Python interpreter: Outline

The Python Interpreter - Part 11

)) @ Rcusing code: functions, classes, modules
Remi LEHE, Daniel WINKLEHNER

© Faster computation: Forthon

© Faster computation: Parallel Python
US Particle Accelerator School (USPAS) - Winter Session

Simulation of Beam and Plasma Systems
D. Bruhwiler, R. Lehe, S. Lund, J.-L. Vay, & D. Winklehner
Old Dominion U., Hampton, VA, 15-26 January, 2018

Reusing code

Reusing code

Modules

Importing modules

Different import styles:

Example module

@ import geometric

Defines variables to be imported In file geometric.py: — S = geometric.geometric_sum(8,2)
by other Python sessions. def geometric_sum{ N, a, b=1 }:

S=0 @ import geometric as gm

for i in range(1,N+1): — S = gm.geometric_sum(8,2)

@ Any Python script can be S =5 + b*i**a o .
treated as a module returnC S) @ from geometric import geometric_sum
numpy is a set of modules or from geometric import * (imports all variables)

') if _name__ = '__main__": — 8 = geometric_sum(8,2)

@ The section 51 = geometric_sum{ 18, 1, 2 2
if == in_ - 52 = geometric_sum{ 8, 2 J
y rame— mah The source file of the module needs to be:
is executed if the script is run
(e.g. python geometric.py) Example import and use @ in the same directory
but not when it is imported In e.g. ipython: o or in the default Python path

(import geometric as gm) import geometric as gm (case of installed packages like numpy, matplotlib or even warp)
S = gm.geometric_sum(8, 2)

Reusing code Reusing code

Functions and modules: task How to install publicly-available modules/packages

Use a package manager!

Task 5

@ Automatically installs dependencies of requested packages
Download the file '

http://github.com/Remilehe/uspas_exercise/raw/master/euler.py and put
the last section (which creates an instance of EulerSolver) in a if

_name__ == ’_main__’ clause. pip

Then use this file as a module, inside ipython

@ Keeps track of the packages that you installed and their version

@ Example: pip install Forthon

@ In the shell, type ipython --matplotlib
e e @ Can install any package that has been uploaded to

@ Then, inside ipython, type from euler import * pypi.python.org

@ Then call the methods euler_integration and

evaluate_result on each instance. Compare the results. @ Example: conda install numpy

@ Then create instances of EulerSolver for N1=100 and N2=100

(NB: Do not hesitate to use tab completion in ipython) ® Only works for the Anaconda distribution of Python

@ Automatically downloads binaries that are requested for certain
Python packages (e.g. MPI for mpidpy, HDF5 for h5py)

Reusing code Reusing code

How to write your own module/package How to write your own module/package

Structure (from http://docs.python-guide.org)

README.rst from setuptools import setup, find packages
LICENSE setup(

setup.py name=’sample-package’,

requirements.txt packages=find_packages(’./’)
sample/__init__.py)

sample/core.py

sample/helpers.py sample/__init__.py

docs/conf . py from .core import CoreClass

docs/index.rst

tests/test_basic.py (Note: sample-package, sample, core and CoreClass are example
tests/test_advanced.py names ; they depend on your code.)

Install the module using pip

Minimal Structure

From the directory that contains setup.py, type:

setup.py eail
tall .
sample/__init__.py pip insta

sample/core.py

Python interpreter: Outline

Faster computation

@ Rcusing code: functions, classes, modules

© Faster computation: Forthon

© Faster computation: Parallel Python

Forthon

Faster computation: Forthon

@ Generates links between Fortran and Python

@ Open-source, created by D. P. Grote (LLNL)
https://github.com/dpgrote/Forthon

@ Heavily used in Warp for low-level number crunching

On the user side:
@ Write Fortran subroutines and modules in a .F file
@ Write a .v file to tell which variables to link to Python
@ Compile with Forthon — produces a Python module

@ Import the module in Python and use the linked variables

NB: Other similar solutions exist: £2py (links Fortran code), Cython
(generates and links C code), Numba (compiles Python code), etc...

11

Large for loops are slow in Python. \

Example:
In [2]: solver = EulerSolver{ 18%%x&6)

In [3]: %time solver.euler_integration()
CPU times: user 2.16 s, sys: 276 ms, total: 2.43 s
Wall time: 2.24 s

@ If the operation is of type element-wise or reduction:
Use numpy syntax

@ Otherwise, rewrite the for loop in a compiled language
(e.g. Fortran, C) and link it to the rest of the Python code

— High-level control with Python (modularity, interactivity)

— Low-level number-crunching with e.g. Fortran or C (efficiency)
10

Faster computation: task

Task 6

Download and decompress the code from
http://github.com/Remilehe/uspas_exercise/raw/master/Forthon_task.tgz
The files acc_euler.F and acc_euler.v are the files needed by
Forthon, while euler.py is the code from task 5.

@ The Fortran file acc_euler.F contains an error in the line that
starts with x(i) = . Spot it and correct it.

@ Compile the code with Forthon by typing make in the shell.
A new file acc_eulerpy.so should be created.

@ At the beginning of the file euler.py, add
from acc_eulerpy import forthon_ integration then create a
new method acc_euler_integration(self), which calls
forthon_integration (see acc_euler.F for its signature).

In ipython, create an instance with N=10%%6, and compare the
runtime of euler_integration and acc_euler_integration

Parallel

Python interpreter: Outline

Faster Computation: Multiprocessing and MPI

© multiprocessing is a python [MEESEIREIINNE)RICEECR I RNETIOR
module that introduces an
API to access multiple

processors on the same node. def f(x):
return x*x

from multiprocessing import Pool
@ Rcusing code: functions, classes, modules

@ very useful for tasks that
have many independent if name == ' main ':
9 Faster computation: Forthon repetitive steps (e.g. particle p = Pool(5)
. . print(p.map(f, [1, 2, 31))
tracing without space charge)

Message Passing Interface (MPI)

© Faster computation: Parallel Python .)
@ python can also be used with MPI (e.g. on a big cluster)

@ using mpidpy (but necessary to install underlying MPI binaries)

@ Remi will talk about parallel computing on Friday, Jan 18th

14

Parallel

References

Scipy lecture notes:
http://www.scipy-lectures.org/ (G. Varoquaux et al., 2015)

Python tutorial:
https://docs.python.org/3/tutorial/ (Python Software
foundation, 2016)

Forthon:
https://github.com/dpgrote/Forthon (D. Grote et al., 2016)

15

