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Transverse Centroid and Envelope Model: Outline

Overview

Derivation of Centroid and Envelope Equations of Motion

Centroid Equations of Motion

Envelope Equations of Motion

Matched Envelope Solutions

Envelope Perturbations

Envelope Modes in Continuous Focusing

Envelope Modes in Periodic Focusing

Transport Limit Scaling Based on Envelope Models

Centroid and Envelope Descriptions via 1* Order Coupled Moment Equations

References
Comments:
* Some of this material related to J.J. Barnard lectures:
- Transport limit discussions (Introduction)
- Transverse envelope modes (Continuous Focusing Envelope Modes and Halo)
- Longitudinal envelope evolution (Longitudinal Beam Physics III)
- 3D Envelope Modes in a Bunched Beam (Cont. Focusing Envelope Modes and Halo)
* Specific transverse topics will be covered in more detail here for s-varying focusing
* Extensive Review paper covers envelope mode topics presented in more detail:
Lund and Bukh, “Stability properties of the transverse envelope equations

describing intense ion beam transport,” PRSTAB 7 024801 (2004)
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Transverse Centroid and Envelope Model: Detailed Outline

Section headings include embedded links that when clicked on will direct you to
the section

1) Overview

2) Derivation of Centroid and Envelope Equations of Motion
Statistical Averages
Particle Equations of Motion
Distribution Assumptions
Self-Field Calculation: Direct and Image
Coupled Centroid and Envelope Equations of Motion

3) Centroid Equations of Motion

Single Particle Limit: Oscillation and Stability Properties
Effect of Driving Errors
Effect of Image Charges

4) Envelope Equations of Motion

KV Envelope Equations
Applicability of Model
Properties of Terms

5) Matched Envelope Solution
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Detailed Outline - 2

6) Envelope Perturbations
Perturbed Equations
Matrix Form: Stability and Mode Symmetries
Decoupled Modes
General Mode Limits

7) Envelope Modes in Continuous Focusing
Normal Modes: Breathing and Quadrupole Modes
Driven Modes
Appendix A: Particular Solution for Driven Envelope Modes

8) Envelope Modes in Periodic Focusing
Solenoidal Focusing
Quadrupole Focusing
Launching Conditions

9) Transport Limit Scaling Based on Envelope Models
Overview
Example for a Periodic Quadrupole FODO Lattice
Discussion and Application of Formulas in Design
Results of More Detailed Models
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Detailed Outline - 3

10) Centroid and Envelope Descriptions via 1st Order Coupled Moment
ations

Formulation
Example Illustration -- Familiar KV Envelope Model

Contact Information
References

Acknowledgments
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S1: Overview

Analyze transverse centroid and envelope properties of an unbunched (0/0z = 0)
beam

r, = pipe radius b Expect for linearly focused
beam with intense space-charge:

+ Beam to look roughly

Aperture

elliptical in shape

+ Nearly uniform density

- within fairly sharp edge

Transverse aver ages.

Centroid:

X =(x), x- and y-coordinates

Y =(y)o of beam “center of mass”
x- and y-principal axis radii

Envelope: (edge measure)

Ty = 2 x— X)?
v \/<( Sl * Apply to general Ji but base on uniform density 1
Ty = 2\/<(y — Y)2>L *+ Factor of 2 results from dimensionality (diff 1D and 3D)

SM Lund, USPAS, 2020 Transverse Centroid and Envelope Descriptions of Beam Evolution 6

of an elliptical beam envelope




Oscillations in the statistical beam centroid and envelope radii are the
lowest-order collective responses of the beam

Centroid Oscillations: Associated with errors and suppressed to extent possible:
* Error Sources seeding/driving oscillations:

- Beam distribution asymmetries (even emerging from injector: born offset)
- Dipole bending terms from imperfect applied field optics
- Dipole bending terms from imperfect mechanical alignment

* Exception: Large centroid oscillations desired when the beam is kicked (insertion or
extraction) into or out of a transport channel as is done in beam insertion/extraction
in/out of rings

Envelope Oscillations: Can have two components in periodic focusing lattices

1) Matched Envelope: Periodic “flutter” synchronized to period of focusing lattice to
maintain best radial confinement of the beam
* Properly tuned flutter essential in Alternating Gradient quadrupole lattices

2) Mismatched Envelope: Excursions deviate from matched flutter motion and are
seeded/driven by errors

Limiting maximum beam-edge excursions is desired for economical transport
- Reduces cost by Limiting material volume needed to transport an intense beam
- Reduces generation of halo and associated particle loses
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Mismatched beams have larger envelope excursions and have more collective
stability and beam halo problems since mismatch adds another source of free
energy that can drive statistical increases in particle amplitudes

(see: J.J. Barnard lectures on Envelopes and Halo)

Example: FODO Quadrupole Transport Channel

Envelope Solution: Matched and Mismatched Beam

T T T =

L / ‘\4— MisMatched Beam (Dashed) i

i i

E A/ 1 Black: x—envelope
2 2o LN W I Red: y—envelope
3 i ‘;' y
o S
0 Aok
> : !
c ] il
L A
>-.\ ] './'! \
> VRV \
20 \.J'j X kv ; .
- Matched Beam (Solid) g
10~ -
1 | | !
0 5 10 15

Axial Coordinate, s (m)
* Larger machine aperture is needed to confine a mismatched beam

- Even in absence of beam halo and other mismatch driven ““instabilities”
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Centroid and Envelope oscillations are the most important collective modes of an
intense beam

* Force balances based on matched beam envelope equation predict scaling of
transportable beam parameters
- Used to design transport lattices
* Instabilities in beam centroid and/or envelope oscillations can prevent reliable

transport
- Parameter locations of instability regions should be understood and avoided in
machine design/operation

Although it is necessary to avoid envelope and centroid instabilities in designs, it
is not alone sufficient for effective machine operation

* Higher-order kinetic and fluid instabilities not expressed in the low-order
envelope models can can degrade beam quality and control and must also be

evaluated
- To be covered (see: S.M. Lund, lectures on Kinetic Stability)
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S2: Derivation of Transverse Centroid and Envelope Equations of Motion

Analyze centroid and envelope properties of an unbunched (0/0z = 0) beam

Transverse Statistical Averages:
Let N be the number of particles in a thin axial slice of the beam at axial

coordinate s. 4 /\\/

Beam
>

Axial Coordinate, z

ThlinISIice, N >> 1 Particles
Averages can be equivalently defined in terms of the discreet particles making up

the beam or the continuous model transverse Vlasov distribution function:

| N
particles: ()L = N ;

=1 lslice
o () JdPzy [P - f)
distribution: YT [Pz [P f)

* Averages can be generalized to include axial momentum spread
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Transverse Particle Equations of Motion

Consistent with earlier analysis [lectures on Transverse Particle Dynamics], take:

7 (Vbﬁb)/ / _ q a§b
v (768p) v et = m; By c? Ox
/ O
n (/Vbﬁb) 4o = — q
B ” T T R dy
0> 0? 0
2 _ o _ — _
Vo= <3w2 i 6’y2> o
P = Q/dQQC/J_ fJ_ Qb‘aperture =0

Assume:

* Unbunched beam

* No axial momentum spread

* Linear applied focusing fields
described by ~z, Ky

* Possible acceleration: Vb
need not be constant

Various apertures are possible influence solution for ¢. Some simple examples:

Round Pipe
y A

e
N

Linac magnetic quadrupoles,
acceleration cells, ....

SM Lund, USPAS, 2020

Elliptical Pipe
y A

S

In rings with dispersion:
in drifts, magnetic optics, ....
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>

Electric quadrupoles
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Review: Focusing lattices we will take in examples: Continuous and
piecewise constant periodic solenoid and quadrupole doublet

a) Continuous

k()4 ' (k,=k,= Kk}, =const) ' 7 Lattice Period L,

| K2

. > Occupa(r)lcif U

' b) Periodic Solenoid e [ ) ]
Ky(s) _j____(__]‘_:,_r_= Ky) B ]n;: B L

i i Solenoid description

carried out implicitly in

. . 5 | . = Larmor frame

i i L, Candn (L [see: S.M. Lund lectures on

: | == : :

{ | ©) Periodic Quadrupole DouBlet P Transverse Particle Dynamics]
Ky(s) i i (K, =____}_C)__) _____________________ i N )
g Syncopation Factor «
dp NLpl2,  dy

F Quad A - . 1

i D Quad i ) Q& [O, 5]

AL /E :

& R N S 1
i*"' Lp l'-i d1=(1(1—TULp a = 5 = FODO
| Lattice Period - dy=(1-a)(1-M)L,
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Distribution Assumptions

To lowest order, linearly focused intense beams are expected to be nearly uniform
in density within the core of the beam out to an spatial edge where the density

falls rapidly to zero

* See S.M. Lund lectures on Transverse Equilibrium Distributions

Charge conservation requires:

A = const

Uniform density within beam:

A

LTy

— d2 / ~ TT g Ty
pas) =a [ 1o = (0~ X)2/r2 4 (y — ¥V)2/r2 > 1

A (@ = XP/ A (= Y2 <

)\:q/d%l/d%i fL :/deLp — const

SM Lund, USPAS, 2020
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Comments:
*Nearly uniform density out to a sharp spatial beam edge expected for near
equilibrium structure beam with strong space-charge due to Debye screening
- see: S.M. Lund, lectures on Transverse Equilibrium Distributions
*Simulations support that uniform density model is a good approximation for
stable non-equilibrium beams when space-charge is high
- Variety of initial distributions launched and, where stable, rapidly relax
to a fairly uniform charge density core
- Low order core oscillations may persist with little problem evident
- See S.M. Lund lectures on Transverse Kinetic Stability
* Assumption of a fixed form of distribution essentially closes the infinite
hierarchy of moments that are needed to describe a general beam distribution

- Need only describe shape/edge and center for uniform density beam to fully
specify the distribution!
- Analogous to closures of fluid theories using assumed equations of state etc.
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Self-Field Calculation

Temporarily, we will consider an arbitrary beam charge distribution within an
arbitrary aperture to formulate the problem.

Electrostatic field of a line charge in free-space

£ — )\0 (XJ_—}E)
L E
2meg |x1 — X|

A0

line charge

coordinate of charge

Resolve the field of the beam into direct (free space) and image terms:

) . - -
B —— ¢ _ Ef +E and superimpose free-space
0% solutions for direct and image contributions
Direct Field
1 . opx)(xL —x1 h

Ej (x,) = /d2:11 (xL)( S ) p(x) = bearr.lc arge

2eq x| — X | density
Image Field - 3 | beam image charge
Ej_ (x) = 1 / 423, P (Xl)(xl~_;l) pl(x1) = density induced

2me XL — Xy | on aperture

SM Lund, USPAS, 2020
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// Aside: 2D Field of Line-Charges in Free-Space

V., - _ P p(r) = A—=

€0

Line charge at origin, apply Gauss' Law to obtain the field as a function of the
radial coordinate r :

A
E, =
2TeQT

For a line charge at X | = X | , shift coordinates and employ vector notation:

A XJ_—)EJ_
E, = ~L
2meg |x1 — X |

Use this and linear superposition for the field due to direct and image charges
* Metallic aperture replaced by collection of images external to the aperture in
free-space to calculate consistent fields interior to the aperture

1
E, = d? X
= 2T€Q / L p(XL)

X| —X|

x1 —x0[?

/]
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Comment on Image Fields

Actual charges on the conducting aperture are induced on a thin (surface charge
density) layer on the inner aperture surface. In the method of images, these are
replaced by a distribution of charges outside the aperture in vacuum that meet the
conducting aperture boundary conditions

* Field within aperture can be calculated using the images in vacuum

* Induced charges on the inner aperture often called “image charges”

* Magnitude of induced charge on aperture is equal to beam charge and the

total charge of the images

Physical * No pipe Images

* Schematic only (really continuous image dist)
YA -
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Direct Field:
The direct field solution for a uniform density beam in free-space was

calculated for the KV equilibrium distribution
- see: S.M. Lund, lectures on Transverse Equilibrium Distributions, S3

Uniform density in beam:
A

7T7“x7“y

— const

p:

d A - X
k= Expressions are valid only within
meo (e + Ty)ra . :
the elliptical density beam -- where
i_ A y—-Y . o
E, = they will be applied in taking averages
Tey (T + Ty)Ty
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Image Field:

Image structure depends on the aperture. Assume a round pipe

(most common case) for simplicity.

y A

AT

A1 = —Ao image charge
r | |
X7 = 7Xo 1image location
%0
Will be derived in the

the problem sets.

Superimpose all images of beam to obtain the image contribution in aperture:

Ef(x1) =—

1

p(XL)(xL — Ry /[%0]?)

[ —rpx /1%L |22

* Diflicult to calculate even for Pcorresponding to a uniform density beam

SM Lund, USPAS, 2020
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Examine limits of the image field to build intuition on the range of properties:
1) Line charge along x-axis:
No loss in generality:
Y Can always choose coordinates to
make charge lie on axis )\
E — .
A\ 2meg |x1 — XY |?

S X ) A= — )\

Tp
p(x1) = N(x. — XX)

X — X

X

SIS

X' =

Plug this density in the image charge expression for a round-pipe aperture:
* Need only evaluate at x| = XX since beam is at that location

A
2meg(r5 /X — X

A

)X

Ej_(XL = X}A() =

* Generates nonlinear field at position of direct charge
* Field creates attractive force between direct and image charge
- Therefore image charge should be expected to “drag” centroid further off
- Amplitude of centroid oscillations expected to increase if not corrected (steering)
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2) Centered, uniform density elliptical beam:

A :1:2/7“323+y2/7“5<1

T Ty )

X
. pExL) 0, x?/ry +y?/ri > 1

Expand using complex coordinates starting from the general image expression:
* Image field is in vacuum aperture so complex methods help calculation

* Follow procedures in Transverse Particle Dynamics, Sec 3D: Multipole Models
oo

| . . 1 (z —iy)"
i i 1t n—1 _ d? W =v)
b =k, ZE?J _ Z Enz En 2meg /pipe TL p(xL) ran
y Ey n/2
, An! ry—r
Z=r Ty 1 =v-1 T 2me027(n/2 + 1)(n/2)! ( vl )
The linear (n = 2) components of this expansion give:
. N 12 —r? . N 12 —r?
B, = ——, E, =— —Y
8meg T 8meg r

* Rapidly vanish (higher order n terms more rapidly) as beam becomes more round
* Case will be analyzed further in the problem sets
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3) Uniform density elliptical beam with a small displacement along the x-axis:
Y =0 X /rp <1

Expand using complex coordinates starting from the general image expression:
* Complex coordinates help simplify very messy calculation
E.P. Lee, E. Close, and L. Smith, Nuclear Instruments and Methods, 1126 (1987)
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Leading order terms expanded in | X |/ T, without assuming small ellipticity obtain:

: A
E,=——
2meqr?
- A
El=__2
Y 2meqr?

[f-(w—X)+g-X]+@<—)3

3
ol

X

T'p

Where f and g are focusing and bending coefficients that can be calculated in terms of
X, Tg, Ty (which all may vary in s) as:

FocusingTerm:
2
2 2 2 2 2 2 2
r.—rT X 3 ([r,—T 3 ([r,—T
"p "p Tp "p
BendingTerm:
-
7“33—745 X2 3 7“3;—7“5 1 7“92@_7“@2/
g=lt—t a1+t —Q= )3\ 2
"p "p "p "p

* Expressions become even more complicated with simultaneous x- and y-
displacements and more complicated aperture geometries !

* f quickly become weaker as the beam becomes more round and/or for a larger pipe

* Similar comments apply to g other than it has a term that remains for a round beam

SM Lund, USPAS, 2020
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Comments on images:
*Sign is generally such that it will tend to increase beam centroid displacements
- Also (usually) weak linear focusing corrections for an elliptical beam
*Can be very difficult to calculate explicitly
- Even for simple case of circular pipe
- Special cases of simple geometry and case formulas help clarify scaling
- Generally suppress by making the beam small relative to characteristic

aperture dimensions and keeping the beam steered near-axis
- Simulations typically applied
* Depend strongly on the aperture geometry
- Generally varies as a function of s in the machine aperture due to changes in
accelerator lattice elements and/or as beam symmetries evolve

Round Pipe Elliptical Pipe Hyperbolic Sections
7\ (7 \ \\yA _//

/ N K \ Tpy Tp A
> > >
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Coupled centroid and envelope equations of motion for a

uniform density elliptical beam
Consistent with the assumed structure of the distribution

(uniform density elliptical beam), denote: 74
Beam Centroid:
y A A
X =(2)1 X'=(2")1 ry
Y = <y>J— Y/ — <y,>J_ Y Voo R < > 5
T T
Coordinates with respect to centroid: ‘
r=x—X 7= = X' .
gzy_y g/:y/_yl - >
x
Envelope Edge Radii:

re =2/(@) L v =2 /(@)

_ = 9\ 1
ry =2/ =2 /Y
With the assumed uniform elliptical beam, all moments can be calculated
interms of: X, Y Tz, Ty

* Such truncations follow whenever the form of the distribution is “frozen”
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/[Aside: Edge Radius Measures and Dimension

The coeflicient of rms edge measures of “radii” of a uniform density beam
depends on dimension:

1D: Uniform Sheet Beam:
* For accelerator equivalent model details see:
Lund, Friedman, Bazouin PRSTAB 14, 054201 (2011)

Twideh = V3(E%)1/?
2D: Uniform Elliptical Cross-Section:

* See lectures on Transverse Equilibrium Distributions and homework problems
_ o/a2\1/2
ry = 2(2%)

9\ 1/2
Ty = 2(?/2>L/

3D: Uniformly Filled Ellipsoid:
* See JJ Barnard Lectures on a mismatched ellipsoidal bunch and

and Barnard and Lund, PAC 9VO18 (1997) r =5 (72)! /2

Axisymmetric Transverse

r, = 5/2(&32 _|_g']2>1/2 3D ,’,,y — \/g<g2>1/2
r, = \/5@;2)1/2 r, = \/g<52>1/2
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General case uniform density beam:
* For dimension d, the coordinate average along the j = x, y, z

T’j = \/2 —|—d<ff?>J_

/]
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Derive centroid equations: First use the self-field resolution for a uniform density
beam, then the equations of motion for a particle within the beam are:

/ AN
2 -
o (765) '+ kox — Q (z—X) = 3q ' 2E;
(’Vbﬁb) (ng + ’r‘y)rzc mf)/b Bb C
7 (/Vbﬁb)/ / 20Q) N q i
y'+ Y+ Ryy — (y-Y) = E
(765) T (e )y - mp Byt Y
77777777777777 Direct Terms Image Terms
Perveance: _ gA (not . cant if b lerates)
— not necessarily constant 1 cam acceleratcs
2megmy; 57 ¢ Y

average equations using: <CE/>J_ = <$>l = X' etc., to obtain:

Centroid Equations: (see derivation steps next slide) Note: the electric image
(Yo0p)’ COe - field will cancel the
X7 DX iz X = @ S(EL), coefficient 27€0/A
(V65b) B | i ~
(V605p)’ 2 ] E! = ! /d25{l pr(XL) (XL — X1 )
Y 4+ bPb V' 4+ kY = 0 TEQ <E@ >J_ 2Teq x| — % |2
(W’bﬁb) Y A Y _

» (E') | will generally dependon: X, Y and Tz, Ty
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//Aside: Steps in deriving the x-centroid equation
Start with equation of motion:

" (/Vbﬁb)/ / 2Q) q
zd — - X E
v (765) vt (re +1y)T2 (@ )= my, 5b c?
Average pulling through terms that depend on on s:
7, (Vbﬁb)/ / 2Q) q ;
- — — X = E?
<CC >J— + < ('Vbﬁb) L >J— + <’% x>l <(Tx e Ty)ra: (CIZ‘ )>—I— <m7bﬁbc2 >J—
7 (/Vbﬁb), . 2Q .
@)L (755) )L+ Ral@) L (1e 4 747 @ =X
gA 2T€Q :
— E’L
Use: 27T€0m7b By c? [ ] (Ee)s
X = ()1 X' = ('), _ gA
Q= 2
z—X), =X—-X=0 2meomy;, By
7, (/Vbﬁb)/ / [27T€0 i :|
— X X 2 X = b
T L Q| ——{Eas
/1]
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To derive equations of motion for the envelope radii, first subtract the centroid

equations from the particle equations of motion ( £ = x — X ) to obtain:

I (Vbﬁb) 2@5& B q - 7;

) (’Ybﬁb) :E * me B (Taz -+ ’]“y)rw o my; Bb 2 [E:U <E:U>J_]

e OO e, R |
R i = g B

Differentiate the equation for the envelope radius twice (y-equations analogous):

T 4(xx’
Tm:2<5j2>1/2 : T;Z << >1>/2 — <T >J_

P — 2<53i'//>L 4 2<3~3,2>J- - 2<3~33~3/>i
x ~onN1/2 ~onN1/2 ~o\3/2
@)\ @ @Y

@), 16[@%). @)1 - @3]

=4

2(72) /%] 2(z2) /%]

(2F"), 16 [(#%) L (@F?) 1 — (37)] ]

Ty r3
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Define (motivated the KV equilibrium results in the lectures on Transverse Equilibrium
Distributions) a statistical rms edge emittance:

Eo = Aegrms = 4 [(#2), (#2), — (33)2]"°

Then we have:

i 4@53’% 16[(z%) L (Z"%) 1L — (z2)7]
v T rs
<5351§/,>J_ 52
— 4 x
T + rs

and employ the equations of motion to eliminate Z” in <:E53”> 1 with the following steps

Using the equation of motion:

74 (Vbﬁb)/j/ NI 2QT _ q
(Tas + ry)rx m725502

(75) e = (Ba)u

Multiply the equation by Z, average, and pull s-varying coefficients and constants
through the average terms to obtain
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~ ~ /1 (/Vbﬂb)/ .y -9 2Q<3~72>L
(xx") | + ) (ZT") 1 + K (T*) ) — T
_ q S i\ e o
But: - moyg B (TEp) L — (#{Ep)1) 1]
0
(@(E3)1) 1 :/éL<E;>L =0 and = 2<@j/>L/<532>1L/2
Giving: — (z2')] = Tw47“:/1:

A (v ) i~ 2Q<i2> — )
< //> —|— (,Ybbﬁbb) < > —I_ /iaj< >J_ T (Ta:‘|‘7ﬂy>j::c — m7b6b62 <£UE >

~ ~1/ (v68p)" T2, e Qry/2 _ i
< > T (76By) 4 +I{$ 4 TotTy m%BbC2 <ZBE >
: : : : AN
Using this moment in the equation for <£U£C > L in
~ = 2
= 48820 4+ Zz
x T r3

then gives the envelope equation with the image charge couplings as:
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Envelope Equations:

! 20) g2 8Q r7eg .
r’’ + (/%) r 4 KTy — - £ = TE’ }
: ’Ybﬁb) : Te T Ty T;% Ty L A < x>J_
2
v (wB) 20 y 8Q [Tme€y , }
_ _ Y _ E
"y (73) To T FyTy re +1y Ty Ty LA GEy )L

» (ZE") | will generally depend on: X, Y and 7'z, Ty
Comments on Centroid/Envelope equations:

* Centroid and envelope equations are coupled and must be solved
simultaneously when image terms on the RHS cannot be neglected

*Image terms contain nonlinear terms that can be difficult to evaluate explicitly

- Aperture geometry changes image correction

*The formulation is not self-consistent because a frozen form (uniform density)

charge profile is assumed

- Uniform density choice motivated by KV results and Debye screening

see: S.M. Lund, lectures on Transverse Equilibrium Distributions
- The assumed distribution form not evolving represents a fluid model closure
- Typically find with simulations that uniform density frozen form distribution

models can provide reasonably accurate approximate models for centroid and
envelope evolution




Comments on Centroid/Envelope equations (Continued):
*When accelerating, constant normalized rms emittances are generally assumed
- For strong space charge emittance terms small and limited emittance
evolution does not strongly influence evolution outside of final focus
- See: S.M. Lund, lectures on Transverse Particle Dynamics and
Transverse Kinetic Theory to motivate when this works well

Bby Vb, A s-variation set by acceleration schedule

= Ve = const

—— used to calculate €, &y
Eny = YbBpEy = const

g varies (reduces) due to acceleration induced
27Tm€()’}/b 3 c? changes in Vs, b
B 2 . _
r!/ e T ((’,bebﬁb)) ra: T KgTg — rmf’r‘y o i_g T SQ [WT<J;EZ> }
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S3: Centroid Equations of Motion
Single Particle Limit: Oscillation and Stability Properties

Neglect image charge terms, then the centroid equation of motion becomes:

/
X" & (’Ybﬁb) X' + kX =0
(7650)
/
Y//_I_ (,Ybﬂb) Y/_|_K/ Y :O
(768) y

* Usual Hill's equation with acceleration term

* Single particle form. Apply results from S.M. Lund lectures on Transverse Particle
Dynamics: phase amplitude methods, Courant-Snyder invariants, and stability
bounds, ...

Assume that applied lattice focusing is tuned for constant phase advances with
normalized coordinates (effective Kz, Ky ) and/or that acceleration is weak and
can be neglected. Then single particle stability results give immediately:

1

—|Tr M (s; + Lpls;)| <1 , .

2| F Mo (si+ Lylsi)l . oo < 180° centroid stability
%|TI’ M, (s; + Lpls;)| <1 ooy < 180° 1** stability condition
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//l Example: FOD(3) channel centroid evolution for a coasting beam

- lattice/beam
Mid-drift i | parameters:
launch: ;S (l) Y0y = const
X(0) =0 mm % -1 ooz = 80°
X'(0) =1mrad = L,=05m
s
n = 0.5

o 2 4 6 8 10 12 14 16
s/L,, Lattice Periods
+ Centroid exhibits expected characteristic stable betatron oscillations
- Stable so oscillation amplitude does not grow
- Courant-Snyder invariant (i.e, initial centroid phase-space area set by
initial conditions) and betatron function can be used to bound oscillation
* Motion in y-plane analogous ///

Designing a lattice for single particle stability by limiting undepressed

phases advances to less that 180 degrees per period means that the centroid
will be stable

* Situation could be modified in extreme cases due to image couplings
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Effect of Driving Errors

The reference orbit is ideally tuned for zero centroid excursions. But there will
always be driving errors that can cause the centroid oscillations to accumulate
with beam propagation distance:

Y86)" <
X// —|_ ( X _|_ —n ﬁ:n ;Un
(768p) Z Go' " Z
Z Kin (S fin(S) nominal gradient function, nth quadrupole
G = nth quadrupole gradient error (unity for no error; s-varying)
0
Azn = nth quadrupole transverse displacement error (s-varying)
/// Example: FODO channel centr01d Wlth quadrupole displacement errors
15
G _
Go g A
App = [-05,05/ mm = | a NoEVEL R b L L (s ] solid - with errors
(uniform dist) O VAV RV G b WL dashed — o errors
2 1L
2 -5
same lattice and S
-10
initial condition
as previous 2y 10 20 20 40 50
s/ L,, Lattice Periods ///
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Errors will result in a characteristic random walk increase in oscillation amplitude
due to the (generally random) driving terms
* Can also be systematic errors with different (not random walk) characteristics
depending on the nature of the errors

Control by:
* Synthesize small applied dipole fields to regularly steer the centroid back on-axis
to the reference trajectory: X=0=Y, X'=0=Y"'
* Fabricate and align focusing elements with higher precision
* Employ a sufficiently large aperture to contain the oscillations and limit
detrimental nonlinear image charge effects (analysis to come)

Economics dictates the optimal strategy
- Usually sufficient control achieved by a combination of methods
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Effects of Image Charges

Model the beam as a displaced line-charge in a circular aperture. Then using the
previously derived image charge field, the equations of motion reduce to:

! X examine oscillation
X"+ «Ybﬁb) X'+ ko X = QQ 2 along x-axis
(76050) r2 — X g
X
ToxE X
p p p
linear correction / \ Nonlinear correction (smaller)

Example: FODO channel centroid with image charge corrections

[0

rp, = 30 mm

Q=2x10"*

—

solid — with images

=

dashed — no images

|
—

same lattice

Centroid X [mm]|

as previous

0 1‘O 2lO 3lO 4‘O 50
s/ L,, Lattice Periods
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Main effect of images is typically an accumulated phase error of the centroid orbit

* This will complicate extrapolations of errors over many lattice periods

Control by:
* Keeping centroid displacements X, Y small by correcting
* Make aperture (pipe radius) larger

Comments:
*Images contributions to centroid excursions typically less problematic than
misalignment errors in focusing elements
*More detailed analysis show that the coupling of the envelope radii 7z, 7y to the
centroid evolution in X, Y is often weak
* Fringe fields are more important for accurate calculation of centroid orbits since
orbits are not part of a matched lattice
- Single orbit vs a bundle of orbits, so more sensitive to the timing of
focusing impulses imparted by the lattice
* Over long path lengths many nonlinear terms can also influence oscillation phase
* Lattice errors are not typically known a priori so one must often analyze characteristic
error distributions to see if centroids measured are consistent with expectations
- Often model a uniform distribution of errors or Gaussian with cutoff tails since
quality checks should render the tails of the Gaussian inconceivable to realize
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S4: Envelope Equations of Motion

Overview: Reduce equations of motion for 7, 7
* Find that couplings to centroid coordinates X Y are weak
- Centroid ideally zero in a well tuned system
*Envelope eqns are most important in designing transverse focusing systems
- Expresses average radial force balance (see following discussion)
- Can be difficult to analyze analytically for scaling properties

- “Systems” or design scoping codes often written using envelope equations,
stability criteria, and practical engineering constraints

* Instabilities of the envelope equations in periodic focusing lattices must be
avoided in machine operation
- Instabilities are strong and real: not washed out with realistic distributions

without frozen form
- Represent lowest order “KV” modes of a full kinetic theory

* Previous derivation of envelope equations relied on Courant-Snyder
invariants in linear applied and self-fields. Analysis shows that the same

force balances result for a uniform elliptical beam with no image couplings.
- Debye screening arguments suggest assumed uniform density model taken
should be a good approximation for intense space-charge
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KV/rms Envelope Equations: Properties of Terms

The envelope equation reflects low-order force balances:

R 2Q 2,
Te Tt Rala =N
(/Ybﬁb) Tz + Ty Tz
2
4 (%0)" 4 2 &% _
Ty T RyTy 3
o (’Vbﬁb) 1 T + Ty ‘ Ty
Applied Applied Space-Charg Thermal
Streaming Acceleration  Focusing Defocusing Defocusing
Lattice Lattice Perveance Emittance

Terms: Inertial

The “acceleration schedule” specifies both vp5, and A
then the equations are integrated with:

Yo PpEx = const

Yo BpEy = const

normalized emittance conservation
(set by initial value)

g

- 2meomyp BEc?

specified perveance
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Reminder: It was shown for a coasting beam that the envelope equations
remain valid for elliptic charge densities suggesting more general validity
[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]

For any beam with elliptic symmetry charge density in each transverse slice:

72 y2 Based on:
p=p + 2 J¢ ATy

) _
"% Y (= Ox )L dmeg Ty + 1y

the KV envelope equations

See
7“"(8) + kg ()72 (8) — 2Q) . 5:% (s) —0 + J.J. Barnard, Intro. Lectures
v r x(S) +r y(S) T%(S) ¥+ Transverse Equilibrium
20) c2 (s) Distributions, S3 App. A
() + Ky (8)ry(s) — -2 =0

remain valid when (averages taken with the full distribution):

gA _ 2 _
Q = dmeomAl B2 = const A= q/d x| p = const
re = 2(a%))? e = Al(2%) L (@)L — (22)7]"/?
ry =202 ey = 4[(*) L)L — (wy)3)?

* Evolution changes often small in €z, €y
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Properties of Envelope Equation Terms:

) 7 7
Inertial: "z> Ty

(wB)" , (b))

Applied Focusing: KzTz, KyTy  and Acceleration: (v,4,) s (/3 ) "y
* Analogous to single-particle orbit terms in Transverse Particle Dynamics
* Contributions to beam envelope essentially the same as in single particle case

* Have strong s dependence, can be both focusing and defocusing
- Act only in focusing elements and acceleration gaps

- Net tendency to damp oscillations with energy gain 1
Perveance: 2Q Scale ~ :
e + 1 Env. Radius

* Acts contmuousfy in s, always defocusing
* Becomes stronger (relatively to other terms) when the beam expands in cross-
sectional area

2
£ 1
Emittance: — Scale ~ -
T (Env. Radius)3

* Acts continuously in s, always defocusing

* Becomes stronger (relatively to other terms) when the beam becomes small in
cross-sectional area

*Scaling makes clear why it is necessary to inhibit emittance growth for

applications where small spots are desired on target
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As the beam expands, perveance term will eventually dominate emittance term:
[see: Lund and Bukh, PRSTAB 7, 024801 (2004)]

Consider a free expansion (ke =Ky =0) fora coasting beam with v,3; = const

Initial conditions: Cases:
_ 2 . . — 0
rz(8i) = 74(5;) Q@ e Space-Charge Dominated: €z =
N 3 (.
ri(si) = 1y (5:) =0 ra(si) 27"33(31) Emittance ~ Dominated: @ =0
_ oy _ —3
Q=—=2-=10
rz(si)
3.0
[ r (s)Ir. (s See next page: solution is
- 251 v LA analytical in bounding
O ; Space- Charge limits shown
A _ Dominated
c 2.0} ]
a¥ - |  Parameters are chosen such
s R (sy) | Diremeten i cho
1.5¢ ]  that initial defocusing
Emittance |  forces in two limits are
1.0} Dominated |  equal to compare case

00 0.1 02 03 04 05
Axial Coordinate, s—s;, (m)
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For an emittance dominated beam in free-space, the envelope equation becomes:

Q g2 >
/! s
Ty T+ Ty rx,y Tj

The envelope Hamiltonian gives:

L ) 5?

—r." + —% = const
J 2

2 215

which can be integrated from the initial envelope at s = s; to show that:

Emittance Dominated Free-Expansion (@ = 0)

2500 gy |14 O
rj(si) z £ rj(si)

rj(s) =rj(s)y |1+
\

)=,y

Conversely, for a space-charge dominated beam in free-space, the
envelope equation becomes:

Q ez, r’-’—&:() rl—Q:O
——> 2 = o4, ry
Ty + Ty T2y , Z— _ 1
] =,y r_ — ri:§('rx:|:ry)
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The equations of motion

rﬁ’r—%:()
/:0

can be integrated from the initial envelope at s = s; to show that:
* T— equation solution trivial (free streaming) |

* T+ equation solution exploits Hamiltonian §Tf — @ Inry = const
Space-Charge Dominated Free-Expansion (€z = €y = 0)
12 / ’2 2
_ , (s ) 1 r’ (si) 2Q E¢o (s — s)
ry(s) =ry(s;)exp ( 20 erfi {erﬁ 50 + —e Q )
r-{s) =r-(si) +r={si)(s = 5:) Imaginary Error Function
1 _erf(iz) 2 [7 5
ry 5(%j +7,) erfi(z) = - dt exp(t)
1=V —1

The free-space expansion solutions for emittance and space-charge dominated

beams will be explored more in the problems
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S5: Matched Envelope Solution: Lund and Bukh, PRSTAB 7, 024801 (2004)

Neglect acceleration (7,0, = const) or use transformed variables:

7 — 2 B 8‘% N
ro(8) + K (s)re(s) rz(s) +ry,(s)  r(s) ’
7 — 2 B 8?3 N
Ty (8) =+ /{y(s)Ty(S) 7"3;(5) + Ty(s) 7“2 (S) :

ra(s + L) = ra(s) r2(s) > 0
ry(s+Lp) = 1y(s) "u(s) > 0

Matching involves finding specific initial conditions for the envelope to
have the periodicity of the lattice:

Find Values of: Such That: (periodic)
/ / /
re(Si) TS rz(8i + Lp) = 72(8; re(8i + Lp) = 1,.(8;
(s:) / (i) , ( p) (s:) / ( p) / (si)
ry(si) Ty (84) ry(si + Lp) = 1y(5;) ry(8i + Lp) = 1,(8:)

* Typically constructed with numerical root finding from estimated/guessed values

- Can be surprisingly difficult for complicated lattices (high 0¢ ) with strong space-charge
* [terative technique developed to numerically calculate without root finding;

Lund, Chilton and Lee, PRSTAB 9, 064201 (2006)

- Method exploits Courant-Snyder invariants of depressed orbits within the beam
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Typical Matched vs Mismatched solution for FODO channel:

Matched Mismatched
40 Matched Beam Envelope 40 Envelope Solution: Matched and Mismatched Beam
T T T T | T T T T | T T T T T ! T _l'\\! | T ! T T | I T T T
- r il _ Ty ! i =— MisMatched Beam (Dashed) r y

y Ty o

X.Y Envelopes (mm)
X.,Y Envelopes (mm)

i :: _-; i g .’: : / 1 I
W o ! Wi
‘ , N 1\.‘ f A .'I 3 ". :; “\ - ‘
L N v L
L
- B Matched Beam (Solid) ] Tl

10+ - 10+ —

|
0 5 10 15 0 5 10 15
Axial Coordinate, s (m) Axial Coordinate, s (m)

The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport
* Matching uses optics most efficiently to maintain radial beam confinement
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The matched solution to the KV envelope equations reflects the symmetry of the
focusing lattice and must, in general, be calculated numerically

Envelope equation very nonlinear

re(s+ Ly) = 14(5)
ry(s+ Lp) = 1y(s)

Egx = Ey

Solenoidal Focusing
(Q = 6.6986 x 10™%)

Edge Radu r; and r, (mm)

Axial Coordinate /L,

SM Lund, USPAS, 2020

Parameters
L,=05m, o9=80° n=0.5

£, = 50 mm-mrad
o/og = 0.2

Perveance Q iterated to
obtain matched solution
with this tune depression

FODOQO Quadrupole Focusing
(Q = 6.5614 x 10™%)

/ .,
S §
p N "
T N ,,-"/ff
¥ \\R_%_ -
Mr = —Hy

2 0.4 0.o 0.8

Axial Coordinabe s/L,
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Symmetries of a matched beam are interpreted in terms of a local rms

equivalent KV beam and moments/projections of the KV distribution
[see: S.M. Lund, lectures on Transverse Equilibrium Distributions]

Midicencd Cedlll LOYCLOope dnd rocusing runciion

T —
E 2}
= 1O E
= [
e 8f
B 6L & ]
L : | x E
E ! :_ L L L 1 L 1 s L 1 || T T T + T L L _:
H o o 02 | 0.4 l 0.6 | 0.8 L
PI'Oj ection | | Axial Coordinate!(Lattice Periods) ! |
! : : : :
b
X-y N
area: 75Ty 7 const
| |
X
Ex
|
X-X
area: T, = const

(CS Invariant) |

!

y-y

area: TE, = const
(CS Invariant) !
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Iterative Numerical Matching Code implemented in Mathematica provided
Lund, Chilton, and Lee, PRSTAB 9, 064201 (2006)
IM (Iterated Matching) Method

* IM Method uses fail-safe numerical iteration technique without root finding to

construct matched envelope solutions in periodic focusing lattices
- Based on projections of Courant-Snyder invariants of depressed orbits in beam
- Applies to arbitrarily complicated lattices (with user input focusing functions)
- Works even where matched envelope is unstable

* Can find matched solutions under a variety of parameterizations:

/ /
Case -1 '%zca"{yaLp (00x700y> Qa Exy €y T Tuiy Tyiy Tais Tyi
Case 0: (standard) Ky, Ky, Ly (00z,00y) Q, €z, €y
Case 1: Kas Ky, Ly (00g,004) @, 0z, 0y  (find consit: e,, &)
Case 2: ey Ky, Lp (0oz,00y) €x = €y, Ox = Oy (find consit: Q)

Note: Case O is only applied to integrate from an initial condition
and does NOT generate a matched beam.

* Optional packages include additional information:
- Characteristic undepressed and depressed particle orbits within beam
- Matched envelope stability properties (covered later in these lectures)
* Program employed to make many example figures in this course
- Many highly nontrival to make without this code !
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To Obtain code:
* Package files placed in directory “env_match_code” with this lecture note set
* Package maintained/updated presently using git software maintenance tools.
Can obtain full distribution on unix-like system from a terminal window using:

% git clone https://github.com/smlund/iterative_match

To Run code: see readme.txt file with source code for more details

1) Place “im_*.m” program files in directory and set parameters (text editor) in “im_inputs.m”
2) Open Mathematica Notebook in directory
3) Run in notebook by typing: << im_solver.m [shift-return]
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Example Run:

sinusoidally varying quadrupole lattice with x,

p— —[{,‘y

* See “examples/user” subdirectory in source code distribution (other examples also)

Output: 1*

Fle Edit Insert Format Cell Graphics

<< im_solwver.m

3-5-2015 by lund on localhost
Code Provided by Steve Lund

Transport Lattice
Lattice Type

x-plane, og, [deg/pericd]
v-plane, og, [deg/pericd]
Lattice Period, Ly [m]
ocoupancy,
Syncopation Factor, o (o=

Max Focusing Strength, Max[m,, x,].

Evaluation

Undepressed Phase Adwvances [deg/period]

1/2 = FODD)

[1/m?]

Matched Envelope Solution -- IM Method

Michigan State University (MSU), Facility for Rare Isotope Beams (FRIE)

UserInput

g80.
20.
0.5
HA

MR
45,852

Lattice Focusing Functions (black =x, red = y)

—ont

40t

0.0 01 0.2 0.3

s(m)

Palettes

Window

1A
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Output: 2"

File Edit Insert Format Cell Graphics

Ewvaluation

Palettes

Undepressed (Lattice) Betatron Function

Undepressed Betatron Functions (black = x, red = y)

Bx, By [m]

0.0 01 0.2 0.3
s (mj

| x-Horizontal

v-Vertical

Max B ], Max|Gy] [m] 0. 77721
s-locations of Maxs [mm] 125.
Min([B;], Min[g ] [m] 0.19226
s-locations of Mins [mm] 375.
Beam Properties

Dimensionless Ferveance, Q
RME Edge Emittances [mm-mrad]:

=

Ey

Depressed Phase Advances [deg/period]
x-plane, o, [deg/pericd]
¥-plane, o, [deg/period]

Tune Depressions:
Ty OO

Ty Ty

0.77721
375.
0.19226
125.

1. %104

7.6221

7.6221

16.

16.

0.2

0.2

Window

J

g

*>

2]

(I*]

75%

-
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Output: 3"

File Edit Insert Format Cell Graphics Ewaluation

Matched Solution

Matched Envelope Functions (black = x, red = y)

Palettes

[mm]

r
Iy My

s [m]
Matched Envelope Angles (black =x, red = y)

155 ' ' '

' [mrad]

Iy o Iy

| ®-Horizontal

=
5]

v-vertical

Window

1A
|

S

S[es
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Output: 4"

File Edit Insert Format Cell Graphics Ewaluation Palettes Window »
¥-Horizontal v-vertical 3 B
Radii, r, =2 (x"}13, rp=2 (v¥)17F
Bvg (Lattice Period), ry, ry [mm] 3.947 3.947
Max, Max[ry], Max[ry]| [mm] 5.1485 5.1485
s-locations of Maxs [mm] 125. 375.
Min, Min[ry], Min[r,] [mm] 2.8298 2.8298
s-locations of Mins [mm] 375. 125.
Engles, rx', rY' H
Max, Max[r,'], Max|[r,' | [mrad] 14.685 14.685
s-locations of Maxs [mm] 11.317 261,32
Min, Min[r,'], Min[r,'] [mrad] -14.685 -14.685
s-locations of Mins [mm] 238.66 488.67
Matching Cconditions:
Radii, 1.(0]. r,[0] [mm] 3.59049 3.59049
rngles, r,'[0], ry'[0] [mrad] 14.533 -14.533 i
Average Radius Measures: K
o TETy  [mm] 3.8612
(Fx +Ty) /2 [mm] 3.947 1]
Matched Solution -- Numerical Parameters
Farameterization Case 1 3
Specified Fractional Tolerance|l. =10 g
Achieved Fracticnal Tolerance |Z.6884=10°7
Iterations Nesded T
CPU Time for soclution [sec] 15.9703 ]
Characteristic x- and y-Plane Orbits
Single Particle CS5 Invariants (includes space-charge): 3
£y [mm-mrad] 2.744
gy [mm-mrad] 2.744
Axial Coordinates:
Initial s; [m] 0.
Final s¢ [m] 11.25

5w

75%

+ More on particle orbits and
matched envelope stability




S6: Envelope Perturbations: Lund and Bukh, PRSTAB 7, 024801 (2004)

In the envelope equations take:

Envelope Perturbations: Driving Perturbations:
ro(8) = Tam(s) + 0r4(s) Kz (8) = iz (5) + Ok (s) o
ry(s) = Tym(s) + dry(s) Foy(8) = Ky(s) + 0ky(s)
Q — Q T 5Q(S) Perveance
Matched  Mismatch
, Ex —> Ex + 0€2(8) _
Envelope Perturbations Emittance
gy — €y + 0gy(5)

Perturbations in envelope radii are about a matched solution:

Fem (S + Lp) = rem(s)  Tam(s) >0

Fym(S+ Lp) =7rym(s)  Tym(s) >0

Perturbations in envelope radii are small relative to matched solution and driving

terms are consistently ordered:

Taem/(8) > [0r5(5)] Amplitudes defined in terms of

Tym (5) > |5’l“y (s)] producing small envelope perturbations

* Driving perturbations and distribution errors generate/pump envelope perturbations

- Arise from many sources: focusing errors, lost particles, emittance growth, .....
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The matched solution satisfies:
* Add subscript m to denote matched envelope solution and distinguish from

other evolutions

For matched beam envelope
Ty — Tym with periodicity of lattice
Assume a coasting beam with ~v;3;, = const or that emittance is small and the
lattice is retuned to compensate for acceleration to maintain periodic Kz, Ry
20 g2
ram(8) + Tym(s)

T (8) + Kz (8)Tom(s) —

1"
Tym

2Q)

(s) + ry(s)rym(s) —

Tem (S + Lp) = Tem/(S)

Tem(S) + Tym/(S)

3
Tym

Tem(8) > 0

(s)

rym(s) >0

rym (8 + Lp) = Tym(5)
Matching is usually cast in terms of finding 4 “initial” envelope phase-space
values where the envelope solution satisfies the periodicity constraint for specified

focusing, perveance, and emittances:
/
Tivm(si) Tar;m(si)

Tym(si) T;m(si)
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Linearized Perturbed Envelope Equations: (steps on next slide)
* Neglect all terms of order 6 and higher: (57“33)2, 0T 0Ty, 0QQOTy, -+ -

2 3e2
51! + kb1 + Q (6ry )+ fw 51
(Tem + Tym) Tz
2 2,
— Ok + 5Q + =2 5e,
Tzm + ?“ym Txm
20) 3e2
or” ) or, + 0 — Y5
Ty, T Ky0Ty + (Ta;m+"“ym)2( ry +0ry) + e Ty
2 2e
— —r, 6 0Q + =26
TymOky + o T Q+ —= Tgm Ey

Homogeneous Equations:
* Linearized envelope equations with driving terms set to zero

20) 32

Or! + K0T, + (S (0ry + ory) + - ory =0
2 3¢,

0Ty + Foyy 0Ty + T +Q7" E (0ry + 07y) + T4—y5ry =0
rm ym ym
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Derivation steps for terms in the linearized envelope equation:

Inertial: r;f — Tgm + 57“;{7%
Focusing: RagTx %(/fa; + 5Hw)(rxm + 5Tx)

~ KoTorm + K0T pm + OKpTrm —+ @(52)
20 \ 20) + 200)

Ty + Ty /rxm + Tym + 0Ty + 07y,

N 20) [1 ~ Org + 0y ]

Perveance:

Tem T T'ym Tem T T'ym
20
+ ¢ + O(6%)
T'em + T'ym

g7 (ex +0ey)°
rs ' (Pem + 0rs)3

~ ix {1 — 32 ] + 63 =
T:Um Tiljm

Emittance:

O(57)

T:cm
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Collect all terms and neglect higher order putting driving perturbations on RHS:

o () + 5 (8)7em () — ) T

20) 3e?
!/
0T, + K0Ty + . (0rg + ory) + éérm
2 2E 1
S 5Q + 2 5e,
TFzm ’I“ym TZCTI’L
Use the matched beam constraint:
7 . 2Q _ £z _
T (8) + K (8)7am(8) = sy — o =0
Giving:
20) 3e?
!/ X
O, + K0Ty + (o & 1 )2 (0ry + 07y) + %5%
2 2
S 5Q + =25z,
Tem T Tym Tem

+ analogous equation in y-plane
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Martix Form of the Linearized Perturbed Envelope Equations:

d
— 0 R+ K- 0R =0P
ds
Or,
SR = 0T Coordinate vector
| ory
or! Coeflicient matrix Has periodicity
Y 2@
o -1 0 O kom = > of the lattice period
K = Kym 0 kom, 0 (Tacm + Tym)
| o o o -1 e? |
kom 0 kym O kim =K; +3—5— +kom 1=72, ¥
im
0
5p —0KgTom + 2 xm+Tym + Qm
- 0 Driving perturbation vector
—Onyrym + 25t 4 25

Expand solution into homogeneous and particular parts:

SR = 6R;, + 0R, 0R; = homogeneous solution

0R, = particular solution

d d
—oR, +K-0R;, =0 —oR, + K- -0R, = 0P
ds ds
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Homogeneous Solution: Normal Modes

* Describes normal mode oscillations

* Original analysis by Struckmeier and Reiser [Part. Accel. 14, 227 (1984)]
Particular Solution: Driven Modes

* Describes action of driving terms

* Characterize in terms of projections on homogeneous response (on normal modes)
Homogeneous solution expressible as a map:

SR(s) = M.(s|s;) - 0R(s;) Now 4x4 system, but analogous to the
_ e 1 )
SR(s) = (8ry, 67, 81y, 07! )T 2x2 analysis of Hill's equation via
vy transfer matrices: see S.M. Lund
M. (s|s;) = 4 x 4 transfer map | |
lectures on Transverse Particle Dynamics

Eigenvalues and eigenvectors of map through one period characterize normal
modes and stability properties:

Me(Si —+ Lp‘Sz') . En(Sz) = )\nEn(SZ)

Stability Properties Mode Expansion/Launching
4
N o, — mode phase advance (real) SR(s;) = Z anE, (s:)
n = n vn — mode growth/damp factor (real) n=1
o, = const (complex)
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Eigenvalue/Eigenvector Symmetry Classes:

a) Stable : . b) Unstable, Confluent
_— A Elgenvaluiec:ssl Eigenvectors Resonance Eigenvalues Eigenvectors
4] > ic
M=e £ Im Ay, A =1 i
16y N icy
7L2 =e _ B Ay = L/A* = (L/y))e jgz
_IG .
. 1 > 5 % % 7 .
7L3 = l/?Ll = ll* =e . E3 = El 7\,3 = 1/7Ll = (l/"_{l)e 3 = b
—io —ic
2 > > % . 1 > B
l4=l/7\.2=7‘~2*=8 E4=E2 7\4=11*=713 E4=EY1$
c) Unstable,RLattice Ei : Ei ) d) Unstable, Double Lattice
m ;Leslonance Eigenvalues LI1ZENVECIOrs Resonance Eigenvalues Eigenvectors
nA ic ImA A
1 n .
Ay =e E“l A, = ylem El (real)

!
in - .
Ay = Vo€ ‘ Fy  (real) Ay =y et fgz (real)
—io | # .* Mo oM [AAs 2 2
— o= = - f
Ay=rr=e 3= 48 1 Reh, A= 174 = (/ye” I3 (real)
in ;
by = 1Ay = (/e By (real) 3 Ay = 1Ay = (/e By (real)

Symmetry classes of eigenvalues/eigenvectors:

* Determine normal mode symmetries

* Hamiltonian dynamics allow only 4 distinct classes of eigenvalue symmetries

- See A. Dragt, Lectures on Nonlinear Orbit Dynamics,
in Physics of High Energy Particle Accelerators, (AIP Conf. Proc. No. 87, 1982, p. 147)

* Envelope mode symmetries discussed fully in PRSTAB review
* Caution: Textbook by Reiser makes errors in quadrupole mode symmetries and

mislabels/identifies dispersion characteristics and branch choices
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Pure mode launching conditions:
Launching conditions for distinct normal modes corresponding to the

eigenvalue classes illustrated:
Ay = mode amplitude (real) ¢ = mode index

1y = mode launch phase (real) C.C. = complex conjugate

Casc Mode Launching Condition = Latticc Period Advance

(a) Stablo 1-Stable Osc.  |[dRy = A;e™E; + C.C. M.6Ry (b)) = 6Ry(h, + ay)

2 - Stable Osc. Ry = Ase?2E,y + C.C. M 0Rs (1)) = dRo(1hy + 09)
(b) Unstable 1 - Exp. Growth [dR; = Ae¥E; + C.C. M.0R(¢)1) = v10R (¢)1 + o)
Confluent Res. 2 - Exp. Damping | 0Ry = Aye™?Ey + C.C. M 0Ro(v02) = (1/71)0Ra(p2 + 1)
(c) Unstable 1 - Stable Osc. R = A1e™E| + C.C. M.0R(¢)y) = 6Ry (%} + o)
Lattice Res. 2 - Exp. Growth |0Rs = AE» M.0R; = —ydR;

3 - Exp. Damping | §dR3 = A3E, M.0R3 = —(1/v:)0R;4
(d) Unstable 1- Exp. Growth |éR; = AE, M. R, = —v16R,4
Double Lattice 2 - Exp. Growth |dRs = AsEs M.0R; = —dR,
Resonance 3 - Exp. Damping | dR3 = A3;E3 MOR3; = —(1/7,)0Rs3

4 - Exp. Damping | 0R, = A4E, MR = —(1/72)0R,

ORy = 0Ry(s;) Ey=E(s;) M. = M,(s; + Ly|s;)

A [E1(5)e™1 () L B (s)e™™1(9)] + Ay[Eo(s)e2(5) 4 Eb(s)e™2(9)], cases (a) and (b)
OR(s) = { A1[E1(s)e¥(8) £ Ei(s)e™ 1] 4 AyEo(s) 4+ AzEy(s), case (c)
A1Eq(s) + AsEa(s) + AsEs(s) + A4E4(s), case (d)
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Decoupled Modes

In a continuous or periodic solenoidal focusing channel

b (s) = hy(5) = A(s)

with a round matched-beam solution
Ex = €y = € = const

Tem(S) = Tym(8) = rim(s)

envelope perturbations are simply decoupled with:

0Ty + 0T
Breathing Mode: ory = r . Y
0Tg — OT
Quadrupole Mode: or_ = 2 5 Y
The resulting decoupled envelope equations are:
Breathing Mode: [ --]d0r4 = K 0r4
Q  3&%] Oky + 0K 1 2¢ [ de, + d¢
/" & 9" _ y 1 ,
5T++[H+”’“72n+7“fn_5r+ rm< 5 >+Tm(5Q+T%1( > )
Quadrupole Mode: [ ]0r_ = Kk_dr_
1" ﬁ _ 5/€x - 5/fy 2e 58;13 — (5€y
5T_+[K+"“é4n]5r__ Tm( 2 T 2
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Graphical interpretation of mode symmetries:

Breathing Mode: y T Breathing Mode (+)
drupole Mode (-) Envelope
Ory + Or QuadrupoleMode (7))
57°_|_ — a J Envelope / Breathing
2 NS Mode (+)
Quadrupole
r Mode (-)
m
Quadrupole Mode:
2
Matched Beam 4—€..H
Envelope 'm or X |
Quadrupole and
Q 9 Breathing Modes
Ky =K+ T_ + STT Breathing Mode Linear Restoring Strength
m
) " Ky > K_
E
K— =K+ ST Quadrupole Mode Linear Restoring Strength
"'m
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Decoupled Mode Properties:

Space charge terms ~ Q only directly expressed in equation for or,(s)
* Indirectly present in both equations from matched envelope r,(s)

Homogeneous Solution:
* Restoring term for or,(s) larger than for or (s)

- Breathing mode should oscillate faster than the quadrupole mode
/i+:/<:—|—%—|—37%2 > K :/i—I—BfTQ

Particular Solution:
* Misbalances in focusing and emittance driving terms
can project onto either mode
- nonzero perturbed x,(s) + x,(s) and £,(s) + £,(s)
project onto breathing mode
- nonzero perturbed k,(s) - k,(s) and €,(s) - €(s)
project onto quadrupole mode

* Perveance driving perturbations project only on breathing mode
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Previous symmetry classes reduce for decoupled modes:
Previous homogeneous 4x4 solution map:
OR(s) = Mc(sl|s;) - 0R(s;)
OR(s) = (Ory, or,,, dry, 57“?’J)T
M, (s|s;) = 4 x 4 transfer map

Can be reduced to two independent 2x2 maps with greatly simplified symmetries:

(SR p— (5T+, 57{{_, 5T—7 5T,—)T

0 M_(s; + Lyp|s;)

M. (s; + Ly|s;) = [M+(Si +Eols) " ]

Here M4 denote the 2x2 map solutions to the uncoupled Hills equations for 07+

ory + Kkyory =0

. Q 382 57“j: . N 57“j:

Ky =K+ T?n + Tfn &FQI: — Mﬂ:(3|sz) 574;: i
B 3e?

K_ =K+ %
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The corresponding 2D eigenvalue problems:

Mi(si + Lp‘SZ') . En(SZ) — AiEn(Sz)

Familiar results from analysis of Hills equation (see: S.M. Lund lectures on

Transverse Particle Dynamics) can be immediately applied to the decoupled case,

for example:

1
S|Tr M (si + Lylsi)| <1 <= mode stability

Eigenvalue symmetries give decoupled mode launching conditions
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Eigenvalue Symmetry 1:

Stable
Im 7\”: A

IGi

Eigenvalue Symmetry 2:

Unstable, Lattice Resonance

Imlt A
—IiTT
7Li =Yy €
A, [ 1A,
-— -— -
1 Re 7“:
) Uk = (/)"

Launching

Condition

/ Projections

v A Breathing Mode (+)

Quadrupole Mode (-)
Envelope

Envelope

é Breathing

NN ﬁ/f"_rx Mode (+)
_ Quadrupole
Sry _ _er Mode (-)
o Y A S W YRR | -
.
X
Matched Beam I E—
Envelope P Ory
Quadrupole and

Breathing Modes
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General Envelope Mode Limits
Using phase-amplitude analysis can show for any linear focusing lattice:

1) Phase advance of any normal mode satisfies the zero space-charge limit:

lim oy = 20
Q—0 ¢ 0

2) Pure normal modes (not driven) evolve with a quadratic phase-space
(Courant-Snyder) invariant in the normal coordinates of the mode

Simply expressed for decoupled modes with Kz = Ky, €z = &y

5 2
[ Ti(s)] + [y (8)8r4(s) — wa(5)07, (5)]2 = const
wz(s)
where ; 32 1
w++mw++%w++aw+—w—i:0
3¢” 1
w'_’—i—/fw_—l—%w_——?)zo
rd w3

w+(s + Lp) = w(s)
Analogous results for coupled modes [See Edwards and Teng, IEEE Trans Nuc. Sci. 20, 885 (1973)]

* But typically much more complex expression due to coupling
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S7: Envelope Modes in Continuous Focusing
Lund and Bukh, PRSTAB 7, 024801 (2004)

Applied Focusing:

g0

2
ka(s) = ky(s) = ki = (—) = const
Ly
Matched beam:

Ex = Ey = € = const

Symmetric Beam
7aac’m(s) — Tym(S) = Tm = const

Matched Envelope Constraint

Q £
K207 — - — S =0
poTm Tm T3

Depressed Phase Advance: Recast matched envelope equation to express
5 k% _ &
kQ . g ro o= 6_ — T’iln

pO 2 | T T3 5
m m 2 ( o ) 62
o S _—
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Parameter Constraint:
* Will use to express scaled amplitudes in terms of normalized space-charge
strength /0

1.2 Q _ e _ 12 — Q 1 —k3/k% =1—(0/00)* (1

= e N K3gr2, AT o (D
m m 50

, o2 k3 ) g2

ety = R Ty @

using (1) and (2) to conveniently set balance of terms:

kgoe”  kgole®/ (Kjorm)]

Q®  K3ol@Q/ (e Kgoe® _ age® _ (9/00)’
 (0/o0)? Q> Q%12 [1—(0/00)??
1= (0/00)?]?
Expand for Decoupled Modes: * Use later to specify balance of terms

* Use previous formulation

51 (5) = 0T () :;: 0Ty (S)
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Envelope equations of motion become (see next page):

d> [ or or o2 6k, Ok 0Q de,  O€
s ()~ (5) =3 (% kg§> Hlof o) o7 (2 )
72 dz [ 6r_ L o? or— _ _0(2) 5/;% B 5/;ay g 0gz  dgy
Pds2 \ r, T 2 \ kgo ki £ €

— 2 2 . 99
0+ —\/ 200 +20 “breathing mode phase advance

o E\/ o5 +30%  “quadrupole” mode phase advance

Homogeneous equations for normal modes:

d2

ds?

0+

Ly

573:"‘(

2
) ory =0

See also lectures by

* Simple harmonic oscillator equation

Homogeneous Solution (normal modes):

J.J. Barnard, Envelope Modes and Halo

0r4(8) = 0r4(s;) cos (O‘j:

S — S;
Lp

)

)

or4(s;), or'L(s;)
SM Lund, USPAS, 2020

mode initial conditions
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/l Some steps to obtain scaled form of perturbed continuous focusing
envelope equation:

2
or'l + [k%o L@ s ] Sry = —1m (5’% +5H”) + %5Q+ 335 (5596 +55y)

ra. o orE 2 2
i e i (i) L 2 (120
Restoring Terms (LHS): Use to simplify terms in [...]:
2
[’“?so+%+§]:208+2202=02 9 _2%_o
T'm T'm Lp Lp K2 — 08 T%n L}%
32 p 2 2 B0 — L2 2 2
Rl N/ Tk LA £
PO pa L2 L2 rd L2

Driving Terms (RHS):

OKg £ 0K,y To 9 1 [ OK 0K r'm 05 [ 0K 0K
—r, T __'m 2 x 4+ Y _ _'m%0 x 4+ Y
' ( 2 ) 3 (Kol (kgo kg()) 1272 (kgm K2 )

B0
1 . Q 5Q_Tm 2 25Q
e [?J @ 179
2¢ (dey ey e?] (deg | Ogy\  0° [beg | dey
3 () o [ () B ()
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Properties of continuous focusing homogeneous solution: Normal Modes

2.0
1.8
1.6
1.4
1.2

1(8)

Normalized Mode Phase Advance

Mode Phase Advances Mode Projections
y A Breathing Mode (+)
Quadrupole Mode (-) Envelope
EnVCIOP € T ) / 77777777777777777 R B reathing
N JF” ¥~ O Mode (+)
: Quadrupole
Breathlng MOde ’ 7”7””””””””§7’:]7{:”7_78er0(16 (E))
C,/0p m
X
Cc_/0y
Quadrupole Mode |
0 02 04 0.6 0.8 1.0 fewtban v -
Quadrupole and
O /G 0 Breathing Modes
; _ 0Ty + 07y
o E\/ 208 + 207 Breathing Mode: ory = 5
_ /| 2 9 or, — or
o —\/Uo + 30 Quadrupole Mode: dr_ = —= 5 J

SM Lund, USPAS, 2020

Transverse Centroid and Envelope Descriptions of Beam Evolution 76




Particular Solution (driving perturbations):
Green's function form of solution derived using projections onto normal modes
* See proof that this is a valid solution is given in Appendix A

or+(s) | Y _ B
- :L;%/s ds G4 (s,5)0p+(5)

7

5ps () = _028 5/2%23) 5?%2@ (02— 02)5%5) e [553;(3) N 551(3)]
05 _5/-43;,;(8) 5@(3): bex(s)  dgy(s)
- == |5 _w[ o) _ %oy ]

S— S

_ L. S
Gi(s,5) = o1 /L sin (O‘j: 7 >
p p

Green's function solution is fully general. Insight gained from simplified solutions for
specific classes of driving perturbations:

* Adiabatic

* Sudden

* Ramped covered in PRSTAB Review article
+ Harmonic

covered in these lectures
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Continuous Focusing — adiabatic particular solution

For driving perturbations dp (s) and dp_(s) slow on quadrupole mode (slower
mode) wavelength ~ 27L,,/o_ the Green function solution reduces to:

or.(s)  Opa(s)

:m — (;L%r / Focusing / Perveance
o 1 1 1 0k (8) N Ok (S) N 11— (0/00)?] dQ(s)
|21+ (0/0g)?] 2 k%o k%o 21+ (0/0g)? Q

N (0/00)? 1 (des(s) N dey(s) |
14 (0/00)? ] 2 £ £
\ .

Emittance : : :
5r_(s) _ 5p_(s) Coefﬁ.ments of adlabliltlc“ )
-~ ) / Focusing terms in square brackets“[ ]

| 1 11 (dre(s) Ory(s)
— _1+3(0_/0_0>2_ 9 ( k%O k%() (o E\/20'8+20'2
N 2(0/00)? 11 (dexls) dey(s) o_ E\/Jg + 302
1+ 3(c/0p)? ] 2 3 £ '
~ Emittance
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// Derivation of Adiabatic Solution:
* Several ways to derive, show more “mechanical” procedure here ....
Use:

0r+(s) 1 [
- = L;% /Sz ds G4 (s,5)0p+(S)

G (5, 5) 1 . S— S 1 d o sS— S
S,S) — mi| o — o
e 0+ /Ly - Ly (0+/Lp)? ds - Ly

I
cx
< W

QL

X

Y
1

o

@)

)]
N\

Q

H_
W
I
3
Y
j’f’ N—
>,
Q |T
H_[\D/—\
o
N—"
| I |
|
a\
@ [V2)

Q.

»

o

@)

N
/_\

oa
@
o;
I
H—[\.’)

C_opx(s) o <O_:|:3_3i> pi( i)
=S Lp

b
op+(s) No Initial Perturbation

//
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Comments on Adiabatic Solution:
+ Adiabatic response is essentially a slow adaptation in the matched envelope to
perturbations (solution does not oscillate due to slow changes)
+ Slow envelope frequency o_ sets the scale for slow variations required

Replacements in adiabatically adapted match:

Te = Tm — T + 0T + 07—
Ty = Tm — Tm + 07— — 0Ty

Parameter replacements in rematched beam (no longer axisymmetric):

Ky = k50 — k3o + 0ky(s)
Q = Q+0Q(s)
Ex =€ — €+ e, ()
gy =€ —> €+ 0gy(s)
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Continuous Focusing — adiabatic solution coeflicients

a) or, = (or, + ry)/2 Breathing Mode Projection
05
Ferveance

04 | Term:
03 L| ~(6/6)" /

7 7
| + (G/GU}I

0 2 Focusing Terms: E mittance

1 1 Terms;
01} 72 +(6/Gy)? \ (6/6,)°

2
l+ (0/0‘0)

0.
%.0 02 04 06 08 1.0
G /Gy

b) &r. = (8r,- dr)/2  Quadrupole Mode Projection
1.0

0.8
0.6

Focusing Terms: -~
0.4 ocusing Tetms:

Adiabatic Solution Coefficients

Emittance Terms;
(cmn)i

— v

L+(a/0p)>
N ]

“a

02 214 (cfc{})ﬁ

Adiabatic Solution Coefficients

0.
%.0 02 04 06 08 1.0
G /Op

Relative strength of:

* Space-Charge (Perveance)
* Applied Focusing
* Emittance

terms vary with space-charge
depression (o /o) for both
breathing and quadrupole
mode projections

Plots allow one to read off the
relative importance of various
contributions to beam
mismatch as a function of
space-charge strength
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Continuous Focusing — sudden particular solution

For sudden, step function driving perturbations of form:

— c— g — axial coordinate Hat quantities
0p+(s) = 0p+LO(s — sp) ~ %P7 perturbation applied are constant
amplitudes
with amplitudes: - - -

2
5p_|_ = — 9 k%o + k‘%o —+ (O'O — 0 )5 + o ? ? — const
— 2 [0ky Oy de.  Oe,
Ip_ = _20 Z — I;y + o2 %z %y _ const

2 ]‘%0 kBO € £

The solution is given by the substitution in the expression for the adiabatic solution:

* Manipulate Green's function solution to show (similar to Adiabatic case steps)

Or+(s) _ op+(s)
U4

'm

with

opL(s) — 5/191 [1 — COS (ai

Lp

)| et -5

SM Lund, USPAS, 2020
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Sudden perturbation solution, can be obtained as (see steps next page):
* Same as adiabatic response in oscillation amplitude factor

—(): ;—p -t |1 —cos| ot L)1 O(s—sp)
2 v p/
Tm oL L, ;
Amplitude Factor Oscillation Factor
[llustration of solution properties for a sudden 0p+(s) perturbation term
A
5
R 2x Adiabatic
‘? l Sudden (Max Ecursion)
2
5 A
o . .
7 | Adiabatic ,  / \ [\ [ Adiabatic
L A .
. Excursion
©
=
M

S=Sp 2nL o,
Axial Coordinate, s

For the same amplitude of total driving perturbations, sudden perturbations result in 2x the

envelope excursion that adiabatic perturbations produce
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// Derivation of Sudden Solution:

Use:
or+(s) 1 [7 B _
T L]% /Sz ds G4 (s,5)0p+(8)
Gi(s,5) ! S 58 op+(s) (5/\@(3 Sp)
— in — —
+ 878 O_:l:/Lp 0-:|: Lp p:l: p:l: j o
Gives:

d I — 35\ —
r+(s) = / ds sin (ais S) Ip+O(5 —sp)

'm O+ Lp

ops ( 5 — §> _
= ——cos | o4 O(5 — sp)
O-i Lp §=s;

@ S — Sp
= 11 - _
2 [ cos (ai I, )] O(s — sp)

//
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Continuous Focusing — Driven perturbations on a continuously

focused matched equilibrium (summary)

Adiabatic Perturbations:
* Essentially a rematch of equilibrium beam if the change is slow relative to
quadrupole envelope mode oscillations (phase advance o_ )
Sudden Perturbations:
* Projects onto breathing and quadrupole envelope modes with 2x adiabatic
amplitude oscillating from zero to max amplitude
Ramped Perturbations: (see PRSTAB article; based on Green's function)
* Can be viewed as a superposition between the adiabatic and sudden form
perturbations
Harmonic Perturbations: (see PRSTAB article; based on Green's function)
+ Can build very general cases of driven perturbations by linear superposition
*+ Results may be less “intuitive” (expressed in complex form)

Cases covered in class illustrate a range of common behavior and help build
intuition on what can drive envelope oscillations and the relative importance of
various terms as a function of space-charge strength
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Appendix A: Particular Solution for Driven Envelope Modes

Lund and Bukh, PRSTAB 7, 024801 (2004)
Following Wiedemann (Particle Accelerator Physics) first, consider more general Driven

Hill's Equation
2" + k(s)z = p(s)

The corresponding homogeneous equation:

2" + k(s)r =0

has principal solutions

z(s) = C1C(s) + Ca5(s) (1, Cy = constants
where

Cosine-Like Solution Sine-Like Solution

C"+ k(s)C=0 S"+ k(s)S=0

C(s=s;)=1 S(s=s;)=0

C'(s=s;)=0 S'(s=s;) =1

Recall that the homogeneous solutions have the Wronskian symmetry:
* See S.M. Lund lectures on Transverse Dynamics, S5C

W(s) =C(s)S'(s) —C'(s)S(s) =1
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A particular solution to the Driven Hill's Equation can be constructed using a
Greens' function method:

2(s) = / 45 G(s, H)p(3)

Sq

G(s,3) = S(s)C(5) — C(5)S(5)

Demonstrate this works by first takmg derivatives:

x—s<>/dsc<><>—c<>/dss<><§>

' = 8'(s) /SZ ds C(§)p(§)0 — C'(s) /Sz ds S(8)p(8)
+p(s) [S(s)C(s) S(s)C(s)]
=5'(s) / 45 C(3)p(3) — C'(s) / 45 S(3)p(3)

S;

o = (s >/dsc<> @) = ¢ >/dss< ()

S;

; C'( Wronskian Symmetry

—p(s) + S"(s) / 43 C(3)p(3) — C"(s) / 13 S(3)p(3)

Sq
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Insert these results in the Driven Hill's Equation:
Definition of Principal Orbit Functlons

0
" 4+ k(s)x = p(s) + [S"—|—/~£S]/ ds C(3)p [c” —|—/C / p(8)

= p(s)
Thereby proving we have a valid particular solution. The general solution to the
Driven Hill's Equation is then:
* Choose constants C'7, C>0f homogeneous solution consistent with particle
initial conditions at s = s;

z(s) = x(s;)C(s) + 2'(s;)S(s) + /Sdé' G(s, 8)p(s)
G(s,8) =S(s)C(5) —C(s)S(3)

Apply these results to the driven perturbed envelope equation:

d? 02
d82 —O0ry + — L2 5Tj: L2 5pj:
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The homogeneous equations can be solved exactly for continuous focusing:

C(s) = cos (ai ” l_;psi>

L — S
S(s) = i sin (Oists )

and the Green's function can be simplified as:
G(s,5) = S(s)C(5) — C(s)S(5)

Lp{' ( S_Si)cos< §_8i> cos( S_SZ)Sin( S
— — {S1n | 0+ O+ — O+ O+
Ly, Ly, Ly, Ly,

O+

L, . S— S
— —sin | o+
O+ L,

Using these results the particular solution for the driven perturbed envelope

equation can be expressed as:
* Here we rescale the Green's function to put in the form given in S8

0T+ () LlQ/dS G+(s,5)0p+(S)

'm S5

. 1 , s—S
Gi(s,§) = /L, sin <ai I, )
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S8: Envelope Modes in Periodic Focusing Channels

Lund and Bukh, PRSTAB 7, 024801 (2004)
Overview
* Much more complicated than continuous focusing results
- Lattice can couple to oscillations and destabilize the system
- Broad parametric instability bands can result
* Instability bands calculated will exclude wide ranges of parameter space from
machine operation
- Exclusion region depends on focusing type
- Will find that alternating gradient quadrupole focusing tends to have more
instability than high occupancy solenoidal focusing due to larger envelope
flutter driving stronger, broader instability
*Results in this section are calculated numerically and summarized
parametrically to illustrate the full range of normal mode characteristics
- Driven modes not considered but should be mostly analogous to CF case
- Results presented in terms of phase advances and normalized space-charge
strength to allow broad applicability
- Coupled 4x4 eigenvalue problem and mode symmetries identified in S6 are
solved numerically and analytical limits are verified
- Carried out for piecewise constant lattices for simplicity (fringe changes little)

* More information on results presented can be found in the PRSTAB review
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Procedure

1) Specity periodic lattice to be employed and beam parameters

2) Calculate undepressed phase advance o and characterize focusing
strength in terms of o0

3) Find matched envelope solution to the KV envelope equation and
depressed phase advance o to estimate space-charge strength
* Procedures described in: Lund, Chilton, Lee, PRSTAB 9, 064201 (2006)

can be applied to simplify analysis, particularly where lattice is unstable
- Instabilities complicate calculation of matching conditions

4) Calculate 4x4 envelope perturbation transfer matrix M (s; + Ly|s;)
through one lattice period and calculate 4 eigenvalues

5) Analyze eigenvalues using symmetries to characterize mode properties

* Instabilities
* Stable mode characteristics and launching conditions
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1** Example: Envelope Stability for Periodic Solenoid Focusing

Focusing Lattice:

ko(s) b (k= Ky) Occupancy 7]
-------------------------------------------- —| n € (0,1]
! . : ; . -
' | i 3 . 5
/2  nL, d/2 = d/2
. ' d=(1—n)L,/2
3 L . (1 =n)Ly/
I Lattice Period |

Matched Envelope Equation:
hz(8) = fiy(s) = K(s) o =&y =€

re(8) = 1y(8) = rim(s)

82

£1,(5) + K()rm(s) — 29 — £ =
rm(s+ Lyp) = 1m(s)
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

* See: S.M. Lund, lectures on Transverse Particle Dynamics
* Particle phase-advance is measured in the rotating Larmor frame

Solenoidal Focusing - piecewise constant focusing lattice

1 _ <L
cos og = cos(20) — Tn@ sin(20) O= \/EQ :
.
Ka(9)] | (K2 = ky) N —
-
| i«-q hi-l——l"'i“"'—"'i ’
T T -

- L, ~ t=nl,
Lattice Period | n e (O’ ]_] — OCCU.p ancy
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Flutter scaling of the matched beam envelope varies for quadrupole and
solenoidal focusing

In both cases depends little on space charge with theory showing:

)(1 n)(l n/2)

Solenoidal Focusing

T2 | max e (1 — cosoy

T ~ ] (1 —cosaog)/? 23/28 7277/7?3)1/2 Quadrupole Focusing

Based on: E.P. Lee, Phys. Plasmas, 9 4301 (2002)
for limit o /09 — 0

* Solenoids:
- Varies significant in both 0 and 7)

* Quadrupoles:
- Phase advance 0 variation significant
- Occupancy 7 variation weak

Solenoidal Focusing FODO Quadrupole Focusmfz
.9 p ' = . ' ' = . ' = . ' 0.5
0.4 04|
relom 4 O ;';I—D"-"j 0.3}
ol n =050 =]
2 = 0.2F
;';l = 1 D }_ -
Ul o all
U .
1 —
50 ai 120 &0 a0 120
oy |degrees) o |degrees)
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Solenoidal Focusing — Matched Envelope Solution

a) 6y =80andm = 0.75 High Occupancy

{E 0.7 o/ = 0.5 (Mid Lens m;fl’h::lnDrifL}
0.6 y ——E
— 0.25 —
0 ]
X 0S5 =—77 |
- 0.1 '
E 0.4 | K |
= | L
(a7

00 02 04 06 08 1.0
Axial Coordinate, s!Lp

b) 0p=80"andn = 0.25 T ow Occupancy

~J]

(Mid Lens and Mid Drift

Radius, r,,/[./20L,]

o)

i e
= W

00 02 04 06 08 1.0

Axial Coordinate, s/L,,

SM Lund, USPAS, 2020

Focusing:
ba(5) = hiy(5) = A(s)
(s + Ly) = k(s)

Matched Beam:
Ex = Ey = € = const

Tem(S) = Tym(8) = rm(s)
Tm (s + Lp) = Tm(s)

Comments:

* Envelope flutter a strong function
of occupancy 7/
- Flutter also increases with

higher values of o

* Space-charge expands envelope
but does not strongly modity
periodic flutter
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

* See: S.M. Lund, lectures on Transverse Particle Dynamics
* Particle phase-advance is measured in the rotating Larmor frame

Solenoidal Focusing - piecewise constant focusing lattice

1 _ <L
cos og = cos(20) — Tn@ sin(20) O= \/EQ :
.
Ka(9)] | (K2 = ky) N —
-
| i«-q hi-l——l"'i“"'—"'i ’
T T -

- L, ~ t=nl,
Lattice Period | n e (O’ ]_] — OCCU.p ancy
SM Lund, USPAS, 2020 Transverse Centroid and Envelope Descriptions of Beam Evolution 96




Solenoidal Focusing — parametric plots of breathing and quadrupole envelope

mode phase advances two values of undepressed phase advance

a) T|=C.'125.GD=EDD b) ’I]=(125.GD=115'3

+: Stable +: Stable +: Lattice Rescnance

—: Stable —: Stable —: Stable

/‘ .-H‘-. tf’ “‘w 4 ““w
— oL/ _ . _.J’ S
E T E | I|
= 160} X = 220 G, \Cont. Foc. |
2, G, Cont. Foc. 2, ' (dashed) |
By 140} (dathed overlaid) = 180e N G_
L A - L 180 - b e
= 120} 1 T . W
> L i = | & Cont. Faoc.
= 100 ' O _Cont. Fec. 2 140 dahed)

.80 ' (dashed averlaid) | N :
4 : 2 100l :
E': 00 02 04 06 08 1.0 = 00 02 04 06 08 1.0
[T

G /Gy G /Gy
- ! ST ! Band Band
% 1.4 :ND Instability g 1.4 : :{:t Res.) :{..1’: Res.|
LEl ]. D T-l-.T— . E ]. D T-l- T—l /”F—F.I_-‘-\\; i T-I- T—’.
g T s p—————
5 0.6 , g 06 U
O 00 02 04 086 08 1.0 o 00 02 04 086 08 1.0

o/ Uﬂ o/ Uﬂ

L)
-

Dashed Curves, Continuous Focusing:
oL = \/20(2) + 202 o_ = /03 + 302 \Jlf"f_
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Solenoidal Focusing — mode instability bands become wider and stronger for

smaller occupancy

0.75 (Blue)
n= oo = 115°
0.10 (Red)
%\ Comments:
‘g * Mode phase advance in
%0 instability band 180 degrees
§ per lattice period
S * Significant deviations from
2 continuous model even outside
o . . . | _ _ the band of instability when
jﬂs 00 02 04 06 0.8 1.0 space-charge is strong
G /Oy *+ Instability band becomes
g _ - - _ stronger/broader for low
% 1.4} V. Band Y_Band ] occupancy and
i ol = 5 , weaker/narrower for high
= : _ occupancy
E 0.6} - - Disappears at full occupancy
O 00 02 04 06 08 10 (continuous limit)
O /Op

SM Lund, USPAS, 2020 Transverse Centroid and Envelope Descriptions of Beam Evolution 93




Solenoidal Focusing — broad ranges of parametric instability are found for the
breathing and quadrupole bands that must be avoided in machine operation:
Contour unstable parameters for breathing and quadrupole modes to clarify

n =0.75 n = 0.25
Breathlng and Quadrupole Mode Growth Factors, v, and y_
1.0 |
infr, | 1.0 :
0.8 i 0.8 |
V- 0.0
0.6 Lattice Res. S0
S G
N N
© 04 © 04 Y*
¥+ Lattice
02| Lattice 0ol Res.
Res. Band Band
0.0 ' 0.0 .
100 120 140 160 180 100 120 140. 160 180
o (deg/period) G (deg/period)

Eigenvalues in unstable regions:
N, — em v+ > 1 for unstable growing mode
- fE= In v+ = e-folds of growth per period
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Solenoidal Focusing — parametric mode properties of band oscillations
b)n=0.25

\

Lattice Resonace Band

a) N=0.75
Breathing Mode Phase Advance, G,
1.0 - 1.0
\| £
\ :
0.8 Y 0.8
g
0.6 2 06
- UJ -
9 <8
© 04 £ o4
—
0.2 0.2
0.0 0.0

SM Lund, USPAS, 2020

30 60 90 120 150 180

Ggl(deg/period)

0 30 60 90 120 150 180

Oy (deg/period)

Quadrupole Mode Phase Advance, G_

'|.
" k-
n -
k.
o
n
k-
N
]
i
,
Y
"|

Lattice Resonace Band

120 150 180

Gg (deg/perlod)

1.0

0.8

0.0

\

v

Lattice Resonace Band

0 30 60 90 120 150 180

o) (deg/perlod)
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Parametric scaling of the boundary of the region of instability
Solenoid instability bands identified as a Lattice Resonance Instability
corresponding to a 1/2-integer parametric resonance between the mode oscillation
frequency and the lattice

Estimate normal mode frequencies for weak focusing from continuous
focusing theory:

oL \/208 + 202

o~ 08 + 302

This gives (measure phase advance in degrees):

Breathing Band: Quadrupole Band:
o, = 180° o_ = 180°
— \/208 + 202 = 180° — \/03 + 302 = 180°

* Predictions poor due to inaccurate mode frequency estimates

- Predictions nearer to left edge of band rather than center (expect resonance strongest at center)
* Simple resonance condition cannot predict width of band

- Important to characterize width to avoid instability in machine designs

- Width of band should vary strongly with solenoid occupancy 7
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To provide an approximate guide on the location/width of the breathing and
quadrupole envelope bands, many parametric runs were made and the instability
band boundaries were auantified through curve fitting:

Lo _
L
0.8F .
bﬁ Quadrupole
o)
2 06 —
w2 I Right
[0 D] 3 i
8 L Breathing
=, 04r 3
é) i Left
o 0.2: Right i
g : Left
Y e
0 30 60 90 120 150 180
Phase Advance, oy [Degrees|
Breathing Band Boundaries: Quadrupole Band Boundaries:
go
2 2 2 _
o+ fog = (90°)°(1 + f) Left: 0/00+9900—1+9
1.113 — 0.413n + 0.003480¢, left-edge
. 1, left-edge
1.046 + 0.318n — 0.004100¢, right-edge g=g(n) = .
0.227 — 0.173n, right-edge
* Breathing band: maximum errors ~5 /~2 degrees on left/right boundaries
* Quadrupole band:  maximum errors ~8/~3 degrees on left/right boundaries
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2" Example: Env Stability for Periodic Quadrupole Focusing

Quadrupole Doublet Focusing Lattice:

k()| 1 (Ke=—ky) i on ) n € (0,1] Occupancy
dy \MLy/2,
i | D Quad | 5
MLy ) a € [0,1/2] Syncopation
B -—K - - Factor
3 L - dy=al-niL _
i Latticc%criod i d2=(1—(}t',)(1—p“l])Lp @ = 1/2 — FODO
Matched Envelope Equation:
20 g2
r" (8) + Ky (8)Trpm(s) — — 2 =0
&) e S @) ()
2Q >
rt (8) + Ky (8)rym(s) — — 5= =0
ym( ) y( ) Yy ( ) 'ra:m(s) _|_ Tym(s) Tgm(s)
rem(S+ Lp) = Tum(s) Tem(s) >0
rym (5 + Lp) = Tym/(S) rym/(s) >0

SM Lund, USPAS, 2020
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

* See: S.M. Lund, lectures on Transverse Particle Dynamics

Quadrupole Doublet Focusing - piecewise constant focusing lattice

1 —
cos oy = cos © cosh © + —nﬁ(cos O sinh © — sin O cosh O)

1 — 2 —
— 2a(1 — a)%@Q sin © sinh © 2
'y
K(s)| | (Ky=—ky) n )
dp L2, n € (0,1] Occupancy
F Quad i i
»
D Quad s
M2 :
B S R BT I R _ a€0,1/2] Syncopation
r-.. L .. d; = a(1-n)L Factor
: P ! P
i Lattice Period - dy=(1-o)(1M)L, a=1/2 — FODO
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Envelope Flutter Scaling of Matched Envelope Solution

For FODO quadrupole transport, plot relative matched beam envelope excursions
for a fixed form focusing lattice and fixed beam perveance as the strength of
applied focusing strength increases as measured by 0g

FODO Quadrupole Ly g
_ ] Tz :/ —7,(8)

1.4} o Lyp

1.2; 7720.5 Lp:().5m
Lol Q=5x10""

' ez = €, = H0 mm-mrad
0.8 go O‘/O‘o
0.6¢ 45° 0.20
80° 0.26

0.0 0.2 0.4 0.6 0.8 1.0 )
Lattice Period, s/, 1107 0.32
* Larger matched envelope “flutter” corresponds to larger g
- More flutter results in higher prospects for instability due to transfer of energy
from applied focusing

* Little dependence of flutter on quadrupole occupancy 7]
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Quadrupole Doublet Focusing — Matched Envelope Solution
FODO and Syncopated Lattices

a) 6,=80°,M=0.6949, and =12 FODO Focusing:
. 10— T ke (8) = —ry(8) = K(s)
R k(s + Lp) = k(s)

k Matched Beam:

Ex = Ey = € = const

- A - L.) =
00 02 04 06 08 10 ram (S + Lp) = ram(s)

Axial Coordinate, s/L,, Tym, (S -+ Lp) = T'ym (S)

b) o,=80°%1=0.6049,and = 0.1 Syncopated Comments:
3 1O _ _ é“‘*’“ o) _ * Envelope flutter a weak function
& 08 | of occupancy 7)

S 0.6 * Syncopation factors v % 1/2
g 04 reduce envelope symmetry and
& can drive more instabilities

00 02 04 06 08 1.0 * Space-charge expands envelope
Axial Coordinate, stp
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Quadrupole Focusing — parametric plots of breathing and quadrupole
envelope mode phase advances two values of undepressed phase advance

— — — (8] — _ _ 0
a) N1=0.6949, oo =0.1, 0p=80 b) N=0.6949, aa=0.1, oyp=115 Syncopated
Syncopated B: Stable B: Lat. Res. B Conf.Res. B: Stable
Q: Stable % Q:Stable  Q:Conf. Res. Q: Stable
- Y - \V W
g 1601 E % 240 G+: Cont. Foc. : o
G, Cont Foc. | £
S 140} *(dashed) e 200
S 120 " A S B R
E 100 == - i O_ Cont. Foc. < . : G:Q e E (:-\ Cont. iF oc.
% &0 == = | i | {(dashed) % 120 L --'E’I"_"r. | E (_dashed)i
..E 00 02 04 06 08 1.0 g 00 02 04 06 08 1.0
G /0y G/Gg
[ ' 1 ' Y2 Yo Band '
5 (4l ‘No Instability] 8 14[% JBTN :
3 | ’ 2 Y f
g Yk S ’/\E\‘ : REACE!
= F | < A | I
= ! = / 'v» Band :
o 0.6 | = 0.6 | J(?:fmr_ Res) ' /Y5 1Yo
O 00 02 04 06 08 1.0 O 0.0J 02 04 06 08 1.0
G /0y . G /0y
| AL
Dashed Curves, Continuous Focusing: <_Hh>
oL =\/202 + 202 o_ = /03 + 302 - e
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Important point:

For quadrupole focusing the normal mode coordinates are NOT
51y & 67 ory < Breathing Mode

or4 = 5 or_ < Quadrupole Mode

* Only works for axisymmetric focusing (Kz = Ky = K)

with an axisymmetric matched beam (62 =gy =¢)

However, for low oy we will find that the two stable modes correspond closely in
frequency with continuous focusing model breathing and quadrupole modes even
though they have different symmetry properties in terms of normal mode
coordinates. Due to this, we denote:

Subscript B <== Breathing Mode
Subscript Q <== Quadrupole Mode

* Label branches breathing and quadrupole in terms of low g branch frequencies
corresponding to breathing and quadrupole frequencies from continuous theory

* Continue label to larger values of 09 where frequency correspondence with
continuous modes breaks down
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Quadrupole Focusing — mode instability bands vary little/strongly with
occupancy for FODO/syncopated lattices

a) o= 1/2 (FODO), c5=115° b) a=0.1, op=115°

FODO 090  (Blue) Syncopated

_ | 0.6949 (Black)
L 0.25 (Green)
0.10  (Red)
E E
= 220 = 220
= &
=11] =T
ﬁ 180 ﬁ 180
> >
—= 140} - 140}
< <
L (B
Z 1001 . . | 2100t . . . -
= 00 02 04 06 08 10 = 00 02 04 06 08 1.0
2w G 2w /
G/Op G/0p
. .
S 14 S 14|
J ]
UEE L [53 [
= 1.0- = 1.0
= =
g YL . . . 5 OClgatRe) . .
9 00 02 04 06 08 10 © 00 02 04 06 08 1.0
G/Gg G /0y
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Quadrupole Focusing — broad ranges of parametric instability are found for
the breathing and quadrupole bands that must be avoided in machine

operation: Contour parameter ranges of instability to clarify

FODO Lattice Syncopated Lattice
n=0.6949, a=1/2 n=0.6949, a=0.1

Breathing and Quadrupole Mode Growth Factors, yg and g

1.0 1 1.0 .
- Infvg o g 1.0 . In|yp g g 1.0
TBJYQ —0.0 TBJYQ 0.0
confluent Res onfluent Res.
630'6 . Band gﬂ'ﬁ' Band
~ ~ Y
© 04 0.4 B
Lattice
02 : 02| Res.
| Band |
0.0 ! 0.0 l
100 120 14{]_ 160 180 100 120 140 160 180
G (deg/period) O (deg/period)

In |vp.g| = e-folds of growth per period of unstable mode
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Quadrupole Focusing — parametric mode properties of band oscillations

a) N=0.6949, . =1/2 FODO b)n=0.6949, a.=0.1 Syncopated

1.0

0.8t

1.0

0.8

b‘::l 0.6
~
O 04

0.2

0.0

SM Lund, USPAS, 2020

Breathmg Mode Phase Advance, Gg

0 30 60 90 120 150 180

G (deg/period)

0 30 60 90 120 150 180

Gy (deg/period)

Confluent Resonance Band

Confluent Resonane Band

1.0

0.8

\

\. Confuent Resonace Band

Lattice Resonace Band

0

30 60 90 12_b 150 180
O (deg/period)
Quadrupole Made Phase Advance, o

1.0 . § .

| 2

0.8 " 2

| \ %

0.6 . 2

L NS =

© 04 \ 5

160° E

0.2 &
0.0 :

0 30 9 120 150 180

op (deg/perlod)

Lattice Resonace Band
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Parametric scaling of the boundary of the region of instability
Quadrupole instability bands identified:
* Confluent Band: 1/2-integer parametric resonance between both breathing and

quadrupole modes and the lattice
+ Lattice Resonance Band (Syncopated lattice only): 1/2-integer parametric
resonance between one envelope mode (breathing mode) and the lattice

Estimate mode frequencies for weak focusing from continuous focusing theory:
OB =04 = \/2084—202

oQ =0_ :\/0(2)+302

This gives (measure phase advance in degrees here):

Confluent Band: [attice Resonance Band:

(04 +0-)/2 =180° oL = 180°

— 208202 4\ [o3 4302 =360° | = (/203 +20% = 150°

* Predictions poor due to inaccurate mode frequency estimates from continuous model
- Predictions nearer to edge of band rather than center (expect resonance strongest at center)
* Cannot predict width of band

- Important to characterize to avoid instability
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To provide a rough guide on the location/width of the important FODO confluent
instability band for a FODQO lattice, many parametric runs were made and the
instability region boundary was quantified through curve fitting:

1.0 _

S . ]

o 08 Right Edge

-

o 06

o0

S :

o, 04 Left Edge

- Z

o 0.2r

= _

= oo '

0 30 60 90 120 150 180
Phase Advance, g |Degrees|
Left Edge Boundary: Right Edge Boundary:
o + f(n)og = (90°)*[1 + f(n)] o+ g(n)oo = 90°[1 + g(n)]
4 1
fn) = 3 90 =3

* Negligible variation in quadrupole occupancy 7] is observed

* Formulas have a maximum error ~5 and ~2 degrees on left and right boundaries
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Pure mode launching conditions for quadrupole focusing
Launching a pure breathing (B) or quadrupole (Q) mode in alternating gradient
quadrupole focusing requires specific projections that generally require an
eigenvalue/eigenvector analysis of symmetries to carry out

* See eignenvalue symmetries given in S6

Show example launch conditions for both Breathing (B) Quadrupole (Q) modes
for all mode phases in a FODO lattice at:

. e — .
| S - = 0.6949
2 A DN 2 S o
- AN | B }HHH f,f’: o/op=0.2
2 s "y R\\“ ___j,f"f .
- ‘ T 1) Mid F-Quad
g e 2) Mid Drift
0 a2z 0. 4 0. 0,8 1

Axial Coordinate s/L,

SM Lund, USPAS, 2020 Transverse Centroid and Envelope Descriptions of Beam Evolution 115




Quadrupole Focusing — projections of perturbations on pure modes varies

strongly with mode phase and the location in the lattice (FODO example)
Breathing Mode, Mid- Quadrupole Quadrupole Mode, Mid- Quadrupole

___f— 0.10 0.10

9 0.05 0.05}

< 0.00 0.00

L.

e

= —0.05} — —0.05}

£ g

-0.10 - : -0.10 : : -
T Y = 05 1% ST 05 0 " 05 1
WB l n (Mode Phase) Yo/T (Mode Phase)

Q) 0.20 , o~ 0.20 : : .

@ @ or,
~7 0.10} T~z oaof Y

LEM} A . D%:-; Phe ~

% 4

oh B —

=

< v < S

-1 -0.5 Oh'l: 0.5 1 -1 -0.5 Ohl: 0.5 1
VB (Mode Phase) Yo (Mode Phase)
generally not exact generally not exact
breathing symmetry quadrupole symmetry
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Breathing Mode, Mid—Drift Quadrupole Mode, Mid—Drift
0.10

<
—
o

Radii, 8r;/[./20 L,]
Radii, 8r,/[./20 L,]
Lo

0.00} 0.00}
-0.05} -0.05}
-0.10 - -0.10 -
-1 -0.5 0.5 1 -1 -0.5 0.5 1
IIIB’ '! n (Mode Phase) IIJQ f g (Mode Phase)
o 0.20 : —— o~ 020
% g ) &
S E
0 en ~
= S
<ﬁ ‘,_.._ _'f! . 'tﬁ . . _"
-1 -0.5 [ 0.5 1 -1 -0.5 0[ 0.5 1
VBT (Mode Phase) Yo'/T (Mode Phase)
generally not exact generally not exact
breathing symmetry quadrupole symmetry
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As a further guide in pure mode launching, summarize FODO results for:
* Mid-axial location of an x-focusing quadrupole with the additional choice 57~;. — 0

* Specify ratio of dr;/dr, to launch pure mode
* Plot as function of 0o for oy < 90°

- Results vary little with occupancy 7] or O / o)

090  (Blue)
M = 0.6949 (Black)

0.10  (Red)
Breathing Mode, ¢/6,=0.2 Breathing Mode, ¢/6,=0.5
o — —— —— ——
*3 3.0t % 3.0}
re 251 Br, 11, Ae 2.5¢ ory /Br,,
- -
S 20} & 20}
¥ ¥
2 15t 5 15}
3! 3!
Bk POk T
0 1% 30 45 60 75 G0 0O 15 30 45 60 75 90
Oy (degrees) Gy (degrees)
Quadrupole Mode, 6/G,=0.2 Quadrupole Mode, ¢/6,=0.5
% 3.0 g 3.0
[:d 2510 —arx f&,r}, [:d 2510 —arx f’ﬁ?‘y
_5 2.0 _§ 2.0
v ¥
5 15} 5 15t
3 3]
B0 e
0O 15 30 45 o0 75 90 H 0 15 30 45 o0 75 90

Oy (degrees) Gy (degrees)

Specific mode
phase in this case
due to the choice
ory, =0 = or),

at launch location
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Comments:
* For quadrupole transport using the axisymmetric equilibrium projections on
the breathing (+) mode and quadrupole (-) mode will NOT generally result in
nearly pure mode projections:

O0ry + 0
ory = A ;— Ty #+ Breathing Mode Projection
5 xr = 5 . .
5r_ = 5 "y + Quadrupole Mode Projection

- Mistake can be commonly found in research papers and can confuse analysis of
Supposidly pure classes of envelope oscillations which are not.

- Recall: reason denoted generalization of breathing mode with a subscript B
and quadrupole mode with a subscript Q was an attempt to avoid
confusion by overgeneralization

* Must solve for eigenvectors of 4x4 envelope transfer matrix through one lattice
period calculated from the launch location in the lattice and analyze
symmetries to determine proper projections (see S6)

* Normal mode coordinates can be found for the quadrupole and breathing
modes in AG quadrupole focusing lattices through analysis of the eigenvectors
but the expressions are typically complicated

- Modes have underlying Courant-Snyder invariant but it will be a complicated
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Summary: Envelope band instabilities and growth rates for periodic
solenoidal and quadrupole doublet focusing lattices have been described

SM Lund, USPAS, 2020

Envelope Mode Instability Growth Rates

Solenoid (7 =0.25)
[
| 0|7, | gy 0.5
- Eii 0.0
Lattice
Res. Band
T
| Lattice
Res.
Band .

100 120 140 160

Gp (deg/period)

180

Quadrupole FODO (7 =0.70)

1.0

0.8

100 120 140 160

Gy (deg/period)
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Summary Discussion: Envelope modes in periodic focusing lattices

*Envelope modes are low order collective oscillations and since beam
mismatch always exists, instabilities and must be avoided for good
transport

* KV envelope equations faithfully describe the low order force balance
acting on a beam and can be applied to predict locations of envelope
instability bands in periodic focusing

* Absence of envelope instabilities for a machine operating point is a
necessary condition but not sufficient condition for a good operating point

- Higher order kinetic instabilities possible: see lectures on Transverse Kinetic Theory

* Launching pure modes in alternating gradient periodic focusing channels

requires analysis of the mode eigenvalues/eigenvectors
- Even at symmetrical points in lattices, launching conditions can be surprisingly
complex

*Driven modes for periodic focusing will be considerably more complex
than for continuous focusing

- Can be analyzed paralleling the analysis given for continuous focusing and likely

have similar characteristics where the envelope is stable.
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S9: Transport Limit Scaling Based on
Matched Beam Envelope Models for Periodic Focusing

For high intensity applications, scaling of the max beam current (or perveance Q)
that can be transported for particular focusing technology is important when
designing focusing/acceleration lattices. Analytical solutions can provide valuable
guidance on design trade-offs. When too cumbersome, numerical solutions of the
envelope equation can be applied.
* Transport limits inextricably linked to technology limitations
- Magnet field limits
- Electric breakdown
- Vacuum
* Higher-order stability constraints (i.e., parameter choices to avoid kinetic
instabilities) must ultimately also be explored to verify viability of results for
applications: not covered in this idealized case
- Often design choices evaluated with more detailed simulations

SM Lund, USPAS, 2020 Transverse Centroid and Envelope Descriptions of Beam Evolution 122




Review example covered in Intro Lectures adding more details:
Transport Limits of a Periodic FODO Quadrupole Transport Channel

Lattice: Parameters:
i (S)A e = o) 3 L, = 2L = Lattice Period
B e I | —ri ------------ - L = Half-Period
F Quad i.,_g..i..i.. 77 S (07 1] — Occupa’ncy
; | | ; > ik = Strength
14_._,1 D Quad |
0 R Characteristics:
ST h i L=/=F/D L
- A g d=(1—mn)Ly/2 ! / : -
Lattice Period (— an/Q (1 — T})L p— d = Drlft Len
Matched beam envelope equations :
20) g2
" (8) + Ky (8)Tpm(8) — — L =0
o (3) e ) e () TE(®)
2Q 5
!/ Yy
(s) — — =\
Tym(s) + Kfy(s)f'“y (S) Txm(s) 1+ Tym(s) Tgm(s)
Tem (S + Lp) = Tum () Tem(8) > 0
rym (S + Lp) = Tym/(S) rym(s) >0
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Expand the periodic = (s) as a Fourier series:
* Choose coordinate zero in s-middle of a x-focusing quadrupole so that

can be expanded as an even function in s
- Make symmetrical as possible to simplify analysis to the extent possible!

( )‘ ( ) | G
H-_qr; \S \\Ih’JIL‘ o _H.'hy) | —~ . .
e R ~ _ ) BoelBp] Elec. Foc
, d £ d | G Mag. Foc
F(::Quad - ) b—i-d - | [ B p] g- .
T ' >
i D Quad § * (eEe oy
-~ ' Y = =1 Elec. Foc.
——————— e T — R -—-- — a
| 85393 = % Mag. Foc.
i Ly =2L = d=(1-n)L . Y p
l Lattice Period . '

with this choice :

Ke(s) = Z Ky COS (?)
n=1

= e () = 2= ()

nit
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Take : (vfBp) =0 <= No Acceleration

g =€y =€ <= Isotropic Beam

Expand the periodic matched envelope according to:

rem = Tp |1 + Acos(ms/L)] + Z Ayp cos(nmws/L)

n—>2

rym =1 [1 — Acos(ws/L)] + » Ay cos(nms/L)
n=2

r, = const = Average Beam Radius
|A| = const < 1
Ay, Ay, = constants with |Ag, |, |Ayn| < A

Insert expansions in the matched envelope egn and neglect:
* All terms order A? and higher
* Fast oscillation terms ~ cos(nms/L) with n > 2
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To obtain two independent matched beam constraint equations:

2AR 2
Average (const): Hrb sin(mn/2) — Q_ 8_3 —0
2 4k 3Ae?
Fundamental: —A (z) ry + il sin(mn/2) + 35 =0
(x cos(mws/L)) "b

These equations can be solved to express the matched envelope edge
excursion (beam size) as:

p

4|R|L?  si 2
Masx[ryn] = Masxlryn] = ry(1 4+ |A]) = m { 14 HEEl ST/

\

3 3L2e2
I — ==

\ 7T’r'b

).

and the beam perveance (i.e., transportable current) as:

A2L2 2 2
Q = 8 [sin(mn/2)]> ———b— — =
(1 B 3L252> r;

2.4
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Lattice Design Strategy:

Outline for FODO quadrupole focusing in context with the previous derivation,
but pattern adaptable to other cases

Step 1) Choose a lattice period 2L, occupancy 77 , clear bore “pipe” radius 7,
consistent with focusing technology employed.
- Here estimate in terms of hard-edge equivalent idealization

Step 2) Choose the largest possible focus strength 4 (i.e., quadrupole current or
voltage excitation) possible for beam energy with undepressed particle phase
advance:

“Tiefenback Limit”
See Lectures on Transverse Kinetic Stability

oo < 807 /Period

- Larger phase advance corresponds to stronger focus and smaller beam
cross-sectional area for given values of: (), e,

- Weaker focusing/smaller phase advance tends to suppress various envelope
and kinetic instabilities for more reliable transport

- Specific lattices likely have different focusing limits for stability:

For example, solenoid focusing tends to have less instability
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Step 3) Choose beam-edge to aperture clearance factor A:

rp = Max([rgm] + Ay A, = Clearance

To account for:
- Centroid offset (from misalignments + initial value)
- Limit scraping of halo particles outside the beam core
- Nonlinear fields effects (from magnet fill factor + image charges)
- Vaccum needs (gas propagation time from aperture to beam ...)
- + Other effects

Step 4) Evaluate choices made using theory, numerical simulations, etc. Iterate
choices to meet performance needs and optimize cost.

Effective application of this procedure requires extensive practical knowledge:
* Nonideal effects: collective instabilities, halo, electron and gas interactions (
Species contamination, ...)
* Technology limits: voltage breakdown, normal and superconducting magnet
limits, ....

Details and limits vary with choice of focusing and application needs.
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Maximum Current Limit of a quadrupole FODO lattice

At the space-charge limit, the beam is “cold” and the emittance defocusing term is
negligible relative to space-charge. Neglect the emittance terms in the previous
equations to find the maximum transportable current for a FODO lattice

e{clglo 7z =0 Full spa.ce—charge
lim o, =0 Depression
gy—0

In this limit, the maximum transportable perveance (current) is obtained:

lim € = Qmax

Ex,Ey—0

Taking this limit in our previous results for a FODO quadrupole lattice obtains:

7T

4|k|L?
hr% Max|rym]| = 7 {1 el |"<3| sin(wn/Q)}
e—

e—0

lim Q = Qumax = 8[sin(mn/2)]” A*L°r}
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Transport Limits of syncopated quadrupole FODO transport channel

Lattice: |
()] | (K=K,

5 A
T S it ' N _
dj ! an*‘Q: & Ui S (07 1] Occupancy
FQuad| 1 1 -

W b Quad S € [0,1/2] Syncopation
R N B Factor
r-- L, -- d;=a(l-n)L,
Lattice Period i d2= (1—(1)(1—1])Lp o = 1/2 — FODO

Denote:

B L ds B Lr ds
T'm = ; L—p”'"a:m(s) ~ L_prym(s) Average Envelope

MaX[Tm] — MaX[Tx,ma 7aym] Max Excursion
* Not simple analytical calculation but summary of results

to illustrate how results change in situations with less symmetry
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Comments on Parameters:

* The “syncopation” parameter v measures how close the Focusing (F) and
DeFocusing (D) quadrupoles are to each other in the lattice

a=0 — d; =0 dy = (1 —n)Ly
a € [0,1]
a=1 _—— di=(1-n)L, d2 =0

The range « € [1/2,1] can be mapped to a € |0,1/2]
by simply relabeling quantities. Therefore, we can take:

a € (0,1/2]

* The special case of a doublet lattice with oy = 1/2 corresponds to equal drift
lengths between the F and D quadrupoles and is called a FODO lattice

()4:1/2 — dlzdgEd:(l—ﬁ)LP/Q

Phase advance constraint will be derived for FODO case in
problems (algebra much simpler than doublet case)
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Calculation gives for phase advance connection to lattice parameters:
* Usual transfer matrix analysis of single particle orbit
* Sloppy so should organize algebra carefully and use symbolic tools

1—mn . .
cos g9 = cos © cosh © + ——0B(cos © sinh © — sin O cosh O)
g 1
A=1%2  ae O =3 VIRIL,
—2a(1 — a)~——="—06"sinOsinh O
Ui
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Using these results, plot the Field Gradient and Integrated Gradient for
quadrupole doublet focusing needed for og = 80° per lattice period

Gradient ~ \/%\Lz ~ G
Integrated Gradient ~ 77\/%\[/2 /2 ~ GY

oo = 80° /(Lattice Period) Quadrupole Doublet

60. N
o \\ a—O 310203040!1 C;
10 - s
;= 40} \ E =
— i T o o !
5 s 300F = Su 4
U : f/ ..‘é g 3._
. —
10'f o =10.5 D :
; 3 |
0 5 2.
0 0.2 0.4 0.6 0.8 1

1, Oceupancy [1] 17, Oceupancy [1]
* Exact (non-expanded) solutions plotted dashed (almost overlay)

* Gradient and integrated gradient required depend only weakly on syncopation
factor @ when «v is near or larger than %2
* Stronger gradient required for low occupancy 7) but integrated gradient varies

comparatively less with 17 except for small «
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H.,Ke/aﬁf_‘ms_n______-ﬁ_tf'an_o_ec_z‘_éﬂs.ﬂ..MMax,...]'mn;:pa rlable  Perveenc

________.Qmﬁx én,;:( L‘:#Jcc_ qucame‘r[ecs' ‘

---------- - (1= cosou)! 2 l(1 — 20/8) — e 1P PP
max = 9372 : PRI |eq] Max([ry,]
| (—coson)'” af(l=20/8) —dla- Y2PQ-nPP e e

23/2 {1 L. (cos o) V2 (1—n/2)[1~A(a—1/2)2(1—)"] }
' 28/2[(1-27/3)—4{a—1/2)2(1—7)2}*/=

........ N.[ﬂ:h’:[?‘m] - \/ Qmax (Max[rm])
L, Y\ 2(1 —cosop) Tm

e {1 o (= cosoa2(1~ /)1 ~ 4fa — 1/2°(1 = )]
2(1"'[5055"[}) . 98/2 [(1_2??/3) _4(‘1_ 1/2)2(1—?7)2]1/2 1
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Envelope Flutter

- Maxfrn] (1 cos o) 2(1 ~m/2)[1 - 4(a — 1/27(L — n)?] |
Tm 2/2[(1 - 20/3) — d{a = 1/2)(1 - )]/
____________________ 3
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N\
i+ | |
......... ‘_E! 1'02 - ' . r : . . :_...._ﬂ_..
V- - |
—= 1.00}
__________ &, L0 -
Y % 0.08}) _
........... ¥ =
g Qﬂm 0.06 | Cé:' o_; OI[ Orz 1
?. E 004! a.on.JOJ;
. c : S =
3 ool _g ©o=30 |
_______ é .
' ool - - . '
=, 0.0 0.2 0.4 0.6 0.8 1.0

__________ . .
Derivation and application of scaling relations can be complicated.

* Constraints are typically incorporated in system design codes which generate plots

that can be interpreted more straightforward
* Analytic theory can still emphasize tradeofls and relevant factors to concentrate

optimzation effort on.

* Machine learning is being applied to optimize lattices
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Transport Limits of a Solenoidal Transport Channel

Covered in homework!
* Much easier than quadrupole cases!
* May summarize results from homework here in future notes
for completeness
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S10: Centroid and Envelope Descriptions
via 1* Order Coupled Moment Equations

When constructing centroid and moment models, it can be eflicient to simply
write moments, differentiate them, and then apply the equation of motion.
Generally, this results in lower order moments coupling to higher order ones and

an infinite chain of equations. But the hierarchy can be truncated by:
* Assuming a fixed functional form of the distribution in terms of moments
* And/Or: neglecting coupling to higher order terms

Resulting first order moment equations can be expressed in terms of a closed set
of moments and advanced in s or t using simple (ODE based) numerical codes.
This approach can prove simpler to include effects where invariants are not easily
extracted to reduce the form of the equations (as when solving the KV envelope
equations in the usual form).

Examples of effects that might be more readily analyzed:

+ Skew coupling in quadrupoles
pung i P See: references at end of notes and

J.J. Barnard, lecture on

+ Chromatic effects in final focus

* Dispersion in bends
Heavy-Ion Fusion and Final Focusing
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Resulting 1* order form of coupled moment equations:

d
—M=FM
- (M)

M = vector of moments, and their s derivatives, generally infinite
F = vector function of M, generally nonlinear

* System advanced from a specified initial condition (initial value of M)

Transverse moment definition:

(), = f d’x | f d? ' fL Can be generalized if other
)L = ariables such as off momentum
d?x | | d?x’ v
f L f L I are included in distribution f

Differentiate moments and apply equations of motion:

i<> fd2xlfd2xJ_ [ds ]fJ—
ds T [ d?x, [d?2’ fi

d
+ apply equations of motion to simplify PR

SM Lund, USPAS, 2020 Transverse Centroid and Envelope Descriptions of Beam Evolution 139




When simplifying the results, if the distribution form is frozen in terms of

moments (Example: assume uniform density elliptical beam) then we use
constructs like:

n:/de’L f1 =n(M)

to simplify the resulting equations and express the RHS in terms of elements of M

1* order moments:

X = <XJ_>J_ Centroid coordinate

=&)L Centroid angle

+ possible others if more variables. Example

A= (P2 = )

S

Centroid off-momentum

SM Lund, USPAS, 2020 Transverse Centroid and Envelope Descriptions of Beam Evolution 140




2" order moments:

It is typically convenient to subtract centroid from higher-order moments

rT=x—X ¥ =a — X'
y=y-Y z’J’Ey—Y’
b=6—A

Xx-moments y-moments x-y cross moments  dispersive moments

@) @ (@), (Z6), (56)
@) gy @'y, @y (2'9), (¥'0)
@)L @)L (@)L (0%)

3" order moments: Analogous to 2" order case, but more for each order

<573>L7 <5§2g>$7
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Many quantities of physical interest are expressed in transport can then be
expressed in terms of moments calculated when the equations are numerically

advanced in s and their evolutions plotted to understand behavior
* Many quantities of physical interest are expressible in terms of
1*and 2™ order moments

Example moments often projected:

Statistical beam size: Statistical emittances:
(rms edge measure) (rms edge measure)
- . . 1/2
re = 2(32) /2 er = 4 [(#2) L (F%) L — (37)2] "
. - . . 1/2
ry = 2057 ey =4[ @)L — (@7)1]

Kinetic longitudinal temperature:
(rms measure)

T, = const x (62)
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[llustrate approach with the familiar KV model

Truncation assumption: unbunched uniform density elliptical beam in free space
0=20 A
> Y

' no axial velocity spread
* All cross moments zero, i.e. (Zg); =0 v A A
d d g
%<33>L — <33/>L £<332>L = 2<3333/>L Y [ E/T“? >
d d |
E<x/>_l_ _ <~CU”>L £<$/2>J— — 2<CC/33//>_|_
X z

Use particle equations of motion within beam, neglect images, and simplify
* Apply equations in S2 with E', = 0

1 (’Vbﬁb)/ / . 2Q T — _
TN R T TR
y// 4+ (%61)) / 2@) (y . <y>J_) —0

Y + KyYy —
(V650) Y (12 + Ty)ry
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Resulting system of 1st and 2nd order moments
1** order moments:

(z) 1 ()1
d | @) | _ | —re(s){@)L
ds | (y). (W' 1
<y/>J_ i _’fy(s) Y) 1 |
2" order momen(s
<CU >L ] 2<§3£73 >_]_ |
tx’y ) ~12\ =2 Q)
ET) (F5) L — ko (s)(T >¢+2[g<2~>g>2+<@2>1/2]
~/2 — 2K rx’ 173 xf 5= 1/2
i <3i >J_ B fi (S)<$CE >J—+ <552>L/ [<£2>L/ ‘|‘<g2>¢/]
ds | (7°)L 2(g9") 1 /
o ~ B Q ~2\1/2
(7)1 (%) 1 = ko)) L+ gy
~19 _9 ~ ~f _ Q@?EZL _
T L Ry (SNGY )L+ g 7

* Express 1st and 2nd order moments separately in this case since uncoupled
* Form truncates due to frozen distribution form: all moments on LHS on RHS

* Integrate from initial moments values of s and project out desired quantities
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Using 2" order moment equations we can show that

d o o d
ds°® =0= ds Y

g2 =16 [(z*) 1 (z*) 1 — (za’)]] = const
=

2 16 [(4) L)1 — {yy')? ] = const

Using this, the 2" order moment equations can be equivalently expressed in the
standard KV envelope form:

dr, d 2 2
L:T;; L - Q _fz _
ds ds Ty + Ty rs
dry, , d 20 &
ds Ty ds Ty T hRyTy re + 7y 7‘2

+ Moment form fully consistent with usual KV model .... as it must be

* Moment form generally easier to put in additional effects that would violate
the usual emittance invariants
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Relative advantages of the use of coupled matrix form versus reduced equations

can depend on the problem/situation

Coupled Matrix Equations

d
—M =FM
- (M)

M = Moment Vector
F = Force Vector

* Easy to formulate
- Straightforward to incorporate
additional effects
* Natural fit to numerical routine
— Easy to numerically code/solve

SM Lund, USPAS, 2020

Reduced Equations

X"+ k,X =0
2 2
Q 2

!/
r’+ Kk.r., — ——
€T r'x

rs + 7y rs

etc.

Reduction based on identifying
invariants such as

ez =16 [(2%) L(3"%) L — (27)1]

helps understand solutions
* Compact expressions
incorporating physics can help
analytical understanding
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Refs for coupled moment formulations of centroid and envelope evolution:
* Use truncated moment chain to describe beam with implicit fixed form
distribution closure to calculate a broad range of effects

J.J. Barnard, H.D. Shay, S.S. Yu, A. Friedman, and D.P. Grote, “Emittance Growth in
Heavy-Ion Recirculators,” 1992 PAC Proceedings, Ontario, Canada, p. 229

J.J. Barnard, J. Miller, I. Haber, “Emittance Growth in Displaced Space Charge
Dominated Beams with Energy Spread,” 1993 PAC Proceedings, Washington, p. 3612
(1993)

J.J. Barnard, “Emittance Growth from Rotated Quadrupoles in Heavy Ion
Accelerators, ” 1995 PAC Proceedings, Dallas, p. 3241 (1995)

R.A. Kishek, J.J. Barnard, and D.P. Grote, “Effects of Quadrupole Rotations on the
Transport of Space-Charge-Dominated Beams: Theory and Simulations Comparing
Linacs with Circular Machines,” 1999 PAC Proceedings, New York, TUP119, p. 1761
(1999)

J.J. Barnard, R.O. Bangerter, E. Henestroza, I.D. Kaganovich, E.P. Lee, B.G. Logan,
W.R. Meier, D. Rose, P. Santhanam, W.M. Sharp, D.R. Welch, and S.S. Yu, “A Final
Focus Model for Heavy Ion Fusion System Codes,” NIMA 544 243-254 (2005)

J.J. Barnard and B. Losic, “Envelope Modes of Beams with Angular Momentum,”
Proc. 20th LINAC Contf., Monterey, MOE12 (2000)
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:

https://people.nscl.msu.edu/~lund/uspas/bpisc_2020

Redistributions of class material welcome. Please do not remove author credits.
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These course notes are posted with updates, corrections, and supplemental material at:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2020
Materials associated with previous and related versions of this course are archived at:

JJ Barnard and SM Lund, Beam Physics with Intense Space-Charge, USPAS:
https://people.nscl.msu.edu/~lund/uspas/bpisc_2017 2017 Version
https://people.nscl.msu.edu/~lund/uspas/bpisc_2015 2015 Version
http://hifweb.1bl.gov/USPAS_2011 2011 Lecture Notes + Info
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JJ Barnard and SM Lund, Interaction of Intense Charged Particle Beams with
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References: Continued (2):
Image charge couplings:

E.P. Lee, E. Close, and L. Smith, “SPACE CHARGE EFFECTS IN A BENDING
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Seminal work on envelope modes:
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Instabilities of Mismatched Intense Charged-Particle Beams in Periodic Focusing

Channels,” Particle Accelerators 14, 227 (1984)

M. Reiser, Theory and Design of Charged Particle Beams (John Wiley, 1994, 2008)

Extensive review on envelope instabilities:
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Efficient, Fail-Safe Generation of Matched Envelope Solutions:
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solutions of the Kapchinskij-Vladimirskij envelope equations,”” PRSTAB 9,
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Symmetries and phase-amplitude methods:
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Accelerators, (American Institute of Physics, 1982), AIP Conf. Proc. No. 87, p. 147

E. D. Courant and H. S. Snyder, “Theory of the Alternating-Gradient Synchrotron,”
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Analytical analysis of matched envelope solutions and transport scaling:

E. P. Lee, “Precision matched solution of the coupled beam envelope equations for a
periodic quadrupole lattice with space-charge,” Phys. Plasmas 9, 4301 (2005)

O.A. Anderson, “Accurate Iterative Analytic Solution of the KV Envelope Equations

for a Matched Beam,” PRSTAB, 10 034202 (2006)
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