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Numerical dispersion and Courant limit

1D discrete propagation equation in vacuum

Reminder: 1D discrete Maxwell equations in vacuum
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These equations can be combined into a propagation equation for F:
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Numerical dispersion and Courant limit

1D dispersion relation

1D discrete propagation equation in vacuum

1 Eop™ —2F.3 + Bz~ Eofyy — 2B} + Eof s
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— Von Neumann analysis: assume the solutions of this equation are of
the form Epe*~ "' (propagating wave), i.e.
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xl —

Replacing this ansatz into the discrete progagation equation yields
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Numerical dispersion and Courant limit

cAt < Az — Numerical dispersion

For cAt < Az, the discrete dispersion relation

1 S, (wAt 1 | 5 (kAz
2Ae > T ) T Az T

has real solutions w, for any k:

2 e (A (RA
W = At arcsin Az S111 9

Thus, the phase velocity vy = w/k is:

v + 2 arcsin cAt Sin kAz
=4+ — 1 —— sl
¢ kAt Az 2

Numerical dispersion

In a PIC code, the electromagnetic waves propagate (in vacuum)
at a velocity which depends on k (and on At, Az),

instead of propagating at the speed of light: vy = £c




Numerical dispersion and Courant limit

cAt < Az — Numerical dispersion
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Numerical dispersion and Courant limit

cAt > Az — Courant limit

For cAt > Az, the discrete dispersion relation

1 S, (wAt 1 | 5 (kAz
2Ae > T ) T Az T

has no real solutions w, for k close to w/Az. The solution w is
imaginary and the corresponding mode is unstable.

Courant limit (a.k.a. CFL limit)

Standard EM-PIC codes are unstable for cAt > Az (in 1D).

@ Thus, practical use of electromagnetic PIC codes is restricted

to At < Az/c.

@ For a given spatial resolution Az, this limits how fast a
simulation can advance in time.

@ Electrostatic PIC codes do not have this limitation
— Can be much faster than EM-PIC codes to simulate a system
over a given period of time, by taking large timesteps At.
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Numerical dispersion and Courant limit

Dispersion and Courant limit in 3D

Derivation of dispersion relation

Combine discrete Maxwell equation — Discrete propagation equation
— Von Neumann analysis — Numerical dispersion relation

Same process in 3D. The Von Neumann analysis assumes:

E — Eoeikwx—l—ikyy—l—ikzz—iwt

3D Numerical dispersion relation

sin? (451) in? (hepr) s (M) gin? (hep2)
2At2 Ax? T Ay? T Az?

instead of the physical dispersion w? = ¢?(k? + kg + k?)

Courant limit (a.k.a CFL limit) in 3D
1
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Numerical dispersion and Courant limit

Numerical dispersion in 3D

3D Discrete dispersion relation

in? (45) _sin® (Bapr) sin® (BP2) 2 (o)
A2 Ax? i Ay? i Az?

Velocity depends on the wavelength and propagation direction.

Example: expanding electromagnetic wave

Physical Simulated

Even for At = Atcpyr: waves are slower than c along the main axes. o



Numerical dispersion and Courant limit

Impact of numerical dispersion

Animation: laser-wakefield acceleration

@ A short and intense laser pulse, followed
by a relativistic electron bunch, enters
a plasma (generated from a gas jet).

@ The laser pulse generates a wake in the
plasma, with electric fields that can
accelerate the electron bunch.

@ Simulation with the Yee scheme (and low
resolution):

o The laser is artificially slow
(numerical dispersion)

e Thus the electron bunch catches up
with the laser very soon!

Standard Yee scheme (unphysical)
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Dispersion-free scheme (physical)
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Numerical dispersion and Courant limit

Yee scheme

Finite-difference in space and time

e.g. continuous equation :

0B. (OB, OE,
ot ox oy

— discrete equation : Brti/2 — g not/2 _ At(éxEy|n — éyEa:|n)

n n

o1 ., 4 1.
. A 7‘+_7.7’£ ’L__)Jae
with 0. F|}; , = 22
Physical Simulated

@ Anisotropic

@ Wayves propagate slower
than c.
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Numerical dispersion and Courant limit

Pseudo-spectral solver

Fourier transform in space, finite-difference in time

— Fourier space : 98- = — (zkwé’y — zkyéx )
— Tinite difference in time : BPTY2 = B7~1/2 _ A¢ ( zkxé;] — ik, ED )

— Use backwards FFT to obtain B2 from B2 /2

Physical Simulated .
@ Isotropic

@ Waves propagate faster
than c.
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Numerical dispersion and Courant limit

Analytical pseudo-spectral solver (Haber et al., 1973)

Fourier transform in space, finite-difference in time

0B. ([ 0Ey Ok,
ot Ox 0y

e.g. continuous equation :

— Fourier space : den (zkxéy — ik, &, )

ot
— Analytical integration of the coupled Maxwell equations in time:
B! = cos(keAt)BY — SIH(ZCN) ( ikall — ik, £ ) k= \/kg + k2 o+ k2
c

— Use backwards FFT to obtain B?*! from B2 1!

Physical Simulated .
@ Isotropic

@ Wayves propagate
exactly at c.
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Numerical dispersion and Courant limit

Dispersion and Courant limit: conclusions

@ Electromagnetic solvers have a maximum value for the
timestep At (Courant limit), which depends on the dimension
(and the method of discretization)

@ Below the Courant limit, waves may propagate at speeds that
artificially differ from ¢ (numerical dipersion).
This can have a strong impact in some physical situations.

@ Spectral solvers can mitigate (or even eliminate) numerical
dispersion.

16
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Open boundaries conditions

Boundary conditions and EM-PIC

Reminder: 1D discrete Maxwell equations in vacuum

n+1/2 n—1/2 n n
Bye+1/2 - Bye+1/2 . _EMH — By
At B Az
n n n+1l/2 n+1/2
E,7™ — E,;} L 2 Buoi17a = Byp_1)9
At B Az
Yy
8 Az (VN —=1)Az NAz
@ O o — - @ O @ O
n n+1/2 n n+1/2 n+1/2 n n+1/2 n
Ezg Byl/Q B By3/2 ByN—3/2 Ba -1 ByN—1/2 Ean

The grid is finite:

@ For ¢ = 0: B,""2 is undefined.

Ye—1/2

@ For ¢ = N: B," T2 is undefined.

Ye+1/2

— Assumptions are needed, for the value of B, /5

n+1/2 n+1/2
and By 'y /-
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Open boundaries conditions

Boundary conditions and EM-PIC

8 Az (N —-1)Az NAz
® O ®o— - ® O ® O

n n+1/2 n n+1/2 n+1/2 n n+1/2 n
Ezg Byl/Q 13 By3/2 ByN—3/2 Bio N1 ByN—1/2 Eon

Typical assumptions

® Periodic: B,""/* = B,""/2 and B,"*Y/2 = B,"!/?

Y_1/2 N—1/2 YN+1/2 Y1/2

@ Dirichlet: B,"TY/? =0 and B,”"*/2 =0

Yy—1/2 YN+1/2 —
n+1/2 n+1/2 n+1/2 n+1/2
@ Neumann: By_1/2/ = By, /s /2 and ByNJrl//2 = ByN_l//2

(1e asz g+1/2 = 0 and 8sz 7\,—'_1/2 = O)
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Open boundaries conditions

Boundary conditions and EM-PIC

Problem:

Dirichlet and Neumann boundary conditions reflect the EM waves.
For many physical problems, we need the boundaries to absorb the waves.

Animation: Neumann boundary conditions

2F

0 20 40 60 80 100

This is because, physically, an outgoing wave does not satisfy
By(nAz) = 0 (Dirichlet) or 9,B,(nAz) =0 (Neumann)

20



Open boundaries conditions

Silver-Miiller absorbing boundary (right-hand side)

YN+1/2

The value of B ntl/2 should be chosen so as to be
consistent with an outgoing wave.

Physically, for an outgoing wave propagating to the right (from Maxwell’s
equation):

1
By(z,t) = —Ez(z,t)
c
Numerically, we can express it as:

1
n+1/2 n+1/2
By N / — _C Ex N /

Because of staggering:

n+1/2 n+1/2 " "
Byn'ije T Byn_1i/9 1 E. 5+ ELY

2 e 2
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Open boundaries conditions

Silver-Miiller absorbing boundary (right-hand side)

8 Az (N —-1)Az NAz
@ O o — - @ O @ O

n n+1/2 n n+1/2 n+1/2 n n+1/2 n
Lz Byl/z z1 By3/2 ByN—3/2 Ean_1 ByN—1/2 BN

By combining the equations:

B n+1/2 +B n+1/2 1 E n+1 E n
YN+1/2 > YN—-1/2 _ =N 2+ TN (right_propagating Wave)
C
i . n+1/2 5 nt1/2
E:BN+ — PaeN o 2 ByN+1/2 ByN_1/2 (Maxwell equation)
At Az

See e.g. Bjorn Engquist (1977)
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Open boundaries conditions

Silver-Miiller absorbing boundary (right-hand side)

Silver-Miiller boundary condition (right-hand side)

2cAt 2¢% At
n+1 . n n+1/2
E = (1 ) zN T cAt—l—AszN_1/2

Animation: Silver-Miiller boundary conditions

2F

0 20 40 60 80 100
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Open boundaries conditions

Silver-Miiller absorbing boundary (left-hand side)

a Az (N —1)Az NAz
@ O ®— - -- @ O @ O

n n41/2 n n41/2 n41/2 n n41/2 n
z0 Byl/Q T 1 By3/2 ByN—3/2 Ban_1 ByN—1/2 LN

By combining the equations:

n—|—1/2 7’L—|—1/2 n n
Byl/2 +By—1/2 1Em0+1+Em0 .
5 = - 5 (left-propagating wave)
c
. . n+1/2 n+1/2
EﬂcoJrl — Fao — Byl/Q By_1/2 (Maxwell equation)
At Az
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Open boundaries conditions

Silver-Miiller absorbing boundary in 3D

Maxwell equation:

1 1 1 1
gt _ g nt3 _ B, "2 nT g _p "ta
Tit 5.0, Titg..¢ Zitg,0+5,0 i+5,0-3,0 " Yitg,il+s Yit3,0.0—5

c? At Ay Az

2
ntl (g _ 2cAt oo . 2c°At B n+1% 1
i+ 5,3,0 cAt + Az +3:30  cAt+ Az Yit5.d5
n—{—% TL—|-%
i+l j+lo  TFi4+l 10
—|—C2At D 2 2 2
Ay

+ Similar equations for the right-hand side
+ Similar equations for B, and E,
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Open boundaries conditions

Silver-Miiller absorbing boundary in 3D

In 3D, the Silver-Miiller boundary conditions are only well-adapted
for waves in normal incidence.

The reflection coefficient R(6) quickly increases with the angle of
incidence 6.

1.0

NV
|

— 0.6}

| R(6

0.4}

0.2}

0.0 :
—7/2 0 /2
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Open boundaries conditions

Perfectly Matched Layers (in 2D)

Perfectly Matched Layers (Berenger, 1994)

Surround the simulation box by additional layers of cells, where the
Maxwell equations are modified so as to progressively damp the waves.

In the bulk:
&gEx = C2asz
OHE, = —c 0. B. Y
OB, = =0, Fy + 0y E, i
2= x
In e.g. the right-hand layer:
8tE9; = CQasz
OE, = —c*0,B. — —E,
€o
B. = B., + B., Modified Maxwell equations:
° o : .
OiB.y = —0.E, — 9 B., Artificial (unphysical) conductivity o
€o @ The B, field is (artificially) split in two

0;B., = 0, E, 28



Open boundaries conditions

Perfectly Matched Layers (in 2D)

Dirichlet PML

Animation with
propagating waves:

@ Waves in normal
incidence are

absorbed.

@ Waves in grazing
incidence
propagate as if
they did not “feel”
the boundary.
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Open boundaries conditions

Perfectly Matched Layers: normal incidence

Explanation based on continuous equations

Transverse EM wave propagating along x

E,=0 E,#0 — B.,=0 B.= B.,

In the bulk:
— c? Yy
ok, = —c"0;B; — 9B, — —0.E z T
0B, = —0.E,+0,E, b rY
In the right-hand layer:
OE, =c°0,B.
0F, =—c’0.B,— %Ey 0E, =-c20,B. — L,
- €0
Bz — Bza: —|_ Bzya — 8th _ —axEy . iBz
8thx p— —axEy - EBZCC €0

0;B., = 0,Fx
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Open boundaries conditions

Perfectly Matched Layers: normal incidence

There is a solution (continuous in E, and B,) with no reflected wave. )

In the bulk (z < 0): In the right-hand layer (z > 0):
E, = —c’0,B, OBy, =—c'0,B.— ZE,
ath — _aacEy ath = —&;Ey — %Bz

Solution: Solution:

Ey = Eo cos(k(z — ct)) E, = Eycos(k(x —ct))e coe”

EO E o

B, = — cos(k(x —ct)) B, =2 cos(k(x — ct))e <oc”

C C

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

i

The wave is damped
before reaching the
end of the outer layer.
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Open boundaries conditions

Perfectly Matched Layers: grazing incidence

Transverse EM wave propagating along y

E,#20 E,=0 — B.,=0 B.=B.,

In the bulk:
2
atEm =C aQyBZ atEm — C2asz
8tEy = —C asz a B _ 8 E
B, = —0.E,+ 0,E. tPz = Oyl Iy

In the right-hand layer:

0E, =c*0,B,

OB, =-COB.~ZE, o Lo
_ x yDz

0:B., = 0,F.

The propagation equations are identical in the bulk and the outer layer.
A wave in grazing indidence does not “feel” the boundary. J .




Open boundaries conditions

Open boundary conditions: conclusion

@ If no special care is taken at the boundary, it will by default
produce a reflected wave.

@ Silver-Miiller boundary conditions:

o Easy to implement
e But only cancels reflection for waves at normal incidence

@ Perfectly Matched Layers

o Need extra layers of cells, where the Maxwell equations are
artificially modified.

e The anisotropic Maxwell equations lead to proper behavior
for waves with any incidence angle.
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