Physics 492 Homework 4:

1. In the semi-classical limit, the Fermi energy of an ideal gas of N identical spin-$1/2$ particles with mass m in a volume V is:

$$E_F = \frac{\hbar^2}{2m} \left(\frac{3\pi^2 N}{V} \right)^{2/3}$$

Consider a nucleus with Z protons, $N = A - Z$ neutrons and radius $R = r_0 A^{1/3}$, where $r_0 = 1.18$ fm. In the ideal-gas model, the total internal kinetic energy of the nucleus, in terms of Fermi energies for protons and neutrons, is

$$E = \frac{3}{5} Z E_F(Z) + \frac{3}{5} N E_F(N)$$

(a) (3 pts.) Determine E_F and E for 16O.

(b) (4 pts.) If $|N - Z| \ll A$, then

$$E \approx E_0 + a_A \frac{(N - Z)^2}{A}$$

where $E_0 = 3/5 A E_F(A/2)$ is the energy of a symmetric nucleus with $N = Z = A/2$. Determine the value of a_A in the ideal-gas limit. Hint: Write

$$N = \frac{A}{2} + \delta \quad \text{and} \quad Z = \frac{A}{2} - \delta$$

where

$$N - Z = 2\delta$$

and expand the ideal-gas energy in δ. Be careful in retaining the proper order of expansion. (This give you another shot as solving is a modified Problem 4.3 in Williams.)

2. (3 pts) Problem 4.1 from Williams

3. (4 pts) Problem 4.2 from Williams

4. (4 pts) Williams, Problem 5.1. Note that to maintain the unit consistency, the mass formula in Williams should be actually written as

$$M(Z, A) \ c^2 = Z M_H \ c^2 + N M_N \ c^2 - a_v \ A - a_e \ A^{2/3} - \ldots$$

5. (5 pts) Williams, Problem 5.5. Hint: Calculate a_C from the Q value of the β^+ decay of 35Ar. Estimate a_A using the fact that 155Ba is stable and thus the Q values of β^+ and β^- decays must be negative; $Q (\beta^+) < 0$ and $Q (\beta^-) < 0$ imply upper and lower bounds on a_A after substituting the value of a_C.
