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Overview of Basic Numerical Methods
A. Discretization
B. Discrete Numerical Operations

- Derivatives
- Quadrature
- Irregular Grids and Axisymmetric Systems

C. Time Advance
- Overview 
- Euler and Runge-Kutta Advances
- Solution of Moment Methods

Detailed Outline
Introductory Lectures on Self-Consistent Simulations
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Overview of Basic Numerical Methods
A: Discretizations

General approach is to discretize independent variables in each of the methods and 
solve for dependent variables which in some cases may be discretized as well
Time (or axial coordinate s) 

initial 
condition 

time_discretization.png 

Nonuniform meshes also possible
– Add resolution where needed
– Increases complexity

In applications may apply these descriptions in a variety of ways
Move a transverse thin slice of a  beam, evolve a 3D beam, ...
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Transverse Coordinate Discretization 
Spatial Coordinates (transverse)

Analogous for 3D, momentum coordinates (in direct Vlasov simulations), etc.
Nonuniform meshes possible to add resolution where needed

space_discretization.png
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Transverse Coordinate Discretization – Applications

Thin slice of a long pulse is 
advanced and the transverse 
grid moves with the slice

In applications may apply these discretizations in a variety of ways in distribution 
type models:
Transverse Slice Simulation:

Move a transverse thin “slice” of beam along the axial coordinate s of a 
reference particle
– Many examples/illustrations will be in this context since full 3D 
   straightforward to generalize but is more involved

transverse_beam_slice.png

Limitations:
– This “unbunched” approximation is not always possible
– 3D effect can matter, e.g. in short pulses and/or beams ends.  Dynamics does 

not always separate well between transverse and longitudinal effects.



SM Lund, USPAS,  2016 6Self-Consistent Simulations

Transverse Coordinate Discretization – Applications (2)

mid-pulse_diode.png

Steady State Simulation:
Simulate the middle of a long pulse or DC beam where a time stationary beam 
fills the grid

Source
Pierce

Electrode Aperture

Mesh is stationary, leading to limitations
– Pulsed beam always has ends
– Assumes that the mid-pulse in nearly time-independent in structure

Example: Mid-Pulse Diode
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Transverse Coordinate Discretization – Applications (3)

3d_beam.png

Full 3D Simulation
Simulate a 3D beam with a moving mesh that follows a reference particle 
(possibly beam centroid).

Comments:
– Mesh follows beam center of mass along 
   reference path to decrease grid volume
– Most realistic level of modeling, but also most numerically intensive
– Grid can be moved in discretized jumps so that applied fields maintain 

alignment with the grid

Cartesian
Mesh

Reference
path can bend
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B:  Discrete Numerical Operations
Let x represent a spatial coordinate and f(x) some continuous function of x

Denote and Taylor expand one grid point forward and 
backward about x = x

i

The same methodology can be applied to other spatial (y, z) coordinates and 
temporal (t or s) coordinates

x_discretization.png
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Discrete Numerical Operations: Derivatives
Simple, but inaccurate expressions for 1st order derivatives follow immediately 
from the forward and backward expansions

Forward:

Backward:

A more accurate, centered discretization for a 1st order derivative is obtained by 
subtracting the two expansions.

3 point:
(centered)

2 point:
(non-centered)

More accuracy generally will require the use of more function points
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Discrete Numerical Operations: Derivatives (2)
The expansions can be relabeled (i -> i+1, etc.) and the resulting set of equations 
can be manipulated to obtain 5-point and other higher-order forms with higher 
accuracy:

5 point:
(centered)

Higher order, and more accurate, forms are possible
- Rapidly become cumbersome and require more neighboring points

Analogous methods can be employed to obtain discretizations of higher order 
derivatives.  For example, 

3 point:
(centered)

2nd derivatives come up frequently both within and at edge of mesh
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Discrete Numerical Operations: Integrals/Quadrature

Take n
x
 even, then can be composed as sub-integrals of the form 

Trapezoidal Rule:
Using a linear approximation

trapezoidal_rule.png
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Discrete Numerical Operations: Integrals/Quadrature (2)
Simpson's Rule:
Better approximations can be found using Taylor series expansions and the 
previous discrete derivatives:

giving:

In the examples given, uniform grids have been employed and the formulas 
presented for derivatives and integrals are readily generalized to multiple 
dimensions.
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Discrete Numerical Operations: Irregular Grids

Nonuniform grids can be used to concentrate resolution where it is needed 

Can be used most effectively when high resolution is needed only in limited 
regions and simulation domains are large
Nonuniform grids make discretized formulas more complicated, particularly 
with respect to ordering errors
– A simple example of nonuniform derivative calculation is included in the 

homework to illustrate methods

irregular_grid.png
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Discrete Numerical Operations: Axisymmetric Systems
In solution of axiysmmetric                   equations such as the Poisson 
equation on an r-z mesh

terms like

can be difficult to accurately discretize near r=0 at the center of an 
axisymmetric mesh.

Ways to deal with this:
Approx values near r=0 and live with larger errors 
Use special numerical methods 
Represent operator in x,y to avoid issue

- Can symmetrize results to reduce errors 
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C: Numerical Solution of Moment Methods – Time Advance

/// Example: Axisymmetric envelope equation for a continuously focused beam

We now have the tools to numerically solve moment methods.  The moment 
equations may always be written as an N-dimensional set of coupled 1st order 
ODEs:

Methods developed to advance moments can also be used for advances in 
particle and distribution methods

///

N-dim vector of moments

vector equation of motion
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C: Numerical Solution of Moment Methods – Euler Advance

Euler's Method: 
Apply the forward difference formula

Rearrange to obtain 1st order Euler advance:

Note that steps will lead to a total advance error

Advance error decreases only linearly with step size
Numerical work for each step is only one evaluation of F

Moments advanced in discrete steps in s from initial values
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C: Numerical Solution of Moment Methods – Order Advance

Definition: 
A discrete advance with step error is called an (n-1)th order method  

Euler's method is a 1st order method
Higher order methods are generally used for ODE's in moment methods
– Numerical work to evaluate F small: no need to limit evaluations
Low order methods are generally used for particle and distribution methods
– Numerical work to evaluate F large: want to minimize evaluations
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C: Numerical Solution of Moment Methods – 
     Runge-Kutta Advance

Runge-Kutta Method: 

Integrate from       to           :

Approximate F with a Taylor expansion through the midpoint of the step,       

The linear term integrates to zero, leaving
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Higher order Runge-Kutta schemes are derived analogously from various 
quadrature formulas.  Such formulas are found in standard numerical methods 
texts

Typically, methods with step error                    will require N evaluations of F

Requires two evaluations of F per advance
2nd order accurate in 

Runge-Kutta Advance (2)

2nd Order Runge-Kutta Method: 

Note: only need for 
apply Euler's method for the two-step procedure: 

to accuracy, so we can 

Step 1:

Step 2:



SM Lund, USPAS,  2016 20Self-Consistent Simulations

C: Numerical Solutions of Moment Methods 

Many methods are employed to advance moments and particle orbits.

A general survey of these methods is beyond the scope of this lecture.  But some 
general comments can be made:

Many higher-order methods with adaptive step sizes exist that refine accuracy 
to specified tolerances and are optimized for specific classes of equations
- Packages such as Mathematica and SciPy have many examples
Choice of numerical method often relates to numerical work and stability 
considerations
Certain methods can be formulated to exactly preserve relevant single-particle 
invariants
– “Symplectic” methods preserve Hamiltonian structure of dynamics: This is 

very important for long advances to model particles evolving in rings over 
many laps.

Accelerator problems can be demanding due to multiple frequency scales and 
long tracking times/distances
– Hamiltonian dynamics; phase space volume does not decay
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C: Numerical Solutions of Moment Methods – 
     Numerical Stability 

“Numerical Reversibility” test of stability:
In this method, the final value of an advance is used as an initial condition.  Then 
the problem is run backwards to the original starting point and deviations from the 
initial conditions taken in the original advance are analyzed. 

Provides a simple, but stringent test of accuracy
Will ultimately fail due to roundoff errors and cases where there is a sensitive 
dependence on initial conditions
- Chaotic orbits a common example
Orbits can be wrong but qualitatively right
- Lack of convergence does not necessarily mean results will be useless
- Right “pattern” in chaotic structures can be obtained with inaccurate orbits
- Will quantify better later

We will now briefly overview an application of moment equations, namely the 
KV envelope equations, to a practical high current transport lattice that was 
designed for Heavy Ion Fusion applications at Lawrence Berkeley National 
Laboratory.
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C: Moment Equation Application: Perp. KV Envelope Eqns 
Neglect image charges and nonlinear self-fields (emittance constant) to 
obtain moment equations for the evolution of the beam envelope radii

Dimensionless Perveance
measures space-charge strength

RMS Edge Emittance
measures x-x' phase-space area
~(beam size)sqrt(thermal temp.)

The matched beam solution together with parametric constraints from engineering, 
higher-order theory, and simulations are used to design the lattice.
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Application Example Continued (2) – Focusing Lattice

Magnetic Quadrupole

Electric Quadrupole

Rigidity

Focusing Strength

Take an alternating gradient FODO doublet lattice
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Application Example Contd. (3) – Matched Envelope Properties

Ion
K+, E = 2 MeV
Current
I = 800 mA
Lattice

Envelope Properties:
1) Low Emittance Case: 

2) High Emittance Case: 

env_match.png
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future 
editions of US Particle Accelerator School (USPAS) and Michigan State 
University (MSU) courses.  Contact:

Prof. Steven M. Lund 
Facility for Rare Isotope Beams 
Michigan State University 
640 South Shaw Lane  
East Lansing, MI 48824

lund@frib.msu.edu 
(517) 908 – 7291 office 
(510) 459 -  4045  mobile

Please provide corrections with respect to the present archived version at: 
 
https://people.nscl.msu.edu/~lund/uspas/scs_2016

Redistributions of class material welcome.  Please do not remove author credits.

mailto:lund@frib.msu.edu
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