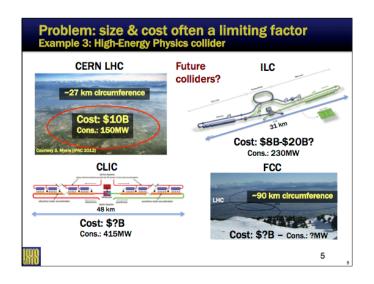
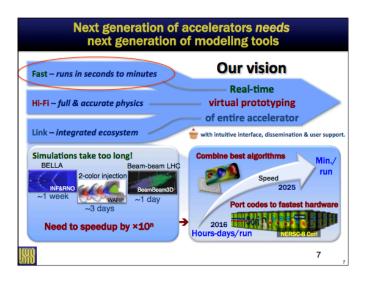
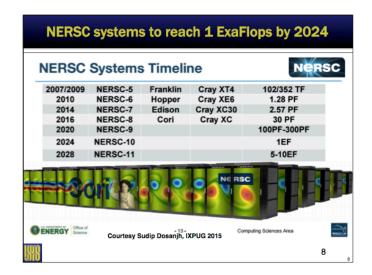


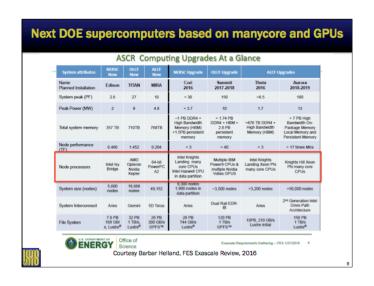
U.S. Particle Accelerator School

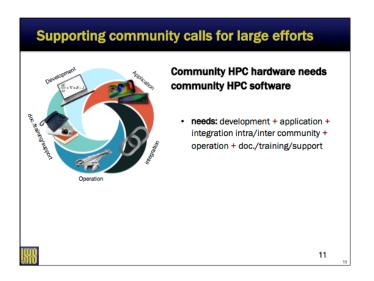
Self-Consistent Simulations of Beam and Plasma Systems
Steven M. Lund, Jean-Luc Vay, Rémi Lehe and Daniel Winklehner
Colorado State U., Ft. Collins, CO. 13-17 June, 2016

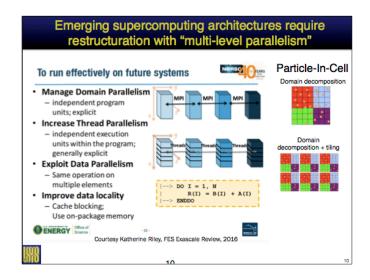

A5. Collaborations


Jean-Luc Vay, Rémi Lehe Lawrence Berkeley National Laboratory









Anv ov	erlap in bear	m dynamics codes?
	Cadasasa	tion from Assolute and I and book 18
Beam Dynamics Co	les: Codes sec	tion from Accelerator Handbook (A.
(Below PIC refers t	o codes with particle-in-cell space-o	charge canability.)
(below, i le reiers e	o codes with particle in cen space o	ininge capating.)
Code	URL or Contact	Description/Comments
ASTRA	tesla.desy.de/~meykopff	3D parallel, general charged particle beams incl. space charge
AT	sourceforge.net/projects/atcollab/	Accelerator Toolbox
BETACOOL.	betacool.jinr.ru	Long term beam dynamics: ECOOL, IBS, internal target
Bmad, Tao	www.lns.cornell.edu/~dcs/bmad/	General purpose toolbox library + driver program
COSY INFINITY	www.cosyinfinity.org	Arbitrary-order beam optics code
CSRTrack	www.desy.de/xfel-beam/csrtrack	3D parallel PIC includes CSR; mainly for e-dynamics
Elegant/SDDS suite	aps.anl.gov/elegant.html	parallel; track, optimize; errors; wakes; CSR
ESME	www-ap.fnal.gov/ESME	Longitudinal tracking in rings
HOMDYN	Massimo.Ferrario@LNF.INFN.IT	Envelope equations, analytic space charge and wake fields
IMPACT code suite	amac.lbl.gov	3D parallel multi-charge PIC for linacs and rings
LAACG code suite	laacg.lanl.gov	Includes PARMILA, PARMELA, PARMTEQ, TRACE2D/3D
LiTrack	www.slac.stanford.edu/~emma/	Longitudinal linac dynamics; wakes; GUI-based; error studies
LOCO	safranek@slac.stanford.edu	Analysis of optics of storage rings; runs under matlab
LUCRETIA	www.slac.stanford.edu/accel/tlc/codes	Matlab-based toolbox for simulation of single-pass e-systems
MaryLie	www.physics.umd.edu/dsat	Lie algebraic code for maps, orbits, moments, fitting, analysis
MaryLie/IMPACT	amac.lbl.gov	3D parallel PIC MaryLie optics + IMPACT space charge
MAD-X	mad.web.cern.ch/mad	General purpose beam optics
MERLIN	www.desy.de/~merlin	C++ class library for charged particle accelerator simulation
OPAL	amas.web.psi.ch	3D parallel PIC cyclotrons, FFAGs, linacs; particle-matter int.
ORBIT	jzh@ornl.gov	Collective beam dynamics in rings and transport lines
PATH	Alessandra.Lombardi@cern.ch	3D PIC linacs and transfer lines; matching and error studies
SAD	acc-physics.kek.jp/SAD/sad.html	Design, simulation, online modeling & control
SIMBAD	agsrhichome.bnl.gov/People/luccio	
SIXTRACK	frs.home.cern.ch/frs/	Single particle optics; long term tracking in LHC
STRUCT	www-ap.fnal.gov/users/drozhdin	Long term tracking w/ emphasis on collimators
Synergia	https://compacc.fnal.gov/projects	3d parallel PIC space charge, nonlinear tracking and wakes
TESLA	lyyang@bnl.gov	Parallel; tracking; analysis; optimization
TRACK	www.phy.anl.gov/atlas/TRACK	3D parallel PIC mainly for ion or electron linacs
LIBTRACY	libtracy.sourceforge.net/	Library for beam dynamics simulation
TREDI	www.tredi.enea.it	3D parallel PIC point-to-point Lienard-Wiechert
UAL	code.google.com/p/ual/	Unified Accelerator Libraries
WARP	DPGrote@lbl.gov	3D parallel ES and EM PIC with accelerator models
ZGOUBI	sourceforge.net/projects/zgoubi/	Magnetic optics; spin; sync radiation; in-flight decay

Need of solution for non-disruptive integration

Significant investments into existing pool of codes:

- essential to minimize disruptions to developers and users,
- while enabling interoperability and expandability.

Challenges:

Technical

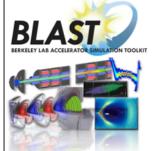
- programming languages
- data formats, parallelism
- code architectures
- open vs proprietary sources
- keep creativity

Human

- changing habits is hard
- different visions
- (re)build trust
- corporatism/rivalry
- recognition
- distance

Mitigation of difficulties through adiabatic transition

Existing set of separate codes \rightarrow ecosystem of interconnected codes


Bridge codes to enable:

- common user input/output interface
- · sharing of functionalities
- collaborative development of common units

Common data format enables separation between user I/O interfaces and "kernels".

Assess of kernels as Python modules enables tighter coupling.

Berkeley Lab Accelerator Simulation Toolkit

Suite of state-of-the-art codes:

 BEAMBEAM3D, IMPACT, WARP/PICSAR, INF&RNO, POSINST, FBPIC, ...

Large set of physics & components:

- · beams, plasmas, lasers, structures...
- linacs, rings, injectors, traps, ...

Supporting many accelerators:

 across DOE (HEP, BES, NP, FES, DNN) and beyond (CERN, DESY, KEK, ...).

http://blast.lbl.gov

Emerging national consortium for accelerator modeling

Consortium for

Advanced

Modeling of

Particle

Accelerators

Points of contact: LBNL: J.-L. Vay SLAC: C.-K. Ng FNAL: J. Amundson CAMPA

SLAC ACE3P (Omega3P, S3P, Track3P, T3P, PIC3P, TEM3P)

Fermilab SYNERGIA (space-charge, wakes, e-cloud, beam-beam...)

- High Performance Computing (beyond SciDAC),
- coordination/integration of codes/modules, user interfaces, data formats, ...
- dissemination, support & training.

The tools of collaboration: git, Github, Bitbucket

Github (github.com) and Bitbucket (bitbucket.org):

- Websites that allow to store code, and make it available for download
- Contain many tools for developers to communicate and discuss the code

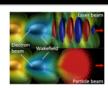
git:

- Download/upload code to the websites like Github or Bitbucket
 - git clone (+URL): download code
 - git pull: update code (get latest changes from website)
 - git push: upload local changes to website
- · Enables version control
 - git commit: save a snapshot of the code

Git tutorial: https://www.atlassian.com/git/tutorials/

Developing common modules/data format is beneficial

- PICSAR (Particle-In-Cell Scalable Application Resource):
 - Collection of PIC kernel subroutines (current deposition, field gather, field solve, particle pusher, ...)
 - Toward collaborative development of multi-level parallel implementations (vectorization+OpenMP+MPI+GPU+...)
 - For testing, comparing, distributing production-level PIC functionalities
 - To be available with open source license to wider community soon


OpenPMD (A. Huebl et al., doi: 10.5281/zenodo.3362):

- a common I/O format for simulations with particles and meshes
- standardized layout of data in file (using hdf5, netcdf, ADIOS, ..)
- for easy comparisons between codes, common visualization tools
- OpenPMD Viewer based on IPython+Matplotlib available, Visit reader in dev.
- · implemented in Warp, PIConGPU, FBPIC, ...
- More at https://github.com/openPMD at http://www.openpmd.org

19

We are developing the next generation of Warp

Goal (4 years): Convergence study in 3-D of 10 consecutive multi-GeV stages in linear and bubble regime, for laser- & beam-driven plasma accelerators.

How: Combination of best algorithms (boosted frame+spectral+AMR+...) via coupling of Warp+BoxLib+PICSAR and port to emerging architectures (Xeon Phi, GPU).

PICSAR: highly optimized elementary PIC operations (based on Warp kernel).

BoxLib: advanced adaptive mesh refinement library.

Proposal submitted for collaboration LBNL+SLAC+LLNL.

PICSAR and Boxlib libraries will be available for other codes.

Summary

- Computer modeling can play a key role in the development of more compact & cheaper accelerators
- Increasing complexity of computer architectures and codes calls for collaborations
- Efforts are underway for non-disruptive solutions toward increased collaborative code developments

}