Physic 231 Lecture 35

<table>
<thead>
<tr>
<th>Main points of last lecture:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waves</td>
</tr>
<tr>
<td>- transverse</td>
</tr>
<tr>
<td>- longitudinal</td>
</tr>
<tr>
<td>traveling waves</td>
</tr>
<tr>
<td>(v_{\text{wave}} = f\lambda)</td>
</tr>
<tr>
<td>Wave speed for a string</td>
</tr>
<tr>
<td>(v = \sqrt{\frac{F}{\mu}})</td>
</tr>
<tr>
<td>Superposition and interference of waves; wave forms interfere.</td>
</tr>
<tr>
<td>Reflection of waves.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main points of today’s lecture:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound waves:</td>
</tr>
<tr>
<td>Sound intensity:</td>
</tr>
<tr>
<td>(\beta = 10\log_{10}\left(\frac{I}{I_0} \right))</td>
</tr>
<tr>
<td>(I = \frac{P}{4\pi r^2})</td>
</tr>
<tr>
<td>Dopper shift:</td>
</tr>
<tr>
<td>(f' = f \left(\frac{v + v_o}{v - v_s} \right))</td>
</tr>
</tbody>
</table>
Final Exam

- A common final exam time is scheduled for all sections of Physics 231
- Time: 8:00-10:00 PM, Tues., Dec. 12
- Each section has a different exam location.
- Location for Section 1: Wells Hall B106

- An alternate exam time has been scheduled for students who have conflicts with the regular time.
 - Three students have confirmed conflicts with me and will take the exam then.
 - You must have permission from me to take the exam at the alternate time.
- Alternate time: 7:45-9:45 AM, Monday, Dec. 11
- Location: BPS 1415 (this room)
Conceptual question

- A wave pulse is moving, as illustrated, with uniform speed v along a rope. Which of the graphs 1–4 below correctly shows the relation between the displacement s of point P and time t?
Sound amplitude and intensity

- The amplitude of the sound wave is proportional to the maximum velocity of the air as it moves from the high pressure to the low pressure domains.
- The energy and the power of the sound wave is proportional to the square of amplitude:
 \[\langle E \rangle \propto \frac{1}{2} \rho v^2 \propto \text{Amplitude}^2 \propto v_{\text{max}}^2 \propto p^2 \propto x_{\text{max}}^2 \]
- More useful than the energy of a sound wave is the intensity, I, which is the power P that the sound wave transmits per unit area.
- The ear responds logarithmically to the intensity of sound waves striking the eardrum.
 - I_{\text{threshold}} = I_0 \approx 10^{-12} \text{ W/m}^2, I_{\text{pain}} \approx 1 \text{ W/m}^2
- This logarithmic behavior motivates the decibel measure of sound wave intensity.
 - \(\beta = 10 \log_{10}(I/I_0) \)
ALEXANDER GRAHAM BELL, MAKING THE FIRST CALL FROM NEW YORK TO CHICAGO GETS A WRONG NUMBER
Example

- The intensity level of sound A is 5.0 dB greater than that of sound B and 3.0 dB less than that of sound C. a) Determine the ratio \(\frac{I_C}{I_B} \) of the intensity of sound C to the intensity of sound B. b) Determine the ratio of the amplitudes \(\frac{p_C}{p_B} \) of the modulation in pressure caused by the sound wave.

\[a) \quad \beta = 10 \log_{10} \left(\frac{I}{I_0} \right) \]

\[\beta_A - \beta_B = 10 \log_{10} \left(\frac{I_A}{I_0} \right) - 10 \log_{10} \left(\frac{I_A}{I_0} \right) = 10 \log_{10} \left(\frac{I_A}{I_B} \right) = 5 \]

\[\beta_A - \beta_C = 10 \log_{10} \left(\frac{I_A}{I_C} \right) = -3 \]

\[\beta_C - \beta_B = 10 \log_{10} \left(\frac{I_C}{I_B} \right) = (\beta_A - \beta_B) - (\beta_A - \beta_C) = 5 - (-3) = 8 \]

\[\Rightarrow \log_{10} \left(\frac{I_C}{I_B} \right) = 0.8 \Rightarrow \frac{I_C}{I_B} = 10^{0.8} = 6.3 \]

\[\frac{p_C}{p_B} = \left(\frac{I_C}{I_B} \right)^{1/2} = 2.5 \]
Propagation of spherical and plane waves.

• If one vibrates as piston in a tube of cross-sectional area A, the sound waves travel down the tube in a straight line, like a wave on a string.

• The sound wave power P crossing point B and point C per unit time are the same.

• Since the area A of the tube is constant, the intensity $I = \frac{P}{A}$ is the same at both points.

• If one suspends non-directional sound source with power P in air, the sound will radiate in all directions. All points on a sphere of radius r will see the same sound intensity:

$$I = \frac{P}{4\pi r^2}$$
Example

When a helicopter is hovering 1100 m directly overhead, an observer on the ground measures a sound intensity I. Assume that sound is radiated uniformly as a spherical wave from the helicopter and that ground reflections are negligible. How far must the helicopter fly in a straight line parallel to the ground before the observer measures a sound intensity of $1/5$?

\[
\frac{I_f}{I_0} = 1/5
\]

\[
I_f = \frac{P}{4\pi r_f^2}, \quad I_0 = \frac{P}{4\pi r_0^2}
\]

\[
\Rightarrow r_f^2 = h^2 + d^2 = 5r_0^2 = 5h^2
\]

\[
\Rightarrow d^2 = 4h^2 \Rightarrow d = 2h = 2200m
\]
A wave is sent along a long spring by moving the left end rapidly to the right and keeping it there. The figure shows the wave pulse at QR—part RS of the long spring is as yet undisturbed. Which of the graphs 1–5 correctly shows the relation between displacement s and position x? (Displacements to the right are positive.)
Doppler effect for moving observer

- An observer is moving toward a stationary source
- Due to his movement, the observer detects an additional number of wave fronts
- The frequency heard is increased

- An observer is moving away from a stationary source
- The observer detects fewer wave fronts per second
- The frequency appears lower
Doppler Effect, Source in Motion – general formula

\[f' = f \left(\frac{v + v_o}{v - v_s} \right) \]

- Both the source and the observer could be moving
- Use positive values of \(v_o \) and \(v_s \) when the motion is toward
 - Frequency appears higher
- Use negative values of \(v_o \) and \(v_s \) when the motion is away
 - Frequency appears lower

- As the source moves toward the observer (A), the wavelength appears shorter and the frequency increases
- As the source moves away from the observer (B), the wavelength appears longer and the frequency appears to be lower
Example

- A train at rest emits a sound at a frequency of 1000 Hz. An observer in a car travels away from the sound source at a speed of 30.0 m/s. What is the frequency heard by the observer? (assume \(v_s = 343 \) m/s)
 - a) 513 Hz
 - b) 713 Hz
 - c) 913 Hz
 - d) 1013 Hz
 - e) 1113 Hz

\[
\begin{align*}
\nu_s &= 0, \quad \nu_o = -30m/s \\
f' &= \left(\frac{\nu + \nu_o}{\nu}\right) f = \frac{313}{343} 1000Hz = 913Hz
\end{align*}
\]
Conceptual quiz

Three observers, A, B, and C are listening to a moving source of sound. The diagram below shows the location of the wavecrests of the moving source with respect to the three observers. Which of the following is true?

- a. The wavefronts move faster at A than at B and C.
- b. The wavefronts move faster at C than at A and B.
- c. The frequency of the sound is highest at A.
- d. The frequency of the sound is highest at B.
- e. The frequency of the sound is highest at C.
Example

- Two trucks travel at the same speed. They are far apart on adjacent lanes and approach each other essentially head-on. One driver hears the horn of the other truck at a frequency that is 1.2 times the frequency he would hear if the trucks were stationary. The speed of sound is 343 m/s. At what speed is each truck moving?

\[\text{givens: } \frac{f'}{f} = 1.2, \quad v_s = v_o = v'' \]

\[f' = \frac{(v+v_o)}{(v-v_s)} \quad f = \frac{(v+v'')}{(v-v'')} \]

\[\Rightarrow \frac{f''}{f} = 1.2 = \frac{(v+v'')}{(v-v'')} \]

\[\Rightarrow \text{ans. } v'' = 31 m/s \]