) space-charge effects
- Need to generalize notation since we will add space-charge effects
- Will find space-charge tends to cancel out part of applied focusing
- Focusing can also be different in x- and y-planes
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Comments:
Equilibrium        is an exact solution to Vlasov's equation that does not change 
in 4D phase-space functional form as s advances

- Distribution values can still evolve in 4D                      phase-space as s  
advances  
- Equilibrium distribution periodic in lattice period in periodic lattice
- Projections of the distribution can evolve in s in non-continuous lattices

 Equilibrium is “time independent” (                    ) in continuous focusing

S2: Vlasov Equilibria:  Plasma physics-like approach is to resolve 
the system into an equilibrium + perturbation and analyze stability

Equilibrium solution to the Vlasov equation is constructed from single-particle 
constants of motion C

i

Equilibrium

0
And the distribution satisfies 
Vlasov’s equation without    
     changing form
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Comments Continued:
Requirement of non-negative                      follows from the distribution 
representing (probability of) particle counts in the continuum model
Particle constants of the motion           are in the presence of (possibly s-
varying) applied  and space-charge forces

-  Highly non-trivial!
-  Only one exact solution known for s-varying focusing using Courant-

 Snyder invariants: the KV distribution to be analyzed in these lectures  
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/// Example: Continuous focusing with 

no explicit s dependence

0

Vlasov’s equation expressed in Hamiltonian form is:  

Take                          and apply the chain rule:  

For nontrivial solution with  

Reminder:
Hamiltonian form 
equations of motion 

Can argue using Green Function that            for no explicit s 
dependence in
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Showing that                           implies that                       following particle orbits 
and that Vlasov's equation is satisfied to produce a stationary equilibrium 

 Also, for physical solutions must require:
- To be appropriate for single species with positive density

 Huge variety of equilibrium function choices 
   can be made to generate many radically different equilibria 

- Infinite variety in function space  

Apply chain rule for the total change of         along particle orbit in the distribution:  

Apply Hamilton’s equations of motion  

0 Previous pageto obtain:  

Discussion:
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/// 

 Does NOT apply to systems with s-varying focusing with 
- However,                      can provide a guide in many reasonable cases

 In this special case the equilbrium distribution does not change form
 but is also stationary (                  ) with no evolution in local phase-space 
 density when viewing   

Discussion Continued:
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Typical single particle constants of motion:
Transverse Hamiltonian for continuous focusing: 

Angular momentum for systems invariant under azimuthal rotation: 

Axial kinetic energy for systems with no acceleration: 

More on other classes of constraints later ...

 Not valid for periodic focusing systems!

 Subtle point:  This form is really a Canonical Angular Momentum and 
   applies to solenoidal magnetic focusing when the variables are expressed 
   in the rotating Larmor frame (i.e., in the “tilde” variables)

- see: S.M. Lund, lectures on Transverse Particle Dynamics

 Trivial for a coasting beam with
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Plasma physics approach to beam physics:
Resolve: 

equilibrium perturbation
Comments:

Attraction is to parallel the impressive successes of plasma physics
- Gain insight into preferred state of nature
Beams are born off a source and may not be close to an equilibrium condition 
- Appropriate single particle constants of the motion unknown for 

      periodic focusing lattices other than the (unphysically idealistic) KV distribution
Intense beam self-fields and finite radial extent vastly complicate equilibrium 
description and analysis of perturbations 
-  Unknown if smooth Vlasov equilibria exist (exact sense) in periodic focusing

       though recent perturbation theory/simulations suggest self-similar classes of
       distributions have near equilibrium form 

-  Higher model detail vastly complicates picture!
If system can be tuned to more closely resemble a relaxed, equilibrium, one 
might expect less deleterious effects based on plasma physics analogies

 

and carry out 
Equilibrium & 
stability analysis 
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S3: The KV Equilibrium Distribution
[Kapchinskij and Vladimirskij, Proc. Int. Conf. On High Energy Accel., p. 274 (1959); 
and Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009)]

Free-space self-field solution within the beam (see: Appendix A) is:

Assume a uniform density elliptical beam in a periodic focusing lattice
Line-Charge:

number 
density n

Valid only within the beam!
Nonlinear outside beam

Beam Edge:

(ellipse)

(charge conservation)

Not a trivial in spite of simplicity
Two derivations in Appendix A
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The particle equations of motion:

become within the beam:

Here, Q is the dimensionless perveance defined by:

 Same measure of space-charge intensity used by J.J. Barnard in Intro. Lectures
 Properties/interpretations of the perveance will be extensively developed in

   in this and subsequent lectures
- Will appear in same form in many different space-charge problems
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If we regard the envelope radii              as specified functions of s, then these 
equations of motion are Hill's equations familiar from elementary accelerator 
physics:

Suggests Procedure:
Calculate Courant-Snyder invariants under assumptions made
Construct a distribution function of Courant-Snyder invariants that generates 
the uniform density elliptical beam projection assumed
-  Nontrivial step: guess and show that it works: KV construction

Resulting distribution will be an equilibrium that does not evolve in functional 
form, but phase-space projections will evolve in s when focusing functions vary 
in s
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Review (1): The Courant-Snyder invariant of Hill's equation
[Courant and Snyder, Annl. Phys. 3, 1 (1958)]

Hill's equation describes a zero space-charge particle orbit in linear applied 
focusing fields:

As a consequence of Floquet's theorem, the solution can be cast in 
phase-amplitude form:

where  is the periodic amplitude function satisfying

  is a phase function given by 

 and    are constants set by initial conditions at
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Review (2): The Courant-Snyder invariant of Hill's equation

From this formulation, it follows that

or

square and add equations to obtain the Courant-Snyder invariant

 Simplifies interpretation of dynamics 
 Extensively used in accelerator physics 
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Phase-amplitude description of particles evolving within a uniform density beam:

Phase-amplitude form of x-orbit equations:

where

identifies the Courant-Snyder invariant

initial conditions yield:

Analogous equations hold for the y-plane
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The KV envelope equations:

Define maximum Courant-Snyder invariants:

Values must correspond to the beam-edge radii:

The equations for w
x
 and w

y
 can then be rescaled to obtain the familiar 

KV envelope equations for the matched beam envelope

Edge Ellipse:
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Use variable rescalings to denote x- and y-plane Courant-Snyder invariants as:

Kapchinskij and Vladimirskij constructed a delta-function distribution of a linear 
combination of these Courant-Snyder invariants that generates the correct 
uniform density elliptical beam needed for consistency with the assumptions:

 Delta function means the sum of the x- and y-invariants is a constant 
 Other forms cannot generate the needed uniform density elliptical

   beam projection (see: S9)
 Density inversion theorem covered later can be used to derive result

Dirac delta function
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The KV equilibrium is constructed from the Courant-Snyder invariants:
KV equilibrium distribution write out full arguments in x, x' :

This distribution generates (see: proof in Appendix B) the correct uniform density 
elliptical beam:

Dirac delta function

Obtaining this form consistent with the assumptions, thereby 
 demonstrating full self-consistency of the KV equilibrium distribution.

-  Full 4-D form of the distribution does not evolve in s
-  Projections of the distribution can (and generally do!) evolve in s
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/// Comment on notation of integrals:
- 2nd forms useful for systems with azimuthal spatial or annular symmetry 

Spatial

Angular

Cylindrical Coordinates:

Angular
Cylindrical Coordinates:
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Use care when interpreting dimensions of symbols in cylindrical form of angular 
integrals:

 Tilde is used in angular cylindrical variables to stress that cylindrical variables 
are chosen in form to span the correct ranges in x' and y' but are not d/ds of the 
usual cylindrical polar coordinates.
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Comment on notation of integrals (continued):
Axisymmetry simplifications

Spatial: for some function
Cylindrical Coordinates:

Angular
Cylindrical Coordinates:

Angular: for some function

///
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Moments of the KV distribution can be calculated directly from the distribution 
to further aid interpretation:   [see: Appendix B for methods to simply calculate]

Envelope edge radius:   Envelope edge angle:

rms edge emittance (maximum Courant-Snyder invariant):

Full 4D average:

Restricted angle average:

Coherent flows (within the beam, zero otherwise):

Angular spread (x-temperature, within the beam, zero otherwise):

 Depend on x,y
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Summary of 1st and 2nd order moments of the KV distribution:

All 1st and 2nd order
moments not listed 
vanish, i.e., 

see reviews by:

(limit of results presented) 
Lund and Bukh,  PRSTAB 7, 
024801 (2004),  Appendix A

S.M. Lund, T. Kikuchi, and 
R.C. Davidson, PRSTAB 12, 
114801 (2009)
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Canonical transformation illustrates KV distribution structure:
[Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990), and Appendix B]
Phase-space transformation:

Courant-Snyder invariants in the presence of beam space-charge are then simply:

and the KV distribution takes the simple, symmetrical form:

from which the density and other projections can be (see: Appendix B) calculated 
more easily:
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KV Envelope equation
The envelope equation reflects low-order linear force balances within beam

Applied
Focusing
Lattice

Space-Charge
Defocusing
Perveance

Thermal
Defocusing
Emittance

Comments:
Envelope equation is a projection of the 4D invariant distribution

      - Envelope evolution equivalently given by moments of the 
        4D equilibrium distribution

Most important basic design equation for transport lattices with high space-charge 
intensity

- Simplest consistent model incorporating applied focusing,
   space-charge defocusing, and thermal defocusing forces
- Starting point of almost all practical machine design!

Terms:

Matched Solution:
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Comments Continued:
Beam envelope matching where the beam envelope has the periodicity of the lattice

   
   will be covered in much more detail in S.M. Lund lectures on Centroid and Envelope 

Description of Beams.  Envelope matching requires specific choices of initial conditions

   for periodic evolution. 
Instabilities of envelope equations are well understood and real (to be covered: see S.M. 
Lund lectures on Centroid and Envelope Description of Beams)

- Must be avoided for reliable machine operation
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Solenoidal Focusing FODO Quadrupole Focusing

The matched solution to the KV envelope equations reflects the symmetry of the 
focusing lattice and must in general be calculated numerically

Example Parameters

The matched beam is the most radially compact solution to the envelope 
equations rendering it highly important for beam transport

Matching Condition
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2D phase-space projections of a matched KV equilibrium beam 
in a periodic FODO quadrupole transport lattice

x-y

x-x'

y-y'

Projection

area:

area:

area:

(CS Invariant)

(CS Invariant)
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KV model shows that particle orbits in the presence of space-charge can 
be strongly modified – space charge slows the orbit response: 
Matched envelope:

Equation of motion for x-plane “depressed” orbit in the presence of space-charge:

All particles have the same value of depressed phase advance (similar Eqns in y):
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Contrast: Review, the undepressed particle phase advance calculated in 
the lectures on Transverse Particle Dynamics
The undepressed phase advance is defined as the phase advance of a particle in 
the absence of space-charge (Q = 0):

Denote by         to distinguished from the “depressed” phase advance     
   in the presence of space-charge

This can be equivalently calculated from the matched envelope with Q = 0:

 Value of          is arbitrary (answer for         is independent)
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Depressed particle x-plane orbits within a matched KV beam in a periodic 
FODO quadrupole channel for the matched beams previously shown
Solenoidal Focusing (Larmor frame orbit):

FODO Quadrupole Focusing:

x-plane orbit:

x-plane orbit:

Both Problems 
Tuned for:
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Clarification Comment on previous plots:

For the shown undepressed orbit (no beam space-charge), the particle is 
integrated from the same initial condition as the depressed orbit (in 
presence of space-charge).  In this context the matched envelope which is 
shown including space-charge has no meaning. 

A beam rms “edge” envelope without space-charge        could also 
be shown taking 

This envelope will be different than the depressed beam.  
The undepressed particle orbit can be calculated using phase-amplitude 
methods or by simply integrating the ODE describing the particle moving 
in linear applied fields:

Same initial condition as depressed 
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Depressed phase advance of particles moving within a matched beam envelope:

Normalized space charge strength Cold Beam
(space-charge dominated)

Warm Beam
(kinetic dominated)

Depressed particle phase advance provides a convenient 
measure of space-charge strength
For simplicity take (plane symmetry in average focusing and emittance)

Limits:
1)

2)

Envelope just rescaled amplitude:

Matched envelope exists with 
Then              multiplying phase advance integral 
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For example matched envelope presented earlier:
Undepressed phase advance:
Depressed     phase advance:

Solenoidal Focusing (Larmor frame orbit):

repeat periods
4.5

22.5

22.5 periods

4.5 periods

Periods for
360 degree 
phase advance

x-plane
orbit
y = 0 = y'

Comment:
All particles in the distribution will, of course, always move in response to both applied 
and self-fields.  You cannot turn off space-charge for an undepressed orbit.  It is a 
convenient conceptual construction to help understand focusing properties.
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The rms equivalent beam model helps interpret general beam evolution in 
terms of an “equivalent” local KV distribution

Real beams distributions in the lab will not be KV form.  But the KV model can be 
applied to interpret arbitrary distributions via the concept of rms equivalence. 
For the same focusing lattice, replace any beam charge density by a 
uniform density KV beam of the same species (         ) and energy (     ) in each 
axial slice (s) using averages calculated from the actual “real” beam distribution 
with:

rms equivalent beam (identical 1st and 2nd order moments):

real distribution
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Comments on rms equivalent beam concept:
The emittances will generally evolve in s

- Means that the equivalence must be recalculated in every slice as the
   emittances evolve
- For reasons to be analyzed later (see S.M. Lund lectures on 

             Kinetic Stability of Beams), this evolution is often small 
Concept is highly useful

- KV equilibrium properties well understood and are approximately correct
   to model lowest order “real” beam properties
- See, Reiser, Theory and Design of Charged Particle Beams (1994, 2008) 
  for a detailed and instructive discussion of rms equivalence
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Sacherer expanded the concept of rms equivalency by showing that the 
equivalency works exactly for beams with elliptic symmetry space-charge
[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]
For any beam with elliptic symmetry charge density in each transverse slice:

the KV envelope equations

remain valid when (averages taken with the full distribution): 

The emittances may evolve in s under this model 
(see SM Lund lectures on Transverse Kinetic Stability)

Based on:

see J.J. Barnard intro. lectures
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The dimensionless perveance:
Interpretation of the dimensionless perveance Q

 Scales with size of beam (     ), but typically has small characteristic values 
even for beams with high space charge intensity ( ~ 10 -4 to 10-8 common)

 Even small values of Q can matter depending on the relative strength of other 
effects from applied focusing forces, thermal defocusing, etc.  

Can be expressed equivalently in several ways:

 Forms based on              generalize to nonuniform density beams
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To better understand the perveance Q, consider a round, uniform density beam with

If the beam is also nonrelativistic, then the axial kinetic energy      is

then the solution for the potential within the beam reduces:

for potential drop 
across the beam

and the perveance can be alternatively expressed as

 Perveance can be interpreted as space-charge potential energy difference 
across beam relative to the axial kinetic energy
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Further comments on the KV equilibrium: Distribution Structure
KV equilibrium distribution:

Forms a highly singular hyper-shell in 4D phase-space

Singular distribution has large “Free-Energy” to drive many instabilities
- Low order envelope modes are physical and highly important 
  (see: lectures by S.M. Lund on Centroid and Envelope Descriptions of Beams)

Perturbative analysis shows strong collective instabilities
- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)
- Higher order instabilities (collective modes) have unphysical aspects 
  due to (delta-function) structure of distribution and must be applied 
  with care (see: lectures by S.M. Lund on Kinetic Stability of Beams)
- Instabilities can cause problems if the KV distribution is employed 
  as an initial beam state in self-consistent simulations

Schematic: 4D singular hyper-shell surface
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Preview: lectures on Centroid and Envelope Descriptions of Beams:
Instability bands of the KV envelope equation are well understood in 
periodic focusing channels and must be avoided in machine operation

[S.M. Lund and B. Bukh, PRSTAB 7 024801 (2004)]

Solenoid (     = 0.25) Quadrupole FODO (     = 0.70)
Envelope Mode Instability Growth Rates
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Further comments on the KV equilibrium: 2D Projections

All 2D projections of the KV distribution are uniformly filled ellipses
Not very different from what is often observed in experimental measurements and 
self-consistent simulations of stable beams with strong space-charge
Falloff of distribution at “edges” can be rapid, but smooth, for strong space-charge
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Coherent (flow): Incoherent (temperature):
Angular spreads within the beam:

Further comments on the KV equilibrium:
Angular Spreads: Coherent and Incoherent

Coherent flow required for periodic focusing to conserve charge
Temperature must be zero at the beam edge since the distribution edge is sharp
Parabolic temperature profile is consistent with linear grad P pressure forces in a fluid 
model interpretation of the (kinetic) KV distribution
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Further comments on the KV equilibrium:

The KV distribution is the only exact equilibrium distribution formed from 
Courant-Snyder invariants of linear forces valid for periodic focusing channels:

Low order properties of the distribution are physically appealing 
Illustrates relevant Courant-Snyder invariants in simple form

- Later arguments demonstrate that these invariants should be a reasonable
            approximation for beams with strong space charge
 KV distribution does not have a 3D generalization [see F. Sacherer, PhD thesis, 1968]

All particles have the same oscillation phase advance within a KV beam, 
regardless of amplitude 

● No spread in oscillation frequency in beam which is not physical 
● Will tend to overestimate instabilities since all particles are resonant

Strong Vlasov instabilities associated with the KV model render the distribution 
inappropriate for use in evaluating machines at high levels of detail:

Instabilities are not all physical and render interpretation of results difficult
- Difficult to separate physical from nonphysical effects in simulations
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Because of a lack of theory for a smooth, self-consistent distribution that would 
be more physically appealing than the KV distribution we will examine smooth 
distributions in the idealized continuous focusing limit (after an analysis of the 
continuous limit of the KV theory):

Allows more classic “plasma physics” like analysis 
Illuminates physics of intense space charge 
Lack of continuous focusing in the laboratory will prevent over generalization 
of results obtained

A 1D analog to the KV distribution called the “Neuffer Distribution” is useful in 
longitudinal physics

Based on linear forces with a “g-factor” model
Distribution not singular in 1D and is fully stable in continuous focusing

● See: J.J. Barnard, lectures on Longitudinal Physics 

Possible Research Problem (unsolved in 40+ years!):
Can an exact Vlasov equilibrium be constructed for a smooth (non-singular), 
nonuniform density distribution in a linear, periodic focusing channel?

Not clear what invariants can be used or if any can exist
- Nonexistence proof would also be significant

Recent perturbation theory and simulation work suggest prospects 
    - Self-similar classes of distributions
Lack of a smooth equilibrium does not imply that real machines cannot work!
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Appendix A:  Self-Fields of a Uniform Density Elliptical Beam 
in Free-Space

1) Direct Proof:

A1

The solution to the 2D Poisson equation:

has been formally constructed as:
 Solutions date from early Newtonian gravitational field solutions of stars with ellipsoidal density
 See Landau and Lifshitz, Classical Theory of Fields for a simple presentation
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A2

We will A) demonstrate that this solution works and then B) simplify the result.
A) Verify by direct substitution:

But:

In either case the 2nd term 
above vanishes

Giving:

Differentiate again and apply the chain rule:
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A3

Must show that the right hand side reduces to the required elliptical form for a 
uniform density beam for:

Case  1: Exterior

Case 2: Interior 

Case 1: Exterior

Differentiate:

+ analogous eqn in y
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A4

Using these results:

Also, need to calculate integrals like:

+ analogous integrals in y
This integral can be done using tables or symbolic programs like Mathematica: 

Applying this integral and the analogous  
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A5

Applying both of these results, we obtain:

Thereby verifying the exterior case !

Case 2: Interior

The integrals defined and calculated above give in this case:

Applying both of these results, we obtain:

Thereby verifying the interior case !
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A6

Verify that the correct large-r limit of the potential is obtained outside the beam:

Thus:

Thereby verifying the exterior limit!

Together, these results fully verify that the integral solution satisfies the Poisson 
equation describing a uniform density elliptical beam in free space
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A7

Finally, it is useful to apply the steps in the verification to derive a simplified 
formula for the potential within the beam where: 

This gives:

This formula agrees with the simple case of an axisymmetric beam with
    

-  Discussed further in a simple homework problem
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2) Indirect Proof:
  More efficient method
  Steps useful for other constructions including moment calculations 

- See: J.J. Barnard,  Introductory Lectures
Density has elliptical symmetry:

The solution to the 2D Poisson equation:

in free-space is then given by 

where           is a function defined such that 

Can show that a choice of       realizable for any elliptical symmetry n A8
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A9

Prove that the solution is valid by direct substitution

Substitute in Poisson's equation, use the chain rule, and apply results above:

Note:

Using this result the first integral becomes:
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Apply partial integration:

Term cancels 
2nd integral

Giving:

Which verifies the ansatz. A10

in first term, upper limit vanishes since denominator ~ 
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A11

For a uniform density ellipse, we take:

Then

Therefore, for this choice of    

Apply these results to calculate  
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A12

Then:

Using Mathematica or integral tables

Showing that:

since an overall constant can always be added to the potential  (the integral had a 
reference choice                                   built in. 
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A13

The steps introduced in this proof can also be simply extended to show that 
 For steps, see JJ Barnard, Introductory Lectures

for any elliptic symmetry density profile  

In the introductory lectures, these results were applied to show that the KV 
envelope equations with evolving emittances can be applied to elliptic symmetry 
beams.  

 Result first shown by Sacherer, IEEE Trans. Nuc. Sci. 18, 1105 (1971)
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Appendix B:  Canonical Transformation of the KV Distribution
The single-particle equations of motion:

B1

can be derived from the Hamiltonian:

using:
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Perform a canonical transform to new variables X,Y, X',Y' using the generating 
function 

Then we have from Canonical Transform theory (see: Goldstein, Classical 
Mechanics, 2nd Edition, 1980)

which give

Transform Inverse Transform

B2
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The structure of the canonical transform results in transformed equations of 
motion in proper canonical form:

B3

Caution:  X' merely denotes the conjugate variable to X :
X and X' both have dimensions sqrt(meters)
Equations of motion can be verified directly from transform equations (see  
problem sets)
Transformed Hamiltonian       is explicitly s dependent due to w_x and w_y 
lattice functions
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B4

Following Davidson (Physics of Nonneutral Plasmas), the equations of motion:

have a psudo-harmonic oscillator solution:
Straightforward to verify by direct substitution

set by initial conditions

+ Same form solution in y-plane

1 1

0
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B6

Using the transforms:

in this expression verifies the simple, symmetrical form of the Courant-Snyder 
invariants in the transformed variables:
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B7

The canonical transforms render the KV distribution much simpler to express.  
First examine how phase-space areas transform:

The property dx dy dx' dy' = dX dY dX' dY' is a consequence of proper 
canonical transforms preserving phase-space area 

Because phase space area is conserved, the distribution in transformed phase-
space variables is identical to the original distribution.  Therefore, for the KV 
distribution, we have:

Transformed form simpler and more symmetrical
Exploited to simplify calculation of distribution moments and projections
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B8

Density Calculation:
As a first example application of the canonical transform, prove that the density 
projection of the KV distribution is a uniform density ellipse.  Doing so will prove 
the consistency of the KV equilibrium:

 If density projection is as assumed then the Courant-Snyder invariants are valid
 Steps used can be applied to calculate other moments/projections
 Steps can be applied to continuous focusing without using the transformations 
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B9

Exploit the cylindrical symmetry

giving

Shows that the singular KV distribution yields the required uniform density 
elliptical projection required for self-consistency!

Note:

Area Ellipse =

Line Charge:  
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B10

//

// Aside
An interesting footnote to this Appendix is that an infinity of canonical 
generating functions can be applied to transform the KV distribution in 
standard quadratic form

to other sets of variables.  These distributions have underlying KV form.
 Not logical to label transformed KV distributions as “new” but this has been 
done in the literature

-  Could generate an infinity of KV like equilibria in this manner
  Identifying specific transforms with physical relevance can be useful even if 
the canonical structure of the distribution is still KV

- Helps identify basic design criteria with envelope consistency 
equations etc.   

- Example of this is a self-consistent KV distribution formulated for 
quadrupole skew coupling
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S4:  Continuous Focusing limit of the KV Equilibrium Distribution
Continuous focusing, axisymmetric beam

KV envelope equation

Undepressed betatron wavenumber

reduces to:

with matched (              ) solution to the quadratic in      envelope equation 
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Space-charge tune depression (rate of phase advance same everywhere, L
p
 arb.) 

Depressed 
betatron 
wavenumber

reduce to

Similarly, the particle equations of motion within the beam are:

with solution

envelope equation envelope equation
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Continuous Focusing KV Equilibrium – 
Undepressed and depressed particle orbits in the x-plane

envelope
undepressed

depressed

Particle Orbits in Beam

Much simpler in details than the periodic focusing case,
but qualitatively similar in that space-charge “depresses” the 
rate of particle phase advance 
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Continuous Focusing KV Beam – Equilibrium Distribution Form
Using

for the beam line charge and 

the full elliptic beam KV distribution can be expressed as :
See next slides for steps involved in the form reduction

where 

 --  Hamiltonian
      (on-axis              ref taken)

 --  Hamiltonian at beam edge,
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/// Aside: Steps of derivation
Using:

Using:

The solution for the potential for the uniform density beam inside the beam is:
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///

The Hamiltonian becomes:

From the equilibrium envelope equation:

Substituting this result, the term          can be eliminated in        to obtain:

The value of        for an edge particle (turning point with zero angle) is:

Giving (constants are same in Hamiltonian and edge value and subtract out):
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Equilibrium distribution

From the equilibrium                 can explicitly calculate (see homework problems)

Density:

Temperature:

Density Temperature
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Continuous Focusing KV Beam – Comments

For continuous focusing,           is a single particle constant of the motion (see 
problem sets), so it is not surprising that the KV equilibrium form reduces to a 
delta function form of 

For non-continuous focusing channels there is no simple relation between 
Courant-Snyder type invariants and  

Because of the delta-function distribution form, all particles in the continuous 
focusing KV beam have the same transverse energy with  

Several textbook treatments of the KV distribution derive continuous focusing 
versions and then just write down (if at all) the periodic focusing version based on 
Courant-Snyder invariants.   This can create a false impression that the KV 
distribution is a Hamiltonian-type invariant in the general form.  
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Case of a mismatched KV beam in a continuous focusing channel

If we take                       in a continuous focusing channel, the resulting beam 
equilibrium is stationary                  in all statistical measures with 

and the beam satisfies the stationary envelope equation

This matched beam will be in local radial force balance with no 
oscillations (see S 5)

The KV case of the matched equilibrium distribution has been derived as 
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More generally, the KV distribution can be mismatched to the focusing lattice.  In 
this case one cannot write the distribution as                         

but rather, is expressible in terms of the more general form of the KV distribution

which can be written in several forms using:

with                    satisfying 
the envelope equation:

 These forms are valid regardless of the amplitude of variation in           which 
also satisfies the envelope equation
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ted_kv_cf_mismatch.svg

Mismatched KV beam envelope:

Envelope                    evolves consistently with the envelope equation:

from some specified initial condition

 For small amplitudes, the envelope will be oscillate harmonically with the 
period corresponding to the breathing mode wavelength as described in 
lectures on Transverse Centroid and Envelope Models of Beam Evolution
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S5: Stationary Equilibrium Distributions in Continuous Focusing Channels
Take

Real transport channels have s-varying focusing functions
For a rough correspondence to physical lattices take:

A class of equilibrium can be constructed for any non-negative choice of function:

  must be calculated consistently from the (generally nonlinear) Poisson equation:

Solutions generated will be steady-state 
When                             ,  the Poisson equation only has axisymmetric solutions with

                       [see:  Lund,  PRSTAB 10, 064203 (2007)]

The Hamiltonian is only equivalent to the Courant-Snyder invariant in continuous 
focusing (see: Transverse Particle Dynamics).  In periodic focusing channels 

    and         vary in s and the Hamiltonian is not a constant of the motion.
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The axisymmetric Poisson equation simplifies to:

For notational convenience, introduce an effective potential 
(add applied component and rescale) defined by:

then

and system axisymmetry can be exploited to calculate the beam density : 

Proof: 
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To characterize a choice of equilibrium function                , the (transformed) 
Poisson equation must be solved 

Equation is, in general, highly nonlinear rendering the procedure difficult
- Linear for 2 special cases: KV (covered) and Waterbag (section to follow)

Some general features of equilibria can still be understood: 
Apply rms equivalent beam picture and interpret in terms of moments 
Calculate equilibria for a few types of very different functions to understand the 
likely range of characteristics 

The Poisson equation can then be expressed in terms of the effective potential as: 
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Moment properties of continuous focusing equilibrium distributions 

Equilibria with any valid function                satisfy the stationary 
 rms equivalent envelope equation for a matched beam:

where

Describes average radial force balance of particles
Uses the result (see J.J. Barnard, Intro. Lectures):   

Will derive this in lectures on 
Transverse Centroids and Envelopes
See also next slides.
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//   Derivation of average Force Balance equation for continuous equilibrium 
distribution 

● Can be interpreted as rms equivalent beam force balance 

Differentiate rms edge measure of beam:

0

Apply equation of motion in distribution moment:
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Use these results and:
J.J. Barnard Intro Lectures + Homework 
(true any axisymmetric distribution of charge)

Dimensionless perveance definition

rms edge emittance of beam

Stationary equilibrium beam

in the equation:

Gives the average force balance equation:

//
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Parameters used to define the equilibrium function

should be cast in terms of (or ratios of)

for use in accelerator applications.  The rms equivalent beam equations can be 
used to carry out needed parameter eliminations.  Such eliminations can be 
complicated due to the nonlinear structure of the equations.

A local (generally r varying) kinetic temperature can also be calculated

which is also related to the rms edge emittance,  
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Choices of continuous focusing equilibrium distributions: 

Common choices for  analyzed in the literature:
1) KV (already covered)

2) Waterbag (to be covered) 
[see M. Reiser, Charged Particle Beams, (1994, 2008)]

3) Thermal (to be covered) 
[see M. Reiser; Davidson, Nonneutral Plasmas,  1990]

Infinity of choices can be made for an infinity of papers!
 Fortunately, range of behavior can be understood with a few reasonable choices
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Preview of what we will find:   When relative space-charge is strong, all 
smooth equilibrium distributions expected to look similar 

Waterbag Distribution Thermal Distribution

Edge shape varies with distribution choice, but cores similar when            small 

Constant charge and focusing: 
Vary relative space-charge strength: 
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S6: Continuous Focusing: The Waterbag Equilibrium Distribution:
[Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008); 
 and Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009), Appendix D]
Waterbag distribution:

The physical edge radius        of the beam will be related to the edge Hamiltonian:

Edge  Hamiltonian

Using previous formulas the equilibrium density can then be calculated as:

Note (generally): 
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The transformed Poisson equation of the equilibrium 

can be expressed within the beam                  as:

This is a modified Bessel function equation and the solution within the beam 
regular at the origin r = 0 and satisfying                             is given by

where           denotes a modified Bessel function of order       
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The density is then expressible within the beam                 as:      

Similarly, the local beam temperature within the beam can be calculated as:      

The feature of a fixed proportionality between the temperature            and the 
density n(r) is a consequence of the waterbag equilibrium distribution choice and 
is not a general feature of continuous focusing.
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The waterbag distribution expression can now be expressed as:

The edge Hamiltonian value        has been eliminated
Parameters are:

.... distribution normalization

.... scaled edge radius

.... scaled focusing strength

Parameters preferred for accelerator applications: 

Needed constraints to eliminate parameters in terms of our preferred set will now 
be derived. 
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Parameters constraints for the waterbag equilibrium beam 

First calculate the beam line-charge:

here we have employed the modified Bessel function identities (    integer):

Similarly, the beam rms edge radius can be explicitly calculated as:
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The perveance is then calculated as:

The edge and perveance equations can then be combined to obtain a parameter 
constraint relating           to desired system parameters:

Here, any of the 3 system parameters on the LHS may be eliminated using the 
matched beam envelope equation to effect alternative parameterizations:

eliminate any of:

The rms equivalent beam concept can also be applied to show that:

rms equivalent KV measure of
Space-charge really nonlinear and the 
Waterbag equilibrium has a spectrum of 
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The constraint is plotted over the full range of effective space-charge strength:

 Equilibrium parameter           uniquely fixes effective space-charge strength
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///Aside: Parameter choices and limits of the constraint equation
Some prefer to use an alternative space-charge strength measure to
and use a so-called self-field parameter defined in terms of the on-axis plasma 
frequency of the distribution:

Self-field parameter:

For a KV equilibrium,       and            are simply related:

///

For a waterbag equilibrium,       and           (from which            can be calculated) 
are related by:

Generally, for smooth (non-KV) equilibria,       is  a logarithmically 
insensitive parameter for strong space-charge strength (see tables in S6 and S7)
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1) Density and temperature profile at fixed line charge and focusing strength

Use parameter constraints to plot properties of waterbag equilibrium

Parabolic density for weak space-charge and flat in the core out to a sharp edge 
for strong space charge
For the waterbag equilibrium, temperature T(r) is proportional to density n(r) 
so the same curves apply for T(r)
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Density
Profile

Edge of 
distribution
in phase-space

2) Phase-space boundary of distribution at fixed line charge and focusing strength
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3) Summary of scaled parameters for example plots:
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S7: Continuous Focusing: The Thermal Equilibrium Distribution:
[Davidson, Physics of Nonneutral Plasma, Addison Wesley (1990),  
 Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008),
 Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009), Appendix F]
In an infinitely long continuous focusing channel, collisions will eventually relax 
the beam to thermal equilibrium.   The Fokker-Planck equation predicts that the 
unique Maxwell-Boltzmann distribution describing this limit is:

Thermodynamic temperature (energy units)

Beam propagation time in transport channel is generally short relative to 
collision time, inhibiting full relaxation

Collective effects may enhance relaxation rate 
- Wave spectrums likely large for real beams and enhanced by 
  transient and nonequilibrium effects
- Random errors acting on system may enhance and lock-in phase mixing  

single particle Hamiltonian of beam 
in rest frame (energy units)
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Continuous focusing thermal equilibrium distribution
Analysis of the rest frame transformation shows that the 2D Maxwell-Boltzmann 
distribution (careful on frame for temperature definition!) is:

The density can then be conveniently calculated in terms of a scaled stream 
function:

Temperature 
(energy units, lab frame)

 (reference choice)

on-axis density

and the x- and y-temperatures are equal and spatially uniform with:
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Scaled Poisson equation for continuous focusing thermal equilibrium
To describe the thermal equilibrium density profile, the Poisson equation must be 
solved.   In terms of the scaled effective potential, the Poisson equation is: 

Derivation details carried out in the problem sets

Here,  
Debye length formed  
from the peak, on-axis
beam density

Scaled radial coordinate
in rel. Debye lengths

Plasma frequency formed
from on-axis beam density

Dimensionless parameter relating
the ratio of applied to space-charge
defocusing forces

Equation is highly nonlinear, but can be solved (approximately) analytically
Scaled solutions depend only on the single dimensionless parameter D
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Numerical solution of scaled thermal equilibrium Poisson equation in 
terms of a normalized  density

Equation is highly nonlinear and must, in general, be solved numerically
- Dependance on D is very sensitive
- For small D, the beam is nearly uniform in the core

Edge fall-off is always in a few Debye lengths when D is small
- Edge becomes very sharp at fixed beam line-charge 
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/// Aside: Approximate Analytical Solution for the Thermal Equilibrium
   Density/Potential

Using the scaled density 

the equilibrium Poisson equation can be equivalently expressed as:  

This equation has been analyzed to construct limiting form analytical solutions 
for both large and small          [see: Startsev and Lund, PoP 15, 043101 (2008)]

Large        solution    =>   warm beam       =>  Gaussian-like radial profile 
Small        solution    =>    cold   beam       =>  Flat core, bell shaped profile 

- Highly nonlinear structure, but approx solution has very high accuracy 
   out to where the density becomes exponentially small!
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///

Large      solution: 

Small      solution: 

Accurate for 

Highly accurate for 

Special numerical methods have also been developed to calculate N or   
                         to arbitrary accuracy for any value of      , however small
[see: Lund, Kikuchi, and Davidson, PRSTAB, to be published, (2008)  Appendices F, G]

Extreme flatness of solution for small                       creates numerical 
precision problems that require special numerical methods to address
Method was used to verify accuracy of small       solution above 

[For full error spec. see: PoP 15, 043101 (2008)]

[For full error spec. see: PoP 15, 043101 (2008)]

0th order Modified 
Bessel Function 
of 1st kind
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Parameters constraints for the thermal equilibrium beam 
Parameters employed in to specify the equilibrium are (+ kinematic 
factors): 

Parameters preferred for accelerator applications: 

Needed constraints can be calculated directly from the equilibrium: 

Also useful,  

Integral function
of      only
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Example of derivation steps applied to derive previous constraint equations: 

Line charge: 

rms edge radius: 

rms edge emittance: 

Matched envelope equation: 

0

0
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These constraints must, in general, be solved numerically 
 Useful to probe system sensitivities in relevant parameters

Examples: 
1) rms equivalent beam tune depression as a function of D

Small rms equivalent tune depression corresponds to extremely small values of D
- Special numerical methods generally must be employed to calculate equilibrium

R.H.S function 
of D only

rms equivalent KV measure 
of

Space-charge really 
nonlinear and the Thermal 
equilibrium has a spectrum 
of 
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2) Density profile at fixed line charge and focusing strength

Density profile changes with scaled T 
- Low values yields a flat-top   => 
- High values yield a Gaussian like profile  => 
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3) Distribution contours at fixed line charge and focusing strength

Particles will move approximately force-free till approaching the edge where it is 
rapidly bent back (see Debye screening analysis this lecture)

Radial 
scales 
change
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Scaled parameters for examples 2) and 3)
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Comments on continuous focusing thermal equilibria 

From these results it is not surprising that the KV envelope model works well for 
real beams with strong space-charge (i.e, rms equivalent            small) since the 
edges of a smooth thermal [and other smooth                distribution become sharp

Thermal equilibrium likely overestimates the edge with since T = const, whereas a 
real distribution likely becomes colder near the edge

However, the beam edge contains strong nonlinear terms that will cause deviations 
from the KV model  

Nonlinear terms can radically change the stability properties (stabilize fictitious 
higher order KV modes)
Smooth distributions for strong space-charge contain a broad spectrum of particle 
oscillation frequencies that are amplitude dependent which is stabilizing

- Landau damping 
- Phase mixing 
- Less of distribution resonant with perturbations



SM Lund, USPAS, 2020 Transverse Equilibrium Distributions 132

Frequency distribution in a thermal equilibrium beam 
In 2D thermal equilibrium beam, frequency distribution is 2D.  Orbits are closed 
in r and theta but not in x and y:

Radial bounce frequency
Azimuthal frequency

Simplified 1D (sheet beam) model developed to more simply calculate the 
frequency distribution in a thermal equilibrium beam to more simply illustrate the 
influence of space-charge in 1D

Lund, Friedman, and Bazouin, PRSTAB 14, 054201 (2011) 
Model shown to produce equilibria with same essential structure as higher 
dimensional (2D, 3D) models when appropriate “equivalent” parameters used 
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Result for space-charge canceling out ~ 1/2 applied focus strength



SM Lund, USPAS, 2020 Transverse Equilibrium Distributions 134

Superimposed results for values of             show how the 
normalized distribution of oscillator frequencies F in the thermal equilibrium 
sheet beam changes as space charge intensity is varied

Distribution becomes very broad as space-charge intensity becomes stronger!
- KV model (single frequency) very poor

Sharp for weak space-charge 
- KV model approximately right (single frequency shifted from applied focus)
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Frequency distribution, statistical measures:
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Frequency distribution, extreme value measures:



SM Lund, USPAS, 2020 Transverse Equilibrium Distributions 137

S8: Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam
[Davidson, Physics of Nonneutral Plasmas, Addison Wesley (1990)]
We will show that space-charge and the applied focusing forces of the lattice 
conspire together to Debye screen interactions in the core of a beam with high 
space-charge intensity 

Will systematically derive the Debye length employed by
   J.J. Barnard in the Introductory Lectures

Applied focusing forces are analogous to a stationary neutralizing species in a plasma
2D case is derived in class, 3D analogous will be covered in homework problem

- Ironically, 3D case  simpler to derive!
// Review:
Free-space field of a “bare” test line-charge at the origin 

solution (use Gauss' theorem) shows long-range interaction

//
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Place a small test line charge at r = 0 in a thermal equilibrium beam:

Thermal 
Equilibrium

Test 
Line-ChargeSet:

Thermal Equilibrium potential with no test line-charge

Perturbed potential from test line-charge (make small)

Assume thermal equilibrium adapts adiabatically to the test line-charge:

Yields:

Assume a relatively cold beam so the density is flat near the test line-charge:
Should be good approximation
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Debye radius formed from peak,
on-axis beam density

Derive a general solution by connecting solution very near the test charge with the 
general solution for r nonzero:

Near solution:

This gives:

Negligible  --->

The free-space solution can be immediately applied:
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Connection and General Solution:

The delta-function term vanishes giving:                                                  rescale r:

This is a modified Bessel equation of order 0 with general solution:
Modified Bessel Func, 1st kind

Modified Bessel Func, 2nd kind

General Exterior Solution:

Use limiting forms:
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General solution shows Debye screening of test charge in the core of the beam:
Order Zero
Modified Bessel Function

Screened interaction does not require overall charge neutrality!
- Beam particles redistribute to screen bare interaction
- Beam behaves as a plasma and expect similar collective waves etc.

Same result for all smooth thermal equilibrium distributions and in 1D, 2D, and 3D 
- Reason why lower dimension models can get the “right” answer for
   collective interactions in spite of the Coulomb force varying with dimension
- See table on next slide and Homework problem for 3D (easier than 2D case!) 

Explains why the radial density profile in the core of space-charge dominated beams 
are expected to be flat: space-charge cancels (linear) applied focus out to charge limit

Comparison shows that we must choose for connection to the near solution and 
regularity at infinity:
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Debye screened potential for a test charge inserted in a thermal 
equilibrium beam essentially the same in 1D, 2D, and 3D 

References for Calculation:
1D: Lund, Friedman, Bazouin, PRSTAB 14, 054201 (2011)
2D: These Lectures
3D: Davidson, Theory of Nonneutral Plasmas, Addison-Wesley 1989

Test Charge:
1D:

Sheet Charge Density:
2D:

Line Charge Density:
3D: (physical case)

Point Charge:

All Cases:
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S9: Continuous Focusing: The Density Inversion Theorem

For:

calculate the beam density

differentiate:

bounded distribution

0

Shows that in an equilibrium distribution the x and x' dependencies are strongly 
connected due to the form of                and Poisson's equation
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Assume that n(r) is specified, then the Poisson equation can be integrated:

Giving 

Calculate the effective potential: 

For n(r) = const

This suggests that y(r) is monotonic in r when  d n(r)/dr is monotonic.  Apply 
the chain rule:

For specified monotonic n(r) the density inversion theorem can be applied with 
the Poisson equation to calculate the corresponding equilibrium 

Density Inversion Theorem
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Comments on density inversion theorem:
Shows that the x and x' dependence of the distribution are inextricably linked for an 
equilibrium distribution function

-  Not so surprising -- equilibria are highly constrained
If    then the kinetic stability theorem (see: S.M. Lund, lectures on 
Transverse Kinetic Stability) shows that the equilibrium generated is also stable to 
small amplitude perturbations (this generalizes to nonlinear stability)
The beam density profile n(r) can be measured in the lab using several methods, but 
full 4D x,y  x',y' phase-space is typically more difficult to measure. But insofar as the 
beam is near equilibrium form, the inversion theorem can be applied to infer the full 
distribution phase-space from measurement of the beam density profile. 
➢ Real beams have s-varying focusing –  but canonoical transforms can be applied 

for variables that appear closer to continuous focusing to allow approximate use of 
methodology developed here. 
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// Example: Application of the inversion theorem to the KV equilibrium

// 

use:

Expected 
KV form

property of delta-function:

Steps in this example can be used to “derive” the delta-function form required for the 
elliptical beam KV distribution in the more general elliptical beam case:

Use canonical transforms (Appendix B) to express elliptical beam in axisymmetric form
Apply inversion theorem as outlined above in transformed variables
Transform back to regular variables to obtain KV distribution for an elliptical beam 

These steps also imply that the KV form is unique
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The KV and continuous models are the only (or related to simple transforms 
thereof) known exact beam equilibria.  Both suffer from idealizations that render 
them inappropriate for use as initial distribution functions for detailed modeling 
of stability in real accelerator systems:

KV distribution has an unphysical singular structure giving rise to collective 
instabilities with unphysical manifestations

- Low order properties (envelope and some features of low-order plasma 
  modes) are physical and very useful in machine design 

Continuous focusing is inadequate to model real accelerator lattices with periodic 
or s-varying focusing forces

- Focusing force cannot be realized 
  (massive partially neutralizing background charge)
- Kicked oscillator intrinsically different than a continuous oscillator

There is much room for improvement in this area, including study if smooth 
equilibria exist in periodic focusing and implications if no exact equilibria exist.

S10: Comments on the Plausibility of Smooth Vlasov Equilibria 
         in Periodic Transport Channels
S10A:  Introduction
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Real beams are born off a source that can be simulated 
- Propagation length can be relatively small in linacs 

Transverse confinement can exist without an equilibrium 
- Particles can turn at large enough radii forming an edge
- Edge can oscillate from lattice period to lattice period
   without pumping to large excursions

Would a nonexistence of an equilibrium distribution be a problem?

Might not preclude long propagation with preserved 
statistical beam quality

Even approximate equilibria would help sort out complicated processes:
Reduce transients and fluctuations can help understand processes in simplest form

- Allows more “plasma physics” type analysis and advances 
Beams in Vlasov simulations are often observed to “settle down” to a fairly regular 
state after an initial transient evolution 

- Phase mixing can rapidly lead to an effective relaxation 

If exact smooth “equilibrium” beam distributions exist for periodic focusing, they 
are highly nontrivial.
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Progress has been made in better understanding whether smooth equilibria exist in 
periodic focusing lattices.  Results suggest that they are at least classes of 
distributions that are very near equilibria:

M. Dorf et. al:  Carried out systematic simulations adiabatically changing 
continuous focusing to periodic quadrupole at low       and find nearly self-
similar periodic beams with small residual oscillations

Dorf, Davidson, Startsev, Qin,  Phys. Plasmas 16, 123107 (2009)
S. Lund et. al: Guessed a primitive construction taking continuous focusing 
distributions and applying KV canonical transforms to better match to periodic 
focusing.  Procedure implemented in WARP code and shown to produce 
excellent results up to near stability limits in 

Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009)
 E. Startsev et. al:  Developed systematic Hamiltonian averaged perturbation 
theories showing near equilibrium structure for low  

Startsev, Davidson, Dorf, PRSTAB 13, 064402 (2010)  + Extension papers 
K. Sonnad et. al: Developed a canonical transform theory including space-
charge which promises increased insight with a high degree of flexibility

K. Sonnad and J. Cary, PRE 69, 056501(2004) 
K. Sonnad and J. Cary, Physics of Plasmas 22 043120 (2015)

Details of perturbative theories beyond scope of class: Much remains to be done!
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Simple “pseudo-equilibrium” initial distribution to represent an intense beam:
1) Use rms equivalent measures to specify the beam

- Natural set of parameters for accelerator applications

2) Map rms equivalent beam to a smooth, continuous focused matched beam
- Use smooth core models that are stable in continuous focusing:
 Waterbag Equilibrium
 Parabolic Equilibrium 

  Thermal Equilibrium 
 

3) Transform continuous focused beam for rms equivalency with initial spec
- Use KV transforms that preserve uniform beam Courant-Snyder invariants

Procedure applies to any s-varying focusing channel
Focusing channel need not be periodic
Beam can be initially rms equivalent matched or mismatched if launched in a 
periodic transport channel
Can apply to both 2D transverse and 3D beams

See:  S5, S6, S7 

S10B: Simple Approximate Pseudo-Equlibrium Distributions to
           Model a Smooth Equilibrium

 Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009)
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4-Step Procedure for Initial Distribution Specification

Step 1:
For each particle (3D) or slice (2D) specify 2nd order rms properties at axial 
coordinate s 

Assume focusing lattice is given:

specified

Envelope coordinates/angles:  (specify beam envelope)

RMS Emittances:   (specify phase-space area)

Perveance:  (specify space-charge intensity)

Strength usually set by specifying 
undperessed phase advances 
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Procedure for Initial Distribution Specification (2)

If the beam is rms matched, we take: 

Not necessary to match even for periodic lattices 
- Procedure applies to mismatched beams
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Procedure for Initial Distribution Specification (3)
Step 2:
Define an rms matched, continuously focused beam in each transverse s-slice: 

Continuous s-Varying

Envelope Radius

Emittance

Perveance

Define a (local) matched beam focusing strength in continuous focusing consistent 
with the rms beam envelope:

0
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Procedure for Initial Distribution Specification (4)
Step 3:
Specify an rms matched continuously focused equilibrium consistent with step 2: 
Specify an equilibrium function:

and constrain parameters used to define the equilibrium function                with:

Line Charge <--> Perveance 

rms edge radius 

rms edge emittance

This can be rms equivalence with a smooth distribution NOT a KV distribution!
Constraint equations are generally highly nonlinear and must be solved numerically

- Allows specification of beam with natural accelerations variables
-  Procedures to implement this can be involved (research problem)
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Procedure for Initial Distribution Specification (5)
Step 4:
Transform the continuous focused beam coordinates to rms equivalency in the 
system with s-varying focusing:

Here, are coordinates of the continuous equilibrium 
Transform reflects structure of linear field Courant-Snyder invariants but 
applied to the nonuniform beam

- Approximation effectively treats Hamiltonian as Courant-Snyder invariant
- Properties of beam nonuniform distribution retained in transform 
- Expect errors to be largest near beam radial “edge” 
  at high space-charge intensity

 If applied to simulations using macroparticles (e.g., PIC codes), then details of 
transforms must be derived to weight macroparticles

- Details in: Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009)
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Procedure for Initial Distribution Specification (6)

Load N particles in x,y,x',y' phase space consistent with continuous focusing 
equilibrium distribution
Step A (set particle coordinates):
Calculate beam radial number density n(r) by (generally numerically) solving the Poisson/
stream equation and load particle x,y coordinates:

- Radial coordinates r: Set by transforming uniform deviates consistent with n(r)
- Azimuthal angles q: Distribute randomly or space for low noise 

Step B (set particle angles):
Evaluate     with      at the particle x, y coordinates loaded in 
step A to calculate the angle probability distribution function and load  x', y' coordinates:  

- Radial coordinate U: Set by transforming uniform deviates consistent with 
- Azimuthal coordinate x: : Distribute randomly or space for low noise
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Procedure for Initial Distribution Specification (7)

Step 4:
Transform continuous focused beam coordinates to rms equivalency in the system 
with s-varying focusing:

Here, are coordinates of the continuous equilibrium 
loaded

Transform reflects structure of Courant-Snyder invariants
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Carry out numerical Vlasov simulations of the initial 
Pseudoequlibrium distributions to check how procedure works 
Use the Warp (PIC) Vlasov code to advance an initial pseudoequilibrium 
distribution  in a periodic FODO lattice to check how significant transient 
evolutions are period by period: 

Little evolution => suggests near relaxed equilibrium structure 
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Warp PIC Simulation – Pseudo Thermal Equilibrium

Initial Density

Initial Density

Density: 
5th Period

Density: 
5th Period

Density: 
 30th Period

Density: 
 30th Period

x,y Emittance

x,y Emittance

2%

4%
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Transient evolution of initial pseudo-equilibrium distributions
with thermal core form in a FODO quadrupole focusing lattice  
 Density profiles along x and y axes
 Snapshots at lattice period intervals over 5 periods

 x  y  x  y

 x  y  x  y
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Transient evolution of initial pseudo-equilibrium distributions
with waterbag core form in a FODO quadrupole focusing lattice 
 Density profiles along x and y axes
 Snapshots at lattice period intervals over 5 periods

 x  y  x  y

 x  y  x  y
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The beam phase-space area (rms emittance measure) changes 
little during the evolutions indicating near equilibrium form  

Waterbag Form Gaussian/Thermal Form

5 Lattice Period Evolution, All Plots Ordinate  0.1 % Variation!!



SM Lund, USPAS, 2020 Transverse Equilibrium Distributions 163

Compare pseudo-equilibrium loads with other accelerator loads  
 Comparison distribution from linear-field Courant-Snyder invariants
   Batygin, Nuc. Inst. Meth. A 539, 455 (2005)
 Thermal/Gaussian forms with weak space-charge

 x  y  x  y

 x  y  x  y

Linear-Field Courant-Snyder: Pseudo-Equilibrium
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Compare pseudo-equilibrium loads with other accelerator loads  
 Comparison distribution from linear-field Courant-Snyder invariants
   Batygin, Nuc. Inst. Meth. A 539, 455 (2005)
 Thermal/Gaussian forms with strong space-charge

 x  y  x  y

 x  y  x  y

Linear-Field Courant-Snyder: Pseudo-Equilibrium
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Summary:  Results suggest near equilibrium structure with good quiescent 
transport can be obtained for a broad range of beam parameters with a 
smooth distribution core loaded using the pseudoequilibrium construction
Find:

Works well for quadrupole transport for  
- Should not work where beam is unstable and all distributions are expected to 
   become unstable for    see lectures on Transverse Kinetic Stability: 

Works better when matched envelope has less “flutter”:
- Solenoids: larger lattice occupancy 
- Quadrupoles: smaller  
- Not surprising since less flutter” corresponds to being closer to
  continuous focusing

Experiment:  Tiefenback, Ph.D. Thesis, U.C. Berkeley (1986)
Theory: Lund and Chawla, Proc. 2005 Part. Accel. Conf. 
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Applies to both 2D transverse and 3D beams
Easy to generalize procedure for beams with centroid offsets
Generates a charge distribution with elliptical symmetry

- Sacherer's results on rms equivalency apply
- Distribution will reflect self-consistent Debye screening

Equilibria are only pseudo-equilibria since transforms are not exact
- Nonuniform space-charge results in errors 
- Transform consistent with preserved Courant-Snyder invariants for 
   uniform density beams
- Errors largest near the beam edge - expect only small errors for 
  very strong space charge where Debye screening leads to a flat density
   profile with rapid fall-off at beam edge

Many researchers have presented or employed aspects of the improved loading 
prescription presented here, including:

I. Hofmann, GSI M. Reiser, U. Maryland M. Ikigami, KEK
E. Startsev, PPPL Y. Batygin, SLAC

Comments on Procedure for Initial Distribution Specification



SM Lund, USPAS, 2020 Transverse Equilibrium Distributions 167

Corrections and suggestions for improvements welcome!
These notes will be corrected and expanded for reference and for use in future 
editions of US Particle Accelerator School (USPAS) and Michigan State 
University (MSU) courses.  Contact:

Prof. Steven M. Lund 
Facility for Rare Isotope Beams 
Michigan State University 
640 South Shaw Lane  
East Lansing, MI 48824

lund@frib.msu.edu 
(517) 908 – 7291 office 
(510) 459 -  4045  mobile

Please provide corrections with respect to the present archived version at: 

https://people.nscl.msu.edu/~lund/uspas/bpisc_2020

Redistributions of class material welcome.  Please do not remove author credits.

mailto:lund@frib.msu.edu
https://people.nscl.msu.edu/~lund/uspas/bpisc_2020
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References:  For more information see: 
These course notes are posted with updates, corrections, and supplemental material at:

https://people.nscl.msu.edu/~lund/uspas/bpisc_2020
Materials associated with previous and related versions of this course are archived at:

JJ Barnard and SM Lund, Beam Physics with Intense Space-Charge, USPAS:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2017  2017 Version
https://people.nscl.msu.edu/~lund/uspas/bpisc_2015  2015 Version
http://hifweb.lbl.gov/USPAS_2011 2011 Lecture Notes + Info
 http://uspas.fnal.gov/programs/past-programs.shtml  (2008, 2006, 2004)  

JJ Barnard and SM Lund, Interaction of Intense Charged Particle Beams with 
Electric and Magnetic Fields, UC Berkeley, Nuclear Engineering NE290H

http://hifweb.lbl.gov/NE290H 2009 Lecture Notes + Info

https://people.nscl.msu.edu/~lund/uspas/bpisc_2020
https://people.nscl.msu.edu/~lund/uspas/bpisc_2017
https://people.nscl.msu.edu/~lund/uspas/bpisc_2015
http://hifweb.lbl.gov/USPAS_2011
http://uspas.fnal.gov/programs/past-programs.shtml
http://hifweb.lbl.gov/NE290H
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References:  continued (2) 
M. Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008)

R. Davidson, Theory of Nonneutral Plasmas, Addison-Wesley (1989)

R. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High 
Energy Accelerators, World Scientific (2001). 

H. Wiedermann, Particle Accelerator Physics, Third Edition, Springer-Verlag 
(2007) 

F. Sacherer, Transverse Space-Charge Effects in Circular Accelerators, Univ. of 
California Berkeley, Ph.D Thesis (1968) 

S. Lund, T. Kikuchi, and R. Davidson, Review Article: “Generation of initial 
kinetic distributions for simulation of long-pulse charged particle beams with high 
space-charge intensity,” PRSTAB 12, 114801 (2009)

S. Lund and B. Bukh, Review Article: “Stability Properties of the Transverse 
Envelope Equations Describing Intense Beam Transport,” PRSTAB 7, 024801 
(2004)

D. Nicholson, Introduction to Plasma Theory, Wiley (1983)

I. Kaphinskij and V. Vladimirskij, in Proc. Of the Int. Conf. On High Energy 
Accel. and Instrumentation (CERN Scientific Info. Service, Geneva, 1959) p. 274
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S. Lund, A. Friedman, and G. Bazouin, “Sheet beam model for intense space 
charge: Application to Debye screening and the distribution of particle oscillation 
frequencies in a thermal equilibrium beam,” PRSTAB 14, 054201 (2011)

References:  continued (3) 
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