Collaboration

• Detectors & mechanical design: IPNO
• Embedded electronics
 – Si-strips & Si-Li / CsI boards: IPNO
• ASICs
 – 2 types: CEA & IPNO
• VXI, processing & acquisition: GANIL
Perspectives

- Improved dynamic range
- In-telecope ADC
- Fiber optics communication
- More channels (4-pi coverage)
- Pulse Shape Analysis
- ...

Pierre Edelbruck

MUST II

MSU May-2002
VXI Board

- Bears the « remote side » of the detector (one daughter board / telescope)
 - Performs detector R/O and A to D conversion for all data types (Energy, timing, bias …)
 - Self-test, calibration and slow control
 - Trigger management
- Communication with DAQ
Si-Li & CsI board (MUSICA)

- Cascaded with MUFEE (same data link)
- No discriminator, no TAC
- Local peak-timing generation
Si-Li & CsI board (MUSICA)

- One single board for both detectors
 - 16 + 16 channels
- Single Asic type
 - Variable gain preamp (modularity 8?)
 - Si-Li = 250 MeV (Cf=10 pF)
 - CsI = 200 MeV (photodiode Cf=0.5 pF)
 - Shaper, T&H, Multiplexer, buffers
Si-strips board (MUFEE)

- Detector bias distribution
- 16 Asics w/ 16 inputs each
- E2PROM for local & private storage of the calibration parameters
- Calibration pulser
- Fast trigger / validation logic
- Analog and slow control interfaces
Si-strips ASIC (MATE)

- Data multiplexer & transmission buffer
 - Energy-Time
 - Bias current (on request)
- I2C slow control interface
- Fast trigger logic
Si-strips ASIC (MATE)

- 16 channels
- Dual polarity
- Each channel includes:
 - Preamplifier
 - Shaper
 - Track & hold
 - Leading-edge discriminator
 - TAC
 - Strip bias current measurement
System overview

Pierre Edelbruck
MUST II
MSU May-2002
Technical Issues & Solutions

- Slow control, calibration and maintenance
 - One single, standard I2C link
 - Possible use of standard components
 - DACs, E2PROMS, temperature sensors ...

- Data transmission
 - High speed differential analog bus (2 MHz)
 - Common to all data types
Technical Issues & Solutions

- Volume and geometry
 - Extensive use of Asic technology
 - Early data multiplexing (in the telescope)
 - Robust data transmission and remote processing
- Power dissipation in vacuum
 - Minimize channel power \rightarrow Asic
 - Dual board design with fluid cooling
Objectives

• Modularity
 – Easy future expansion
 – Easy replacement & repair

• Embedded intelligence
 – Self test
 – Calibration
MUST II: Objectives

- Provision for high channel count
 - 2 x 128 Si-strips + 16 SiLi +16 CsI / telescope

- Compacity
 - Small size embedded electronics
 - Low cable count

- Consistency
 - All detectors in one telescope connected to the same processing daughter board
MUST I

- VXI-D technology
- One VXI board for 120 Si-channels
- Discrete embedded preamplifiers
- Heavy wiring
 - One coax line for each Si-strip
- Custom designed trigger board
Outline

- MUST I
- MUST II
 - Motivations & Architecture description
 - Technology
 - The detector (embedded electronics)
 - The acquisition board
- Perspectives