# John Barnard Steven Lund <br> USPAS <br> June 12-23, 2017 <br> Lisle, Illinois 

## Summary of JB lectures

STAKT WITH WICKOSCOVIC PHME SVACE DENSITY
$N(\underline{x}, \underline{v}, t)=\sum_{i=1}^{N} \delta\left(\underline{x}-\underline{x}_{i}(t)\right) \delta\left(\underline{v}-\underline{V}_{i}(t)\right)$ Kimontrut tela bewthat



$$
\left[\frac{\partial f}{\partial t}+\underline{v} \cdot \frac{\partial f}{\partial \underline{x}}+\frac{d v}{\partial t} \cdot \frac{\partial f}{\partial \underline{v}}=\frac{\partial f}{\partial t_{c}}\right] \sim \frac{f}{\tau_{c}}
$$

$$
\text { We estimated } \frac{\left|\partial f / \partial t_{c}\right|}{\left|\frac{g E}{m}, \partial f / \partial \underline{v}\right|} \sim \frac{1}{16 \lambda_{0}^{3} n_{0}} \ll 1
$$

$$
\begin{gathered}
\lambda_{1}=V_{T H} / \omega_{p} \quad V_{f n} \equiv \sqrt{\frac{k T}{m}} \quad w_{p} \equiv \sqrt{\frac{g^{2} n}{\varepsilon_{0} m}} \\
\frac{\partial f}{\partial f}+\underline{v} \cdot \frac{\partial f}{\partial x}+\frac{d p}{d t} \cdot \frac{\partial f}{\partial p}=0 \quad \dot{p}=-\frac{\partial H}{\partial \underline{x}} ; \dot{x}=\frac{\partial H}{\partial p}
\end{gathered}
$$

$$
\frac{d f}{d t}=0 \quad \text { Liouvicues Einenon (incomplessibluioy of }
$$

 $\Delta v x \Delta x$

So Thet $4 y_{y} \Delta y$

$$
\varepsilon_{N X}^{2}=\gamma_{\beta}^{2}\left(\left\langle x^{2}\right\rangle\left\langle x^{\prime}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}\right)
$$

 CLINEAR WITAQUTCOUVLING TO Z. DK 47 .

$$
\begin{aligned}
& \frac{\partial N}{\partial t}+v \cdot \nabla_{n} \cdot N(\underline{x}, v, t)-\frac{q}{m}\left(E^{m}+v \times \beta^{m}\right) \cdot \nabla_{v} N(\underline{x}, \underline{1}, t)=0 \\
& \text { or } \frac{d N\left(x, v_{1} t\right)=0}{d t} \quad\left[\begin{array}{ll}
\text { Lettmy } & N=f+\delta f \\
E^{m}=E+\delta E & f=\langle N\rangle \\
E=\left\langle E_{m}\right\rangle
\end{array} \quad f=\frac{\int N d^{3} x d^{2} v}{\Delta s^{3} \Delta V^{3}}\right. \\
& B^{m}=B+8 B \ldots B=\left\langle B_{m}\right\rangle \\
& n^{-1 / 3} \ll x \lll>D
\end{aligned}
$$

We perived two sets or partcle equation or motion:

STARTING WITH THE LONENTE EOKCE EQUATON $\frac{d l}{d t}=q(E+\underline{v} \times B)$ In uf. COAN

$$
\begin{aligned}
& \text { 8-componeht: }
\end{aligned}
$$

$$
\begin{aligned}
& p_{0}=\gamma_{m r^{2}} \dot{\theta}+\frac{q B(z) r^{2}}{2}=\text { constant } \\
& =\gamma_{m} r^{2} \beta c \theta^{1}+\frac{q^{2} r^{2}}{2}=\text { conitant } \\
& r^{\prime \prime}+\frac{(\gamma \beta)^{\prime}}{\gamma \beta} r^{\prime}+\frac{\gamma^{\prime \prime}}{2 \beta^{2} \gamma} r+\left(\frac{\omega_{c}}{2 \gamma \beta c}\right)^{2} r-\left(\frac{p_{\theta}}{\gamma \beta m c}\right)^{2} \frac{1}{r^{3}}-\frac{q}{\gamma^{2} m v_{0}^{2}} \frac{\lambda(r)}{2 \pi \varepsilon_{0} r}=0
\end{aligned}
$$

STATISTICAC AVELAGE OE THIS EQUATON $\quad r_{b}^{2} \equiv 2\left\langle r^{2}\right\rangle$

$$
\begin{aligned}
r_{b}^{\prime \prime} & +\frac{(\gamma \beta)^{\prime}}{\gamma \beta} r_{b}^{\prime}+\frac{\gamma^{4}}{2 \beta^{2} \gamma^{\prime}} r_{b}+\left(\frac{\omega_{c}}{2 \gamma_{c}}\right)^{2} r_{b}-\frac{4\left\langle p_{b}\right\rangle^{2}}{\left(\gamma_{m} \beta\right)^{2} r_{b}^{3}}-\frac{\varepsilon_{r}^{2}}{r_{b}^{3}}-\frac{Q}{r_{b}}=0 \\
\varepsilon_{r}^{2} & \equiv 4\left(\left\langle r^{2}\right\rangle\left\langle r^{\prime 2}\right\rangle-\left\langle r r^{\prime}\right\rangle^{2}+\left\langle r^{2}\right\rangle\left\langle r^{2} \theta^{\prime 2}\right\rangle-\left\langle r^{2} \theta^{\prime}\right\rangle^{2}\right) ; \quad Q=\frac{q \lambda}{2 \pi \epsilon_{0} \gamma^{3} \beta^{2} \beta^{2} c^{2}} \\
& =\varepsilon_{x}^{2}-4\left\langle r^{2} \theta^{\prime}\right\rangle^{2} \quad\left(\text { if } \rho=\left(r^{(r)}\right. \text { ouly) }\right.
\end{aligned}
$$

Cartesian Equikton of Motion
EQUATION OE MOTION GAN STAKING WITH $\frac{d f}{d t}=q(E+v X B)$
return to: $x, y$ coordinates

Let $\left.\frac{\gamma_{m v_{z}}}{q}=\frac{p}{q} \equiv[r]\right]$ Roidiry

$$
y^{\prime \prime}+\frac{1}{\gamma v_{z}} \frac{1}{d s}\left(\gamma v_{z}\right) y^{\prime}=\frac{-q}{\gamma^{3} m v_{z}^{2}} \frac{\partial \varphi}{\partial y} \mp \begin{cases}\frac{B_{B}^{\prime}}{C_{B}} y & \text { magnetic } \\ \frac{q^{\prime}}{\gamma m v_{z}^{2}} y & \text { elechic }\end{cases}
$$

Define $r_{x}, r_{y}, \varepsilon_{x}, \varepsilon_{y}$, in terms of $2^{\text {nd }}$ order moments
ENVELOPE EQUATION

$$
\begin{aligned}
& r_{x}^{2}=4\left\langle x^{2}\right\rangle ; \quad r_{y}^{2}=4\left\langle y^{2}\right\rangle \\
& r_{x}^{\prime}=\frac{4\left\langle x x^{\prime}\right\rangle}{r_{x}} \\
& r_{x}^{\prime}=\frac{4\left\langle x x^{\prime \prime}\right\rangle}{r_{x}}+\frac{\varepsilon_{x}^{2}}{r_{x}^{3}} ; \\
& r_{y}^{\prime \prime}=\frac{4\left\langle y y^{\prime \prime}\right\rangle}{r_{y}}+\frac{\varepsilon_{y}^{2}}{r_{y}^{3}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\frac{d\left\langle x^{2}\right\rangle}{d s}=2\left\langle x x^{\prime}\right\rangle}{\frac{d\left\langle x x^{\prime}\right\rangle}{d s}=\left\langle x x^{\prime \prime}\right\rangle+\left\langle x^{\prime 2}\right\rangle} \\
\frac{d\left\langle x^{\prime}\right\rangle}{d s}=2\left\langle x^{\prime} x^{\prime}\right\rangle \\
\varepsilon_{x}^{2}=16\left(\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}\right. \\
\varepsilon_{y}^{2}=16\left(\left\langle y^{2}\right\rangle\left\langle y^{2}\right\rangle-\left\langle y y^{\prime}\right\rangle^{2}\right\rangle
\end{gathered}
$$

Fo magnetic focusing:

$$
\begin{aligned}
& r_{x}^{\prime \prime}+\frac{1}{\gamma v_{z}} \frac{d}{j}\left(\gamma v_{z}\right) r_{x}^{\prime}+\frac{4 q}{\gamma_{m}^{3} v_{z}^{2}} \frac{\left\langle x \frac{\partial \varphi}{\partial x}\right\rangle}{r_{x}} \neq \frac{B^{\prime}}{[\beta]} r_{x}-\frac{\varepsilon_{x}^{2}}{v_{x}^{3}}=0 \\
& r_{y}^{u}+\frac{1}{\gamma v_{z}} \frac{\partial}{\partial s}\left(\gamma v_{z}\right) r_{y}^{\prime}+\frac{4 q}{\gamma^{3} m v_{z}^{2}} \frac{\left\langle y \frac{\partial \varphi}{\partial y}\right\rangle}{r_{y}} \pm \frac{B^{\prime}}{\left[b_{j}\right]} r_{x}-\frac{\varepsilon_{y}^{2}}{r_{y}^{3}}=0
\end{aligned}
$$

(for electric focusing $\frac{B^{\prime}}{\left[B p^{]}\right.} \rightarrow \frac{q E^{\prime}}{\gamma m v_{z}^{2}}$ )

We included a
spage charge tarm with Elliftical Symmetry
Now defocusing in one dilection ani focosing in The other $\Rightarrow$ Rapial symmerry shovld be leflecti 14. ELLITICAL Symuetry: $\quad \rho=\rho\left(\frac{x^{2}}{r_{x}^{2}}+\frac{y^{2}}{r_{y}^{2}}\right)$

CAN BE SHOWN THAT $\left\langle x \frac{\partial f}{\partial x}\right\rangle=\frac{-\lambda}{4 \pi \epsilon_{0}} \frac{r_{x}}{r_{x}+r_{y}}$

$$
\left\langle y \frac{\partial \phi}{\partial y}\right\rangle=\frac{-\lambda}{4 \pi \varepsilon_{0}} \frac{r_{1}}{r_{x}+r_{y}}
$$

USE, $\phi(x, y)=\frac{-r_{x} r_{y}}{4 \varepsilon_{0}} \int_{0}^{n} \frac{y(x) d s}{\sqrt{r_{x}^{2}+s} \sqrt{r_{1}^{2}+s}}$ to prove, whert $\hat{\rho}(x)=\frac{d y}{\sqrt{x}}$.

$$
\begin{aligned}
& \text { DEFINING } Q=\frac{2 \lambda q}{4 \pi \varepsilon_{0} \gamma^{3} m v_{z}^{2}} \quad \begin{array}{l}
\rho(x, y)=\left.\hat{p}(\pi)\right|_{s=0} \\
x=\frac{x^{2}}{r_{x}^{2}+s}+\frac{y^{2}}{r_{y}^{2}+s} \\
r_{x}^{\prime \prime}+\frac{1}{\gamma v_{z}} \frac{d}{d s}\left(\gamma v_{z}\right) r_{x}^{\prime}-\frac{2 Q}{r_{x}+r_{y}} \mp \frac{B^{\prime}}{[B p]} r_{x}-\frac{\varepsilon_{x}^{2}}{r_{x}^{3}}=0 . \\
r_{y}^{\prime \prime}+\frac{1}{\gamma v_{z} d s}\left(r_{z}\right) r_{y}^{\prime}-\frac{2 Q}{r_{x}+r_{y}} \pm \frac{B^{\prime}}{\left[r_{p}\right]} r_{y}-\frac{\varepsilon_{y}^{2}}{r_{y}^{3}}=0
\end{array} .
\end{aligned}
$$


(analogve to circular beam:

$$
\left\langle r \frac{\partial \phi}{\partial r}\right\rangle=\frac{-\lambda}{4 \pi \varepsilon_{0}} \quad \text { Proved in Homenedle) }
$$

## Envelope Equations derived in course:

I. Statistical rms envelope equations (envelopes defined in terms of rms quantities; emittance not guaranteed to be a conserved quantity).

1. Paraxial: $r_{b}$; azimuthal symmetry; $\rho(r)$
2. Cartesian; $r_{x}, r_{y}$; elliptical symmetry $\rho\left(x^{2} / r_{x}{ }^{2}+y^{2} / r_{y}{ }^{2}\right)$
3. Longitudinal: $r_{z}$ for

$$
E_{z}=-\frac{g}{4 \pi \varepsilon_{0}} \frac{\partial \lambda}{\partial z} \propto z ; \quad \lambda \propto\left(1-4 z^{2} / r_{z}^{2}\right) ; \quad v \propto z / r_{z}
$$

4. Ellipsoidal (rf) bunches: $\quad r_{1}, r_{z}$ (Also $r_{x}, r_{y}, r_{z}$; cf Wangler sec 9.9)
5. Cartesian with images: $r_{x}, r_{y}$;
6. Larmor frame: periodic solenoids: $\quad \tilde{r}_{x}, \tilde{r}_{y}$
7. Cartesian including scattering: $r_{x}, r_{y}$; emittance evolves

$$
\frac{d \varepsilon_{x}^{2}}{d s}=4 C_{s c} r_{x}^{2}
$$

II. Kinetic envelope equations (constraint equations governing the parameters of the distribution function.
Emittance conserved.)

1. KV distribution elliptical uniform density beam $f\left(x, x^{\prime}, y, y^{\prime}\right) \sim \delta\left(1-C_{x}-C_{y}\right) ; \quad E_{x} \sim x ; \quad E_{y} \sim y$;
(Identical envelope equation to \#2 above).
2. Neuffer distribution for 1D (longitudinal projections of phase space) parabolic line charge density profiles
$f\left(z, z^{\prime}\right)^{\sim}\left(1-C_{z}\right)^{1 / 2} ; E_{z} \sim z$;
(Identical envelope equation to \#3 above).
III. Moment equations
3. Transverse with chromatic effects

$$
\left\langle x^{2}\right\rangle,\left\langle x x^{\prime}\right\rangle,\left\langle x^{\prime 2}\right\rangle,\left\langle x^{2} \delta\right\rangle,\left\langle x x^{\prime} \delta\right\rangle,\left\langle x^{\prime 2} \delta\right\rangle, \ldots
$$

## Summary of current limits for different focusing systems

## Einzel lens <br> Solenoid <br> Quadrupole

$Q_{\text {max }} \cong \frac{3 \pi^{2}}{8}\left(\frac{q \phi_{0}}{m v_{0}^{2}}\right)^{2}\left(\frac{r_{b}}{L}\right)^{2}$
Here $2 \phi_{0}=$ voltage between Einzel lenses;

$$
Q_{\max } \cong \frac{\eta \sigma_{0}}{2 \pi}\left(\frac{\sin \frac{\eta \pi}{2}}{\frac{\eta \pi}{2}}\right)\left\{\begin{array}{l}
\left(\frac{B r_{b}}{[B \rho]}\right)\left(\frac{r_{b}}{r_{p}}\right) \text { magnetic } \\
\left(\frac{2 q V_{q}}{\gamma m v_{z}^{2}}\right)\left(\frac{r_{b}}{r_{p}}\right)^{2} \text { electric }
\end{array}\right.
$$

$V q=$ quad voltage relative to ground; $q V=$ ion energy
For non-relativistic beams: $\lambda_{\text {max }} \cong 4 \pi \varepsilon_{0} V Q_{\text {max }}$

$$
\sigma_{0} \sim\left\{\begin{array}{cc}
\eta L^{2} B /\left(r_{p}[B \rho]\right) & \text { electric } \\
2 \eta L^{2} q V_{q} /\left(r_{p}^{2} \gamma m v_{z}^{2}\right) & \text { magnetic }
\end{array}\right.
$$

$$
\lambda_{\max } \propto \frac{\phi_{0}^{2}}{V} \quad \lambda_{\max } \propto \frac{q}{m} B^{2} r_{p}^{2}
$$

$$
\lambda_{\max } \propto\left\{\begin{array}{cc}
\left(\frac{q V}{m}\right)^{1 / 2} B r_{b} & \text { magnetic } \\
V_{q} & \text { electric }
\end{array}\right.
$$

For non-relativistic beams: $I_{\text {max }} \cong \beta c \lambda_{\text {max }}=\left(\frac{q V}{m}\right)^{1 / 2} \lambda_{\text {max }}$

$$
\begin{array}{r}
I_{\max } \propto\left(\frac{q}{m}\right)^{1 / 2} \frac{\phi_{0}^{2}}{V^{1 / 2}} \quad I_{\max } \propto\left(\frac{q}{m}\right)^{3 / 2} V^{1 / 2} B \\
\text { The Heavy Ion Fusion Virtual National Laboratory }
\end{array}
$$

$$
I_{\max } \propto \begin{cases}\left(\frac{q V}{m}\right) B r_{b} & \text { magnetic } \\ \left(\frac{q V}{m}\right)^{1 / 2} V_{q} & \text { electric }\end{cases}
$$



Longitudinal Dynamics Summary
1D Vlasov Equation ( $\int($ Vlasov Equation $) d x d x^{\prime} d y d y^{\prime}$

$$
\begin{array}{lll}
\frac{\partial \hat{f}}{\partial s}+z^{\prime} \frac{\partial \hat{f}}{\partial z}+z^{\prime \prime} \frac{\partial \hat{f}}{\partial z^{\prime}}=0 & E_{z}=-\frac{g}{4 \pi \varepsilon_{0}} \frac{\partial \lambda}{\partial z} & \begin{array}{l}
\text { "g-factor } \\
\text { model" }
\end{array} \\
z^{\prime \prime}=\frac{q E_{z}}{m v_{0}^{2} ;} & \frac{\partial^{2} \phi}{\partial z^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)=\frac{-\rho}{\varepsilon_{0}} &
\end{array}
$$

Child-Langmuir in 1-D diode Leads to fluid equations ( $\int\left(1 D\right.$ Vlasov Equation) $\mathrm{dz}^{\prime}$

$$
\frac{\partial \lambda}{\partial s}+\frac{\partial\left(\lambda \bar{z}^{\prime}\right)}{\partial z}=0
$$

$$
\begin{aligned}
& \frac{\partial \bar{z}^{\prime}}{\partial s}+\bar{z}^{\prime} \frac{\partial \bar{z}^{\prime}}{\partial z}+\frac{1}{\lambda} \frac{a\left(\lambda \Delta \bar{z}^{\prime 2}\right)}{\partial z}=\frac{q E_{z}}{m v_{0}^{2}} \\
& \text { Momentum Equation } 0
\end{aligned}
$$

$1 \mathrm{DEz}=>$ Non-linear solution to fluid equations:
Child Langmuir solution;
2D Pierce electrodes; (extends CL for finite radius beam)
Time dependent Lampel-Tiefenback sol. (extends CL for finite $\Delta \mathrm{t}$ )
g -factor $=>$ Space-charge waves -> $\omega=c_{\mathrm{s}} k, \Lambda_{1} \sim \mathrm{f}^{+}+\mathrm{f}$ and $v_{1} \sim \mathrm{f}+\mathrm{f}-$ => Longitudinal resistive instability
=> Space charge rarefaction waves (non-linear solution to fluid eqs.)
=> Parabolic bunch compression and stagnation (non-linear solution to fluid eqs.)

Longitudinal Envelope Equation: ( $\int\left(1 D\right.$ Vlasov Equation) ${ }^{\prime}$ dzdz $^{\prime}$

$$
\frac{\partial^{2} r_{Z}}{\partial s^{2}}-K(s) r_{Z}+\frac{3 g q Q_{C}}{4 \pi \varepsilon_{0} m v_{0}^{2}} \frac{1}{r_{Z}^{2}}+\frac{\varepsilon_{Z}^{2}}{r_{Z}^{3}}=0
$$

Kinetic solution to Vlasov Equation, obeying envelope equation: Neuffer distribution: $f\left(z, z^{\prime}\right)=\frac{3 N}{2 \pi \varepsilon_{2}} \sqrt{1-c_{z}^{2}}=\frac{3 N}{2 \pi \varepsilon_{z}} \sqrt[1]{1-\frac{z^{2}}{r_{2}^{2}}-\frac{r_{2}^{2}\left(z^{\prime}-\frac{r_{2}^{\prime} z_{z}^{\prime}}{z_{z}}\right)^{2}}{\varepsilon_{z}^{2}}}$

Estimating Siot Size

$$
\begin{aligned}
& r_{x}^{\prime \prime}+\frac{\left(\gamma_{y} p_{y}\right)^{\prime}}{\gamma_{x} p_{y}} r_{x}^{\prime}+k_{x} r_{x}-\frac{2 Q}{r_{x}+r_{y}}-\frac{\varepsilon_{x}^{2}}{r_{x}^{3}}=0 \\
& r_{y}^{\prime \prime}+\frac{\left.\left(x_{y}\right)_{y}^{\prime}\right)^{\prime}}{\gamma_{p} p_{b}} r_{y}^{\prime}+k_{y} r_{y}-\frac{2 Q}{r_{x}+r_{y}}-\frac{\varepsilon_{y}^{2}}{r_{y}^{3}}=0
\end{aligned}
$$

In chamber: No expernat focusing; no necelelation and beam is dfeen circulata (by desion)

$$
\Rightarrow \quad k_{x}=k_{y}=\left(k_{k}\left(\beta_{b}\right)^{\prime}=0 \quad \& r_{x}=r_{y}=r_{b}\right.
$$

$\Rightarrow$ ENUTLOH EQUATION IS:

$$
r_{b}^{\prime \prime}=\frac{\mathbb{Q}}{r_{b}}+\frac{\epsilon^{2}}{r_{b}^{3}}
$$



MULTNLYING BY $r_{b}^{\prime}$ \& INTEGARNG $\Rightarrow$

$$
\frac{r_{b f}^{\prime 2}}{2}-\frac{r_{b 0}^{\prime 2}}{2}=Q \ln \frac{r_{b f}}{r_{b 0}}+\frac{\varepsilon^{2}}{2 r_{b 0}^{2}}-\frac{\varepsilon^{2}}{2 r_{b f}^{2}}
$$

Now $\quad r_{b \theta}^{\prime} \cong \theta \quad r_{b f}=$ sjot radiul $\quad r_{b f} \ll r_{b 0}$

$$
\begin{gathered}
r_{b f}^{\prime}=0 \quad r_{b o} \stackrel{N}{=} d \theta \\
\Rightarrow \theta^{2} \cong 2 Q \ln \left(\frac{\theta^{d}}{r_{L f}}\right)+\frac{\epsilon^{2}}{r_{b f}^{2}}
\end{gathered}
$$

WHEN QE $O$

$$
\begin{aligned}
& \alpha \approx 6 \text { (system sependurt) }
\end{aligned}
$$



NOKMAL MOOES

LQNGITUDINAL

Shace-chakge WhUES (rcuid)
$\omega= \pm e_{5} k \quad\left[\right.$ In Comoving $\left.\begin{array}{c}\text { Beam funme }\end{array}\right]$

$$
c_{s}=\sqrt{\frac{99 \lambda_{0}}{4 \pi \epsilon_{0} m}}=\frac{\text { Sraee chatcor whys }}{\text { SHEED }}
$$

Transuense
enverore mopes
CONTINJOUS FOCUSING (LONG bunchei)
BREATHING: $\quad k_{B}^{2}=2 k_{p}^{2}+2 k_{B}^{2}$
Quadrupole $k_{Q}^{2}=k_{\beta O}^{2}+3 k_{p}^{2}$

$$
\left(\text { HexE } k_{\beta}^{2} \equiv k_{p}^{2}-\frac{Q}{r_{b}^{2}}\right)
$$

(ANALOGOUS MOAE in BUNCHED BEAMS)

Steve logkei ht mores in pexiddic systems al continious focuring

+ Kineme Modes (Glucestrens viodar)
+ Fluti manss


## Instabilities

1. Longitudinal (resistive wall) instability (fluid instability)
2. Electron-ion instability
(centroid instability)

Steve talked about:
3. Envelope instabilities

Steve talked about:
4. Kinetic instabilities
(distribution function dependent)
5. Single particle resonant instabilities
-- Halo
-- Ring resonances (covered by Steve)

## Several potential instabilities have been investigated in HIF drivers

Temperature anisotropy instability
After acceleration $T_{1 \mid} \ll T_{1}$ internal beam modes are unstable; saturation occurs when $\bar{T}_{\| \mid} \sim T_{\perp} / 3$. (cf E.A. Startsev, R.C. Davidson, H. Qin, PRSTAB 6084401 (2003) and references therein).

Longitudinal resistive instability
Module impedance interacts with beam, amplifying space charge waves that are backward propagating in beam frame. (cf. Reiser, $2^{\text {nd }}$ ed., chap. 6, K. Takayama and R. J. Briggs,eds., in Induction Accelerators, [Springer, NY], (2012), chap. 9 and references therein).

Beam-break up (BBU) instability
High frequency waves in induction module cavities interact transversely with beam (cf., K. Takayama and R. J. Briggs, eds., in Induction Accelerators, [Springer, NY], (2012), chap. 7 and references therein).

Beam-plasma instability
Beam interacts with residual gas in the target chamber (cf. R.C. Davidson and H. Qin in Phys. of Intense Charged Particle Beams in High Energy Accelerators, [Imperial College Press,London], (2001), chap 10).


HALO:
Coke tost panticle model:

$$
\begin{aligned}
& x^{\prime \prime}= \begin{cases}-\left[k_{p 0}^{2}-\frac{Q}{r_{b}^{2}}\right] x & \text { for } r<r_{b} \\
-\left[k_{b 0}^{2}-\frac{0}{r^{2}}\right] x & \text { fir } r>r_{b}\end{cases} \\
& r_{b}=r_{b_{0}}+\delta r_{b} \cos \left(k_{b} s+\phi\right)
\end{aligned}
$$

Geucksten's phar awe litude analysis:

$$
x^{11}+\left[k_{p o}^{2}-\frac{Q}{r_{b o}^{2}}\right] x=f(x)
$$

Nou linean + forcity part
$x=A \sin \psi \quad x^{\prime}=k_{B} A \cos \psi \quad \leftarrow$ PHASE/AMPLITUDE
$\psi=k_{p} s+\alpha$ If $f=0$ A $\ddagger \phi$ would be cidestant
$\Rightarrow \quad A^{\prime}=\frac{1}{k_{p} r_{b 0}} f \cos \psi \quad \alpha^{\prime}=\frac{-1}{k_{p} r_{b 0} A} f \sin \psi$
DERING RESONANT PHASE $\Psi_{r}=2 \psi-k_{B}$
Avelhae oval All nou-hetonjar plequencles

$$
A_{r}^{\prime}=\frac{1}{k_{p} r_{b 0}} \int_{-\pi}^{\pi} f^{\prime} \cos \psi \frac{d i t}{2 \pi} ; \quad \alpha_{r}^{\prime}-\frac{1}{k_{1} A r} \int_{-\pi}^{\pi} \frac{d u}{2 \pi}+\operatorname{swi}
$$

$$
\rightarrow A_{r}^{\prime}, \Psi_{r}^{\prime} \rightarrow \omega_{1}^{\prime} \Psi_{r}^{\prime} \rightarrow H\left(\omega, \Phi_{r}\right) \rightarrow \text { GANE RESONHAN }
$$

PARTCLE TMAJECTOM

4 Selatefux

Numerically determined frequency and amplitude of particle. oscillations: linear rf focusing






Those particles that are exiting the beam when beam radius is small, and entering beam when beam radius is large, get larger "kick" going out and smaller kick coming in, so are driven to large amplitude.

| $\mathrm{HI}^{+}$Heavy ion | $\bigcirc_{\text {molecule }}^{\text {Residual gas }}$ | $\mathrm{e}^{-}$electron |
| :--- | :--- | :--- |

## Processes:

1. Coulomb collisions (intra-beam)

2. Coulomb collisions with residual gas

3. Charge exchange

4. Stripping

5. Neutralization


Charge changing collisions:

Beam loss;
$\eta_{\mathrm{HI}}$ molecules from wall
$\frac{d n_{g}}{d t}=\frac{n_{g}}{\tau}+q_{e f f}$ molecules from wall
7. Wall interactions
desorption \& sputtering reflection

$\gamma$ synchrotron photon

Summary of electron, gas, pressure, and scattering effects

1. Coulomb collisions within beam can transfer energy from

L to || and provide lower limit on $T_{| |}$, higher than from accelerative cooling.
2. Coulomb interactions with residual gas nuclei provide a source of emittance growth (but usually not important for higher mass and linac residence times.)
3. Pressure instability from desorption of residual gas by stripped beam ions hitting wall or beam ionized residual gas atoms, forced to wall by E-field of beam. Limits current in rings or high repetition rate linac.
4. Electron can cascade and reach a "quasi" equilibrium population of similar line charge to the ion beam electronion two stream instability is unstable, and can lead to transverse instability, similar to what is observed in some proton rings.

Induction acceleration for HIF consists of several subsystems and a variety of beam manipulations


## Inertial fusion energy (IFE) power plants of the future will consist of four parts



A power plant driver would fire about five targets per second to produce as much electricity as today's 1000 Megawatt power plant
$\rightarrow$ 皿

$$
f\left(z, z^{\prime}\right)=\frac{3 N}{2 \pi \varepsilon_{z}} \sqrt{1-C_{z}^{2}}=\frac{3 N}{2 \pi \varepsilon_{z}} \sqrt{1-\frac{z^{2}}{r_{Z}^{2}}-\frac{r_{Z}^{2}\left(z^{\prime}-\frac{r_{r}^{\prime} Z}{r_{z}}\right)^{2}}{\varepsilon_{Z}^{2}}}
$$

LONGITVDINAC DYNAmics Summary
1 IDLASOV EquATION (S(VLAsOU Equaton) $d x d x^{\prime} d y d y$ )

$$
\frac{\partial \tilde{f}}{\partial s}+z^{\prime} \frac{\partial \tilde{f}}{\partial z}+z^{\prime \prime} \frac{\partial \tilde{f}}{\partial z^{\prime}}=0
$$

$$
E_{z}=-\frac{9}{4 t \varepsilon_{9}} \frac{\partial \lambda}{\partial{ }^{2}} \quad \text { "g-foctog" }
$$

$$
z^{\prime \prime}=\frac{q E_{z}}{m v_{0}^{2}} ; \quad \frac{\partial^{2} \phi}{\partial z^{2}}+\frac{1}{h} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)=-\frac{f}{\varepsilon_{0}}
$$

Child-LANGmuir in

$$
1-0 \text { PIOPE }
$$

LeAnS TO FLUIA EQURTIONS (f(DDVarov Equation) $d z^{\prime}$ )

$$
\begin{aligned}
& \frac{\partial \lambda}{\partial s}+\frac{\partial}{\partial z}\left(\lambda \bar{z}^{\prime}\right)=0 \\
& \frac{\partial \bar{z}^{\prime}}{\partial s}+\bar{z}^{\prime} \frac{\partial \bar{z}^{\prime}}{\partial z}+\frac{1}{\lambda} \frac{\partial}{\partial z}\left(\lambda \Delta z^{\prime z}\right)=\frac{q E_{z}}{w v_{0}^{\prime}}
\end{aligned}
$$


Outward expansion at $2 c_{s}$; Inward at $c_{s}$ SODutTON TO FLUID EquNS.
$\Rightarrow$ Valabolic bunch Comikessions $\leftarrow$ NON-LInext socution



$$
\frac{d^{2} r_{z}}{d s^{2}}=\frac{\varepsilon_{2}^{2}}{r_{2}^{3}}+\frac{3}{2} \frac{g q Q_{c}}{4 \pi \varepsilon_{0} m v^{2}} \frac{1}{r_{2}^{2}}-k(r) r_{z}
$$


Ls Nenmer Distur ufion

$$
f\left(z, z^{\prime}\right)=\frac{3 N}{2 \pi \varepsilon_{z}} \sqrt{1-\frac{z^{2}}{r_{7}^{2}}-\frac{r_{z}^{2}\left(z^{\prime}-r_{7}^{1} 7 / r_{7}\right)^{2}}{\varepsilon_{z}^{2}}}
$$

