Experiment 4

The Simple Pendulum

Reading:
Read Taylor chapter 5. (You can skip section 5.6.IV if you aren't comfortable with partial derivatives; for a simpler approach to the material of section 5.7, see below).
Bauer&Westfall Ch 9, 13 as needed (pendulum, and definitions of period, amplitude)

Taylor Section 5.7 without partial derivatives:
We want to know the uncertainty of the mean value, \(m = (x_1 + x_2 + \ldots + x_N)/N \). Now \(N \) is a constant, so I can start by determining the uncertainty of the sum \(S = N m = (x_1 + x_2 + \ldots + x_N) \). But by the arguments of 5.6.III (and Eq. 3.16), the uncertainty of \(S \) is just given by:

\[
\sigma_S = \sqrt{\sigma_x^2 + \sigma_x^2 + \ldots + \sigma_x^2} = \sqrt{N \sigma_x^2} = \sigma_x \sqrt{N}
\]

since the standard deviation of each of the \(x_i \) is just \(\sigma_x \)
But \(m = S/N \), and \(N \) is a constant, so by eq. 3.9, \(\sigma_m = \sigma_S / N \), which gives our final result

\[
\sigma_m = \sigma_x / \sqrt{N}
\]

Goals
1. Measure \(g \) with the simple pendulum
2. Improve measurement accuracy by averaging
3. Study the amplitude and mass dependence of the period of a pendulum
4. Study energy conservation
5. Examine the propagation of error in derived physical quantities

1. Theoretical Introduction

1.1 The period of the pendulum

The simple pendulum, shown above, consists of a mass \(m \) (the “bob”) suspended from a pivot by (ideally) a massless string. We will idealize the bob as a point mass located at the center of mass of the bob. The distance from the point of pivot to the center of mass of the ball is designated by \(L \) in figure. When the ball is displaced from its resting positions the string makes an angle \(\Theta \) with the vertical. The component of the gravitational force in the tangential direction acts to restore it to its equilibrium position. Ideally, the string does not stretch and the positions of the ball and string are described completely by the angle \(\Theta \). Then the distances between parts of the string and ball don't change, ball and string appear as a single rigid body with momentum of ineriat \(I \) about the pivot \(I = mL^2 \). The torque \(\tau \) is given by

\[
\dot{\tau} = \mathbf{r} \otimes \mathbf{F} = -mgL \sin \Theta.
\]
It is a restoring torque, which for positive (counter-clockwise) angle Θ is in the direction to make Θ smaller, i.e. for positive Θ, the torque will be negative. Then by Newton's 2nd law of rotational motion:

$$\tau = -mgL \sin \Theta = I \alpha = mL^2 \alpha = mL^2 \frac{d^2 \Theta}{dt^2}$$

(2)

Dividing by L, our equation of motion becomes:

$$mL \frac{d^2 \Theta}{dt^2} = -mg \sin \Theta$$

(3)

or

$$\frac{d^2 \Theta}{dt^2} + \frac{g}{L} \sin \Theta = 0$$

(4)

This turns out to be hard to solve, but we can simplify it by using the fact that for small angles Θ, and Θ expressed in radians, we may expand $\sin \Theta$ as follows:

$$\sin \Theta \approx \Theta - \frac{\Theta^3}{6} + \frac{\Theta^5}{120} + \text{higher order terms}$$

(5)

Then, if we assume Θ to be small and keep only the first term, Eq 4 becomes:

$$\frac{d^2 \Theta}{dt^2} + \frac{g}{L} \Theta = 0$$

(6)

In this approximation, $\sin \Theta \approx \Theta$, the motion reduces to simple harmonic motion because the restoring force in (1) obeys Hooke's law since it is linear in the displacement. Equation (6) is much easier to solve analytically than (4), and the solution to differential equation (6) is:

$$\Theta = \Theta_o \sin \left(t \sqrt{\frac{g}{L}} \right)$$

(7)

Because the sine function repeats itself whenever its argument changes by 2π, we can find T, the time for one period, by setting the argument of the sine to 2π:

$$T \sqrt{\frac{g}{L}} = 2\pi$$

(8)

or

$$T = 2\pi \sqrt{\frac{L}{g}}$$

(9)

Now we can solve for g in terms of two quantities we can measure. Or, we can find a relationship between measured quantities such that g is related to the slope of a plot when we vary the values:

$$g = 4\pi^2 \frac{L}{T^2} \quad \text{or} \quad L = \frac{1}{4\pi^2} gT^2$$

(10)

Thus as long as the small angle approximation of Eq. 5 is valid, the period is independent of the amplitude, Θ_o, and mass, m. Measurement of the period T, and the length L, permit a determination of the gravitational constant, g. If Θ_o is not small enough, Eq. 6 will not be valid and the period will depend on Θ_o and will actually increase with the amplitude (Appendix A).
1.2 Energy analysis of the pendulum

For a pendulum swinging back and forth, the mechanical energy, \(E \), shifts between kinetic and potential energy, but remains constant:

\[
E = K + U
\]
(11)

\[
U = mgy
\]
(12)

\[
K = \frac{1}{2}mv^2
\]
(13)

Here \(y \) is vertical displacement from equilibrium, and \(v \) is velocity of the bob. When the bob is at the maximum amplitude, \(x = x_m \), and \(y = h \) (the maximum vertical displacement). At this point, \(v = 0 \): there is no kinetic energy, so all the energy is potential energy. The bob has greatest speed at its lowest point, hence all the energy is kinetic, and \(U = 0 \).

Conservation of mechanical energy for these two instants can be expressed as:

\[
K_0 + U_0 = K_m + U_m
\]
(14)

where subscript \(0 \) stands for values evaluated at the equilibrium position (\(x = 0, y=0 \)) and the subscript \(m \) stands for values at highest point of the oscillation (\(x = x_{max}, y=h \)). Then we can evaluate each term and find

\[
\frac{1}{2}mv_0^2 + 0 = 0 + mgh
\]
(15)

This equation relates the maximum velocity (at \(x=0 \)) to the maximum height and the value of \(g \). It also allows us to express the total kinetic energy to the height under the assumption of energy conservation. Curiously, the maximum velocity is achieved at the equilibrium position!

We can also solve (15) for \(v_0^2 \) and obtain:

\[
v_0^2 = \left(\frac{\Delta x}{\Delta t} \right)^2 = 2gh
\]
(16)

This expression will be useful when we study energy conservation.

2. Experimental Procedure

2.1 Questions for preliminary discussion

2.1.1 How should the period of the pendulum depend on the mass?
2.1.2 How should the period of the pendulum depend on the amplitude?
2.1.3 What is a criterion for a small-amplitude oscillation? Why does this do a good job?
2.1.4 Would the measurements be most accurate with a long or a short string? Why? \textbf{Apply this when choosing the initial setup of your experiment.}
2.1.5 What tables will you need to organize your measurements and the uncertainty calculations?

2.2 Preliminaries

A bob is suspended from a pivot by a string. A protractor is placed below the pivot which allows us to set the pendulum oscillation at different angles (amplitude). We can measure the period of the pendulum using:

2. Automatic timing with a photogate timer.
You can compute \(g \) from the period of the pendulum and the length of the string.

2.3 Measure the length \(L \) between the pivot of the pendulum and the center of mass of the bob as accurately as possible. You may need several measurements, or measurement strategies, to find \(L \). **Estimate and justify the statistical and systematic uncertainty for your value for \(L \).** *Hint:* watch the support point as the pendulum oscillates. Sketch what you are measuring.

3. Manual measurements of \(T \):

It is most accurate to begin timing the swing of the pendulum at its lowest point because then the ball moves most quickly and takes the least time to pass by: the accuracy of determining the low point is not limited by the motion of the pendulum. The amplitude of the swing should be large in order to maximize the speed of the pendulum at that point. On the other hand, \(\Theta \) must be kept small enough that the approximation \(\sin \Theta \approx \Theta \) remains valid. As a compromise, take the initial amplitude to be about 0.1 radians (~6°). This means the neglected terms in (5) should be < 1%.

3.1 Using the hand timer, measure 25 complete cycles. From this measurement, calculate the period of the pendulum. Now repeat the period measurement **four more times.** *Hint:* So you can end when your count gets to 25 cycles, count “zero” when you start the timer. One complete cycle is from when it’s going right at the lowest point of the swing until it returns to the bottom twice and is again going right.

3.2 From these five measurements of the period, calculate the mean period and the standard deviation of the mean period using Kgraph or Excel. Do not round off too early in your calculations lest you lose accuracy in your final result. Using Eq. 10, calculate \(g \). Also calculate the uncertainty of your value of \(g \).

4. Automatic measurement of \(T \) (for various masses and lengths)

Set the photogate on PENDulum position. Practice timing the period with using the photogate a few times. Figure out how the gate works by moving the bob through the gate slowly, by hand. How many periods does the photo-gate measure? (Write it in your lab book!)

4.1. From three measurements of the period with the photo-gate, again calculate the mean and the standard deviation of the mean. Calculate \(g \) and its uncertainty.

4.2. Find the period for bobs of other masses. Do you see any systematic deviations from Eq 10? This is a test for hidden systematic errors in your measurements!

4.3. Now measure the period with the length of the string reduced to approximately \(L/2, L/3, L/4, \) and \(L/5 \) (measure the actual values). Make a plot of \(T^2 \) vs. \(L \). Figure out how \(g \) is related to the slope of this plot and find and \(g \) and its uncertainty from this method.

5. Amplitude dependence of the period

If the amplitude of oscillation of a pendulum is not sufficiently small, its period will depend on amplitude. Thus Eq. 9 will not be valid. See Appendix A for a brief discussion.

For this part, we will use the string and bob again. *Hint:* the largest bob may not be appropriate for this measurement why? Use the photogate timer to measure the period of the pendulum for a
series of starting angles. Begin with 30° (about 0.5 radians) maximum and repeat for approximately 25°, 20°, 15°, 10°, and 6°. Enter this data in a spreadsheet and label it carefully. Now we have data to test Eq. B3, which has the form

$$T = T(\Theta) = T^* [1 + A \Theta^2 + \text{higher terms}],$$

where T^* is the small amplitude period defined in Eq. 9, and the theoretical value of $A = 1/16$ (provided Θ has been converted to radians). So a nice way of testing the equation is to calculate the ratio $T(\Theta)/T^*$ as a function of Θ^2, where $T(\Theta)$ is the period you measured with a given initial angle. If Eq B3 holds, and the higher terms are negligible, the plot should be close to linear. Perform a linear least squares fit of the data to $T(\Theta)/T^*$ vs. Θ^2 (and find A from this fit). Compare your slope with the theoretical value of 1/16. It is not necessary to find the uncertainty of the slope: just say by how many percent your coefficient differs from the expected one, and whether the data follow the expected trend.

6. Conservation of Energy

Now we will test the idea of conservation of energy by measuring the velocity of the bob (kinetic energy) as a function of its release height (potential energy). Measure the diameter of the bob with maximum accuracy. Set the photogate in Gate position. Determine the vertical displacement from equilibrium h for the angles $\Theta = 30°$ to $5°$ in $5°$ intervals. When the bob passes the equilibrium point, the photogate timer measures the time interval over which the bob interrupts the light. From the time intervals, find v_0 and plot v_0^2 vs. h (testing Eq. 16). Perform a linear least-squares fit to the data to obtain g. It is not necessary to do an extended uncertainty analysis here, either—just discuss whether the data follows the expected trend and calculate the value of g you obtain from the slope (by what % does it deviate from the accepted value?).

8. Analysis of Results *(Warning: this is a long write-up: allow enough time to complete it)*

8.0 Make a summary table listing all your methods of measuring g, the values and (if applicable), the uncertainty, the percent difference from the accepted value of g (9.804 m/s²), and where possible, the t value of the discrepancy between your measured value and the expected one.

8.1. What is the point of measuring 125 cycles (25×5) in Part A? Would it have been as accurate to measure one cycle 125 separate times? Why?

8.2. Which value of g is more accurate, the one obtained by hand-timing or obtained with the photogate? Which method is faster to use?

8.3. Which quantity, T or L, makes the larger contribution to the fractional uncertainty in g? Does this suggest a way to improve the experiment?

8.4. Compare your most precise value of g with 9.804 m/s². Do you have a significant discrepancy?

8.5 Which experiment measured g to better fractional uncertainty, the Pendulum, or Free Fall? Give a quantitative comparison.

8.6. What was the largest single source of uncertainty (systematic or random) in your experimental verification of $v_0^2 = 2gh$?

8.7. For which parts of the experiment did your results accord with your expectations? Which did not? Why?
Appendix A. The Finite Amplitude Pendulum

We wish to solve Eq. 4 exactly:

\[
\frac{d^2 \Theta}{dt^2} + \frac{g}{L} \sin \Theta = 0 \tag{B1}
\]

We may formally write the solution for the period, \(T\), as an integral over the angle \(\Theta\) (in radians):

\[
T = 2 \sqrt{\frac{L}{g}} \int_{0}^{\Theta_0} \left[\left(\sin \frac{\Theta}{2} \right)^2 - \left(\sin \frac{\Theta_0}{2} \right)^2 \right]^{1/2} d\Theta \tag{B2}
\]

Integrals of this form belong to a class of elliptic integrals which do not have closed form solutions. If the angle \(\Theta_0\) is sufficiently small, solutions to any desired degree of accuracy can be obtained by doing series expansions in the angles. We state the result without proof below, which assumes the angle \(\Theta_0\) is in radians:

\[
T = 2\pi \sqrt{\frac{L}{g}} \left[1 + \frac{1}{16} \Theta_0^2 + \frac{11}{3072} \Theta_0^4 + \cdots \right] = T^* \left[1 + \frac{1}{16} \Theta_0^2 + \frac{11}{3072} \Theta_0^4 + \cdots \right] \tag{B3}
\]

Note that the period increases as the amplitude increases.