

U.S. Particle Accelerator School

Education in Beam Physics and Accelerator Technology

Self-Consistent Simulations of Beam and Plasma Systems
Steven M. Lund, Jean-Luc Vay, Rémi Lehe and Daniel Winklehner
Colorado State U., Ft. Collins, CO, 13-17 June, 2016

A2. Mesh Refinement in Field Solvers

Jean-Luc Vay
Lawrence Berkeley National Laboratory

Why mesh refinement? Injector Beam edge Electron cloud Plasma accelerator Electron density spikes Small electron density spikes Beam edge

Outline

- · Why mesh refinement?
- Potential issues
- Electrostatic mesh refinement
 - spurious self-force example
 - spurious self-force mitigation
 - application to the modeling of HCX injector
- Electromagnetic mesh refinement
 - spurious reflection of waves
 - spurious reflection of waves mitigation
 - Application to the modeling beam-induced plasma wake
- · Special mesh refinement for particle emission
- Summary

2

Coupling of AMR to PIC: issues

Mesh refinement implies:

- → jump of resolution at coarse-fine interface,
- → some procedure for coupling the solutions at the interface.

Consequences:

- loss of symmetry: self-force,
- loss of conservation laws,
- EM: waves reflection.

. .

Electrostatic mesh refinement

Solution to Poisson is a boundary value problem. We can define the following simple procedure:

- 1. solve on coarse grid,
- 2. interpolate on fine grid boundaries,
- 3. solve on fine grid.

Electrostatic mesh refinement

Solution to Poisson is a boundary value problem. We can define the following simple procedure:

- 1. solve on coarse grid,
- 2. interpolate on fine grid boundaries,
- 3. solve on fine grid.

Electrostatic mesh refinement

Solution to Poisson is a boundary value problem. We can define the following simple procedure:

- 1. solve on coarse grid,
- 2. interpolate on fine grid boundaries,
- 3. solve on fine grid.

Electrostatic mesh refinement

Solution to Poisson is a boundary value problem. We can define the following simple procedure:

- 1. solve on coarse grid,
- 2. interpolate on fine grid boundaries,
- 3. solve on fine grid.

.

Assume one charged macroparticle in a box with metallic BC not centered not centered

We apply specular reflection at the boundary. We apply specular reflection at the boundary.

Example of AMR at edge of beam

Test using script testxy_amr.py:

- · Run with case='lowres', then 'highres' and 'AMR'.
- · Observe how using AMR enables accurate simulation at reduced CPU cost.

Summary of electrostatic AMR-PIC

- Simple method for electrostatic AMR-PIC was presented.
- Buffer region mitigates spurious self-force effect very effectively.
- Speedups of x10 demonstrated on simulation of injector.
- Alternate methods such as multipole expansions have other advantages/drawbacks.

20

Outline

- · Why mesh refinement?
- Potential issues
- Electrostatic mesh refinement
 - spurious self-force example
 - spurious self-force mitigation
 - application to the modeling of HCX injector
- Electromagnetic mesh refinement
 - spurious reflection of waves
 - spurious reflection of waves mitigation
 - Application to the modeling beam-induced plasma wake
- Special mesh refinement for particle emission
- Summary

...

1-D FDTD EM wave equation

 We consider 1d wave equation (natural units)

$$\frac{\partial E}{\partial t} = \frac{\partial B}{\partial x}; \quad \frac{\partial B}{\partial t} = \frac{\partial E}{\partial x}$$

 staggered on a regular space time grid using finitedifference time-domain (FDTD) centered scheme

$$\frac{E_j^{i+1} - E_j^i}{\delta t} = \frac{B_{j+1/2}^{i+1/2} - B_{j-1/2}^{i+1/2}}{\delta x}$$

$$\frac{B_{j+1/2}^{i+1/2} - B_{j+1/2}^{i-1/2}}{\delta t} = \frac{E_{j+1}^{i} - B_{j+1}^{i}}{\delta x}$$

1-D MR-EM: space refinement

Outline

- · Why mesh refinement?
- Potential issues
- Electrostatic mesh refinement
 - spurious self-force example
 - spurious self-force mitigation
 - application to the modeling of HCX injector
- · Electromagnetic mesh refinement
 - spurious reflection of waves
 - spurious reflection of waves mitigation
 - Application to the modeling beam-induced plasma wake
- · Special mesh refinement for particle emission
- Summary

38

AMR-PIC summary

- Mesh refinement (static or adaptive) can reduce simulation time by several.
- Care is needed to avoid spurious effects (spurious charge & reflections).
- Warp implementation has validated methods, but maintenance is lacking sufficient manpower:
 - → To be used with great care by experience users.
 - → Novel implementation with external AMR package (BoxLib) is planned.

References

- J.-L. Vay, D. P. Grote, R. H. Cohen, & A. Friedman, "Novel methods in the Particle-In-Cell accelerator code-framework Warp", Computational Science & Discovery 5, 014019 (2012)
- Vay, J-L.; Friedman, A.; Grote, D.P; "Application of Adaptive Mesh Refinement to PIC Simulations in Inertial Fusion", Nuclear Inst. and Methods in Physics Research A, 544, pp. 347-352 (2005)
- Vay J.-L., Colella P., Kwan JW., McCorquodale P., Serafini DB., Friedman A., Grote DP., Westenskow G., Adam JC., Heron A., Haber I., "Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams" Physics of Plasmas., 11, pp. 2928-2934 (2004)
- Vay J.-L., Colella P, Friedman A, Grote DP, McCorquodale P, Serafini DB, "Implementations of mesh refinement schemes for particle-in-cell plasma simulations.", Computer Physics Comm., 164, pp. 297-305 (2004)
- Vay J.-L., Adam JC, Héron A, "Asymmetric PML for the absorption of waves. Application to mesh refinement in electromagnetic particle-in-cell plasma simulations.", Computer Physics Comm., 164, pp. 171-177 (2004)

