Electron Synchrotrons

Steve Lidia

MICHIGAN STATE

Outline

- History and examples
- Accelerator model review
- Linear and Nonlinear resonances
- Synchrotron radiation
- Lifetimes
- (Appendixes)

Introduction: Electron Rings

- A ring is a an electromagnetic system with a closed particle orbit. - The closed orbit is a natural choice of the reference orbit in rings. The motion of particles typically is described relatively to the closed orbit.
- We will be interested in systems with a stable orbit. That is, particles with a small enough deviation from the closed orbit are stable in respect to the closed orbit.
- Electrons in circular accelerators can make many turns and interact with accelerating RF many times, reaching high energy over an extended period of time.
- In linacs, this happens only once or several times (recirculating linacs).
- Also, rings can store electrons (and positrons) for significant amount of time (hours), providing unique experimental capabilities as colliders and synchrotron light sources.

Introduction: Electron Synchrotron Boosters

- Electron synchrotron boosters accelerate electrons to a specific energy to inject them into other accelerators. Electron linacs are frequently used as injectors to boosters: source \rightarrow linac \rightarrow booster ring \rightarrow storage ring
- Historically, boosters were used for fixed target experiments. However, those machines have been decommissioned long time ago

The first synchrotron to use the "racetrack" design with straight sections, a 300 MeV electron synchrotron at University of Michigan in 1949, designed by Dick Crane.

Introduction: Electron-Electron, Electron-Positron Colliders

VEP-1, 1963
Russia, Novosibirsk

Particles: electron - electron Collision energy: 160 MeV Luminosity: $10^{28} 1 /\left(\mathrm{cm}^{2} \mathrm{~s}\right)$ Rings size: two $1 \mathrm{~m} \times 1 \mathrm{~m}$

Large Electron-Positron Collider (LEP) Operational: 1989-2000
Tunnel was used for LHC after LEP was decommissioned

Particles: electron - positron
Collision energy: 100 GeV
Luminosity: $10^{32} 1 /\left(\mathrm{cm}^{2} \mathrm{~s}\right)$
Circumference: 27 km

_idia, Electron Synchrotrons, Slide 5

Introduction: Light Sources Main Application of Modern Electron Rings

Particles: electrons
Energy: 3 GeV
Beam current: 0.5 A
Circumference: 792m
Number of bunches: 1056
Beam size (v/h): 3-13 $\mu \mathrm{m} / 30-150 \mu \mathrm{~m}$ Experimental beamlines: 58

Simple Electron Ring Lattice and Typical Subcomponents

- Basic subcomponents of electron rings:
- Bending magnets or electrostatic bends dipoles
- Focusing magnets - quads (can be incorporated into dipoles)
- Multiple magnets to achieve specific beam dynamics characteristics
- RF cavities to accelerate or compensate losses due to synchrotron losses and keep beam bunched
- Injection/extraction systems

- Simplified lattice example
- Bend
- FODO doublet (Qx, Qy)
- Sextupoles to compensate tune chromatism

Sx Qx
Dipole
QySy (Sx, Sy)

Accelerator Model Review

The single particle equations of motion have been derived previously.

$$
\begin{aligned}
& \left\{x, x^{\prime}, y, y^{\prime}, z, \delta ; s\right\} \\
& s \cong c t
\end{aligned} \quad \delta=\Delta p / p \quad v=\frac{1}{2 \pi} \oint \frac{d s}{\beta}
$$

$x^{\prime \prime}+\left(\frac{v_{x 0}}{R}\right)^{2} x=0 \quad k_{\beta x}=\frac{v_{x 0}}{R} \quad k_{\beta x}^{2}=\frac{B^{\prime}}{[B \rho]}+\frac{1}{\rho^{2}} \quad B^{\prime}=\frac{\partial B_{y}}{} / \partial x \quad \beta^{2}=\frac{1}{k_{\beta}^{2}}$

$$
y^{\prime \prime}+\left(\frac{v_{y 0}}{R}\right)^{2} y=0 \quad \begin{gathered}
\text { Transverse betatron motion } \\
k_{\beta y}=\frac{v_{y 0}}{R} \quad k_{\beta y}^{2}=-\frac{B^{\prime}}{[B \rho]}
\end{gathered}
$$

$$
[B \rho]=\frac{p}{Q} \quad \text { 'Rigidity' }
$$

Transverse

$$
z^{\prime}=-\eta_{\text {slip }} \delta \quad \text { 'Slippage' } \eta_{\text {slip }}=\alpha-1 / \gamma^{2} \quad 0<\alpha \approx 1 / v_{x 0}^{2} \text { (typically) }
$$

$\delta^{\prime}=\left\{\begin{array}{c}0, \text { unbunched } \\ \frac{1}{\eta_{\text {slip }}}\left(\frac{v_{s 0}}{R}\right)^{2} z, \text { bunched }\end{array}\right.$
Momentum compaction factor (lattice function)
$\left.\eta_{\text {slip }}\right|_{t r}=0=\alpha-1 / \gamma_{t r}{ }^{2}$
at transition
Longitudinal

Lattice Functions

- The lattice defines the environment in which the particles respond to perturbations

Dispersion

$$
\binom{x_{0}}{p_{0}} \Rightarrow\binom{x}{p}=\binom{D_{x}(p, s) \frac{\Delta p}{p_{0}}}{p_{0}+\Delta p}=\binom{D_{x}(p, s) \delta}{p_{0}(1+\delta)} \quad D_{x}^{\prime \prime}+\left(k_{\beta x}^{2} \frac{p_{0}}{p}-\frac{1}{\rho^{2}} \delta\right) D_{x}=\frac{1}{\rho} \frac{p_{0}}{p}
$$

η_{x} is also commonly used
Momentum Compaction (path length changes)

$$
\frac{\Delta C}{C}=\alpha \frac{\Delta p}{p_{0}}=\alpha \delta \quad \alpha=\left|\frac{D}{\rho}\right\rangle_{\text {ring }} \quad C \text { :specific orbit circumference }
$$

Chromaticity, ξ (beware - definition varies!)

$$
\Delta v=\xi(p) \frac{\Delta p}{p_{0}}=\xi \delta \quad v=\frac{1}{2 \pi} \oint \frac{d s}{\beta} \quad \text { Linac } \frac{\Delta k_{\beta}}{k_{\beta}}=\xi \frac{\Delta E}{E}
$$

Longitudinal Motion [1]

- Longitudinal motion is oscillatory and defined by the slippage factor

$$
\begin{gathered}
\eta_{\text {slip }}=\alpha-1 / \gamma^{2} \\
z^{\prime}=-\eta_{\text {slip }} \delta \\
\delta^{\prime}=\left\{\begin{array}{c}
0, \text { unbunched } \\
\frac{1}{\eta_{\text {slip }}}\left(\frac{v_{s 0}}{R}\right)^{2} z, \text { bunched }
\end{array}\right.
\end{gathered}
$$

Longitudinal synchrotron motion

$$
\begin{aligned}
& z^{\prime \prime}+\left(\frac{v_{s 0}}{R}\right)^{2}=0, \quad \text { bunched } \\
& \eta_{\text {slip }}=\alpha-1 / \gamma^{2}=1 / \gamma_{t r}^{2}-1 / \gamma^{2}
\end{aligned}
$$

Below transition energy, $\eta_{\text {slip }}<0$

Above transition energy, $\eta_{\text {slip }}>0$

Longitudinal Motion [2]

- Now with acceleration $\quad V_{R F}(s)=V_{R F} \sin \left(\omega_{R F} t\right)$

18

Longitudinal Equations of Motion ${ }^{\text {Sal }}$

Synchronous particle: energy gain $=$ energy losses $/$ revolution

$$
\mathrm{e} V_{R F} \sin \left(\phi_{s}\right)=U_{0}
$$

primarily synchrotron radiation losses

$$
\varphi_{1}<\varphi_{2}
$$

means
particle azzives
eortier than perticlez
The longitudinal equations of motion for an electron in a storage ring are

$$
\mathrm{T}_{0}=\mathrm{c} / 2 \pi \mathrm{R}
$$

Note!

$$
\frac{\mathrm{ds}}{\mathrm{dt}}=-\alpha \varepsilon c, \quad \& \quad \frac{\mathrm{~d} \varepsilon}{\mathrm{dt}}=\frac{\mathrm{eV}_{\mathrm{RF}}(\mathrm{~s})-\mathrm{U}(\varepsilon)}{\mathrm{E}_{0} \mathrm{~T}_{0}}
$$

where $\varepsilon \equiv \Delta \mathrm{p} / \mathrm{p}$ and s are the momentum deviation and distance of the electron from the synchronous particle respectively. Note that s is positive when an electron arrives at each azimuth ahead of the synchronous particle. If the RF voltage, V_{RF}, is assumed to be sinusoidal the following quantities are of interest.

1. Synchronous Phase, ϕ_{s} :

$$
h=\omega_{R F} / \omega_{r e v} \gg 1 \quad \phi_{s}=\sin ^{-1}\left[\frac{\mathrm{U}_{0}}{\mathrm{ev}_{\mathrm{RF}}}\right]=\sin ^{-1}\left[\frac{1}{\mathrm{q}}\right]
$$

'harmonic index'
2. RF Acceptance, $\varepsilon_{\mathrm{RF}}$:

$$
\varepsilon_{\mathrm{RF}}= \pm\left[\frac{2 \mathrm{U}_{0}}{\pi \alpha \mathrm{E} E}\left\{\sqrt{q^{2}-1}-\cos ^{-1}(1 / q)\right\}\right]^{1 / 2}
$$

3. Synchrotron Tune, v_{s} :

$$
v_{\mathrm{s}}=\frac{\Omega_{\mathrm{s}}}{\omega_{0}}=\left[\frac{\alpha h \cos \phi_{\mathrm{s}}}{2 \pi} \frac{e V_{\mathrm{RF}}}{\mathrm{E}}\right]^{1 / 2}
$$

4. Bunch Length, σ_{L} :

$$
\sigma_{L}=\frac{\alpha c}{\Omega_{s}} \sigma_{E}=\left[\frac{2 \pi \alpha h c^{2}}{\omega_{R F}^{2} \cos \phi_{s}} \frac{E}{e V_{R F}}\right]^{1 / 2} \sigma_{E}
$$

J. Murphy, ed., Synchrotron Light Source Data Booklet, v.4, 1996

Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science

Michigan State University

Solutions to Hill's Equation

- The linear motion has known solutions

$$
x_{\beta}^{\prime \prime}+\left(\frac{v_{x 0}}{R}\right)^{2} x_{\beta}=0 \quad \text { Hill's Equation }
$$

Natural Chromaticity

- The presence of energy spread in the beam leads to variations in the betatron tune.
- Any lattice has a 'natural' chromaticity $\quad \xi_{B^{\prime}} \underset{1}{ } \quad$ natural $=-\frac{1}{4 \pi} \oint k_{\beta}^{2} \beta d s$

$$
k_{\beta x}=\frac{v_{x 0}}{R} \quad k_{\beta x}^{2}=\frac{B^{\prime}}{[B \rho]}+\frac{1}{\rho^{2}}
$$

- Uncorrected, this natural chromaticity results in strong variations in betratron functions with energy deviations.
- Negative chromaticity is also to be avoided so that head-tail instabilities and coupled-bunch oscillations may be suppressed.
- The addition of a sextupole magnet (length, l) is commonly used to correct the natural chromaticity. But this introduces nonlinearity into the ring dynamics.

$$
\Delta \xi_{\text {sext }}= \pm \frac{1}{4 \pi} D \beta \frac{B^{\prime \prime} l}{[B \rho]}
$$

(+) for bend plane (eg. horizontal)
$(-)$ for out-of-plane (eg. vertical)

Introduction to Lattice Perturbations

- Non-ideal elements and symmetry-breaking insertions provide localized sources of perturbations

$$
\begin{aligned}
& y^{\prime \prime}+\left(\frac{v_{y 0}}{R}\right)^{2} y= \underbrace{-K y} \Rightarrow y^{\prime \prime}+\left[\left(\frac{v_{y 0}}{R}\right)^{2}-K\right] y=0 \\
& \begin{array}{c}
\text { example } \\
\text { perturbation }
\end{array}
\end{aligned} \quad=\left(\frac{v_{y}}{R}\right)^{2} \quad v_{y}^{2}=v_{y 0}^{2}-K R^{2}
$$

- Small perturbation -> orbit distortion

$$
\Delta v_{y}=v_{y}-v_{y 0} \approx-\frac{K R^{2}}{2 v_{y 0}} \quad y_{\beta}(s)=\hat{y} \sqrt{\frac{\beta_{y}(s)+\Delta \beta_{y}}{\beta_{0}}} \cos \left(\psi_{y}(s)\right)
$$

- Large perturbation -> secular growth, nonlinear island formation

$$
v_{y}^{2}=v_{y 0}^{2}-K R^{2}<0
$$

Linear coupling between planes

- Coupling between planes from skew and solenoidal components, misalignments, etc.

$$
\begin{aligned}
& x=x_{0}+x_{\beta}+x_{D}=x_{0}+\hat{x} \sqrt{\frac{\beta_{x}}{\beta_{0}}} \cos \left(\psi_{x}\right)+D_{x} \delta \\
& y=y_{0}+y_{\beta}+y_{D}=y_{0}+\hat{y} \sqrt{\frac{\beta_{y}}{\beta_{0}}} \cos \left(\psi_{y}\right)+D_{y} \delta
\end{aligned}
$$

$$
\begin{array}{cc}
x^{\prime \prime}+k_{\beta x}^{2} x=S y+R y^{\prime}+\frac{1}{2} R^{\prime} y+\cdots & S(s)=\frac{B_{\text {skew }}^{\prime}}{[B \rho]}=\frac{\partial B_{x} / \partial x}{[B \rho]} \\
y^{\prime \prime}+k_{\beta y}^{2} y=S x-R x^{\prime}-\frac{1}{2} R^{\prime} x+\cdots & R=\frac{B_{\text {sol }}}{[B \rho]}
\end{array}
$$

- Analysis of motion (similar to development of Courant-Snyder parameters) finds at lowest order of perturbation

$$
\begin{array}{ll}
\hat{x}^{2}+\hat{y}^{2}=\text { constant } v_{x}-v_{y}=\text { Integer } & \text { Difference resonance, bounded } \\
\hat{x}^{2}-\hat{y}^{2}=\text { constant } v_{x}+v_{y}=\text { Integer } & \text { Sum resonance, unbounded }
\end{array}
$$

Tune Diagram with Resonances

- In general, the resonances happen when tunes satisfy equation

$$
\begin{aligned}
& k v_{x}+l v_{y}=m \\
& k, l, m-\text { integers }
\end{aligned}
$$

- The strength of the resonances and their destructive effects reduce with the resonance order (m)
- Resonances higher than $4^{\text {th }}$ order rarely cause instantaneous beam loss but can cause emittance increase and beam quality reduction.
- Resonance harmonics equal to machine periodicity (q) can be particularly strong (ie. excited at every lattice cell)

Tune Diagram between 2 and 3 for $k, l \leq 4$

Tune Diagram with Resonances

- In general, the resonances happen
when tunes satisfy equation

$$
\begin{aligned}
& k v_{x}+l v_{y}=m \\
& k, l, m-\text { integers }
\end{aligned}
$$

Red circles show approximate area typically used by electron ring synchrotrons for operations.

- The strength of the resonances and their destructive effects reduce with the resonance order (m)
- Resonances higher than $4^{\text {th }}$ order rarely cause instantaneous beam loss but can cause emittance increase and beam quality reduction.
- Resonance harmonics equal to machine periodicity (q) can be particularly strong (ie. excited at every lattice cell)

Non-Linear Dynamics and Its Treatment

- Nonlinear elements can severely affect beam dynamics in the rings
- Cause fast beam losses and beam quality degradation
- Limit beam lifetime in an accelerator
- Limit suitable selection of betatron tunes
- Accurate treatment of nonlinear motion still is not possible. There is no mathematical apparatus that would allow us to do that in a general case (except some specific cases)
- Iterative perturbation analysis and averaging are used and produce good results. However, this treatment is beyond the scope of the course (although it is not too complicated and relies on analysis of corresponding Hamiltonian Functions. It is just time consuming.)
- We study a simple model numerically to get a qualitative picture

Numerical Model and Motion Far From Resonances

Step 1 - one turn transformation, linear optics

$$
\left[\begin{array}{c}
x \\
x^{\prime}
\end{array}\right]_{2}=\left[\begin{array}{cc}
\cos \left(2 \pi v_{x}\right) & \sin \left(2 \pi v_{x}\right) \\
-\sin \left(2 \pi v_{x}\right) & \cos \left(2 \pi v_{x}\right)
\end{array}\right]\left[\begin{array}{c}
x \\
x^{\prime}
\end{array}\right]_{1}
$$

Step 2 - thin sextupole and octupole transformations
> $v=0.171$ - far from resonances, motion with nonlinearities is perturbed but not dramatically. Linear motion shows no perturbations (ellipse).

$$
\left[\begin{array}{l}
x \\
x^{\prime}
\end{array}\right]_{3}=\left[\begin{array}{c}
0 \\
S x_{2}^{2}+O x_{2}^{3}
\end{array}\right]
$$

Linear

With Nonlinearities

$$
\begin{aligned}
& S=0.05, \mathrm{O}=-0.01 \\
& \frac{\partial v}{\partial A^{2}}>0 \text { for } \mathrm{O}<0
\end{aligned}
$$

Tune shift is positive for large amplitudes

$v=q / 3$ Resonance (in horizontal x -x' phase space plane)

Linear motion, sext $=0$, oct $=0-$ no phase space perturbation

Non-linear motion, Sext $=0.05$, Oct $=-0.01-$ strong perturbation of phase space. Particles become unstable (Amplitude $\rightarrow \infty$), causing losses in a few turns
$v=0.30$

$v=0.31$

$v=0.32$

$v=0.33$

$v=0.34$

Particles with larger amplitudes get have a higher frequency, see previous slide

$v=q / 4$ Resonance (in horizontal x-x' phase space plane)

Linear motion, sext $=0$, oct $=0-$ no phase space perturbation

Non-linear motion, sext $=0.05$, oct $=-0.01-$ strong perturbation of phase space

Frequency Map Analysis

- Frequency map analysis is a very powerful tool to understand and improve the nonlinear dynamic behavior in particle accelerators.
- Frequency map analysis is used to compare the performance of different lattices and to carry out an automated
 lattice optimization.
- Experimentally, 'pinger' magnets are used to excite motion and explore areas of the nonlinear dynamic aperture. Turn-by-turn motion is measured with BPMs.
- See http://www.cpt.univmrs.fr/~hscopp04/Abstracts/Laskar.pdf

Figure 1: Simulated Frequency Map for the ALS lattice with errors in configuration and frequency space.

Synchrotron Radiation [1]

- Synchrotron radiation is a by-product of transverse acceleration of charged particles.
- Predicted by Ivanenko and Pomeranchuk in 1943.
- Observed in 1947 in General Electric electron synchtrotron.
- Originally considered a nuisance as it provides a channel to drain energy from the stored beam - with a strong dependence on beam energy.
- Nowadays it provides the basis of incredibly useful facilities for scientific discovery.

Synchrotron Radiation [2]

- Radiation is emitted by relativistic charged particles due to acceleration in a magnetic field.
- Radiation is quantum in nature, but the high intensity of the field leads to classical analysis.
- Radiation is emitted over a broad spectrum of low photon energies and falls off exponentially above the critical energy

$$
\epsilon_{c r i t}=\hbar \omega_{c r i t}=\frac{3 \hbar c \gamma^{3}}{2 \rho} \Rightarrow \epsilon_{\text {crit }}[\mathrm{keV}]=0.665 B[T] E^{2}[\mathrm{GeV}]
$$

- The total power radiated is given by

$$
P_{\text {total }}=\frac{4 \pi r_{e} m c^{2}}{3 e} \frac{\gamma^{4}}{\rho} I \Rightarrow P_{\text {total }}[\mathrm{kW}]=U_{0}[\mathrm{keV}] I[A]=\left[\frac{88.5 \mathrm{E}^{4}[\mathrm{GeV}]}{\rho[\mathrm{m}]}\right] I[A]
$$

- This power must be replenished by the synchrotron's RF system

Spectrum of Synchrotron Radiation

$$
\epsilon_{c r i t}=\hbar \omega_{c r i t}=\frac{3 \hbar c \gamma^{3}}{2 \boldsymbol{n}} \quad \text { Characteristic energy of SR spectrum }
$$

0.5 T magnetic field, 1 A beam current, 0.1% bandwidth

Quantum Nature of Synchrotron Radiation

Number of photons emitted per turn $N \approx \alpha \gamma=\frac{\gamma}{137}$
α - is the fine-structure constant
Statistical emission of a quantum appears as a change in an equilibrium orbit by recoil, causing oscillations around that new orbit - increases betatron oscillations.

Multiple emissions behave like Brownian motion causing diffusion and increase of emittance.
emitted

Quantum oscillations ultimately limit the equilibrium emittance.
The equilibrium emittance is defined by the damping rate and by the growth rate caused by random emissions of light quanta.

Quantum Statistics of Synchrotron Emission

Parameter	Value
Mean photon energy, $\langle\epsilon\rangle$	$\frac{8}{15 \sqrt{3}} \epsilon_{\text {crit }}$
RMS photon energy, $\left\langle\epsilon^{2}\right\rangle$	$\frac{11}{27} \epsilon_{\text {crit }}^{2}$
Total photon flux, $\dot{N}_{p h}$	$\frac{15 \sqrt{3}}{8} \frac{P_{\gamma}}{\epsilon_{\text {crit }}}$
Product, $\dot{N}_{p h}\left\langle\epsilon^{2}\right\rangle$	$\frac{55}{24 \sqrt{3}} P_{\gamma} \epsilon_{c r i t}=\frac{55}{24 \sqrt{3}} \hbar c^{2} r_{e} m c^{2} \frac{\gamma^{7}}{\left\|\rho^{3}\right\|}$
Luantum excitation over path length, L	$\left.\Delta \sigma_{E}^{2}\right\|_{\text {quant }}=\frac{55(\hbar c)^{2}}{48 \sqrt{3}} \gamma^{7} \int_{0}^{L}\left(\frac{1}{\left\|\rho_{x}^{3}\right\|}+\frac{1}{\left\|\rho_{y}^{3}\right\|}\right) d s$
mittance increase over path length, L	$\left.\Delta \varepsilon_{u}\right\|_{q u a n t}=\frac{55 r_{e} \hbar c}{48 \sqrt{3} m c^{2}} \gamma^{5} \int_{0}^{L} \frac{\mathcal{H}_{u}}{\left\|\rho_{u}^{3}\right\|}$

Radiation Damping

- Emission of synchrotron radiation reduces the electron energy.
- An electron radiates at the average rate U_{0} / T_{0} where $T_{0}=c / 2 \pi R$ is the average revolution time.
- Electrons on different betatron oscillations, but with the same energy, will lose the same amount of energy (when averaged, in linear approximation)
- Electrons with different energies, will radiate different amounts
- Electrons emit photons within an angle $1 / \gamma$ of the forward motion
- Longitudinal momentum is replaced by RF acceleration
- Transverse momentum is damped

Damping of Synchrotron Oscillations

$$
\begin{align*}
& E_{i+1}=E_{i}+e \mu \cdot \sin \varphi-W= \\
& =E_{i}+e \mu \cdot \sin \varphi-\left(\omega_{0}+\frac{d \omega}{d E} \varepsilon_{i}\right) \\
& \text { Energy transformation after } \\
& 1 \text { turn for electron with energy } \\
& \text { deviated from the synchronous } \\
& \text { energy } \\
& \varepsilon_{i}=E_{i}-E_{S} \\
& E_{S}=E_{S}+e \mu \cdot \sin \varphi_{S}-\omega_{0} \quad \text { Energy and phase of synchronous } \\
& \text { particle } \\
& \Rightarrow \frac{d \varepsilon}{d t}=\frac{\mu \operatorname{lin}}{T}\left(\sin \varphi-\sin \varphi_{s}\right)-\frac{d \omega}{T d \epsilon} \varepsilon \\
& \Rightarrow \quad \frac{d^{2}}{d t^{2}}+\frac{1}{T} \frac{d w}{d E} \cdot \frac{d \varepsilon}{d t}+\omega_{s}^{2} \cdot \varepsilon=0 \quad \text { For small oscillations } \\
& J_{S}=\frac{1}{T_{S}}=\frac{1}{T} \frac{d W}{d E}=\frac{W_{0}}{2 E T}(2+D) \quad 2 \text {-bending } \\
& D=\frac{\int \frac{\eta}{r}\left(\frac{1}{R^{2}}+\frac{2 e B^{1}}{P C}\right)}{\int 1 / 2^{2} d s} \tag{Radius}
\end{align*}
$$

Damping of Vertical Oscillations

$$
\begin{aligned}
& y^{\prime \prime}+k y=0 \quad-\text { derivative } \frac{d}{d s} \\
& \ddot{y}+\omega_{p y}^{2} y=0 \quad-\text { derivative } \frac{d}{d t}
\end{aligned}
$$

- Energy loss because of SRfiction $F=-\frac{P}{v} \cdot \frac{v}{v}$

$$
\begin{aligned}
& \ddot{y}+\frac{P_{s x}}{r_{m v^{2}}} \dot{y}+w_{\beta y}^{2} \cdot y=0 \\
& J_{\bar{y}} \frac{1}{\tau_{y}}=\frac{P_{S R}}{2 E_{0}}=\frac{\omega_{0}}{2 E_{0} T_{0}} \quad \omega_{0}-\begin{array}{c}
\text { exiergyloss } \\
\text { per turn }
\end{array} \\
& J_{y}=\frac{2 \pi}{3} \frac{20_{e}}{2} \frac{\theta^{3}}{T_{0}} \quad z_{0}-\begin{array}{l}
\text { classicalelecton } \\
\text { radius. }
\end{array} \\
& T_{\beta} \ll T_{0} \ll T_{\text {synch }} \ll T_{\text {damp. }} \ll T_{L T} \\
& \text { Betatron Rev synchrotern } S R \text {. lifetime } \\
& \begin{array}{l}
\text { OSC. Time oscillations damp.i'̀.gidia, Electron Synchrortons, side } 30 \\
\text { period }
\end{array}
\end{aligned}
$$

Beam Lifetime

$\tau_{\text {total }}^{-1}=\tau_{\text {scat }}^{-1}+\tau_{\text {brem }}^{-1}+\tau_{\text {Tous }}^{-1}+\tau_{\text {quant }}^{-1}$

Gas scattering

$$
\tau_{s c a t}^{-1}
$$

$$
\frac{4 r_{e}^{2} Z^{2} \pi \rho c}{2 \gamma^{2}}\left[\frac{\left\langle\beta_{x}\right\rangle \beta_{x, \max }}{a^{2}}+\frac{\left\langle\beta_{y}\right\rangle \beta_{y, \max }}{b^{2}}\right]
$$

Bremsstrahlung on nuclei

$$
\tau_{\text {brem }}^{-1}
$$

$$
\frac{16 r_{e}^{2} Z^{2} \rho c}{411} \ln \left[\frac{183}{Z^{1 / 3}}\right]\left[-\ln \varepsilon_{R F}-\frac{5}{8}\right]
$$

$$
\frac{\sqrt{\pi} r_{e}^{2} c N C(\zeta)}{\sigma_{x}^{\prime} \gamma^{3} \varepsilon_{a c c}^{2} V}, V=8 \pi^{3 / 2} \sigma_{x} \sigma_{y} \sigma_{z}, \zeta=\left(\varepsilon_{a c c} / \gamma \sigma_{x}^{\prime}\right)^{2}
$$

Quantum
$\tau_{\text {quant }}$

$$
\frac{\tau_{s}}{2} \frac{e^{\xi}}{\xi}, \quad \xi={ }^{\varepsilon_{r f}^{2}} / 2 \sigma_{E}^{2}
$$

J. Murphy, ed., Synchrotron Light Source Data Booklet, v.4, 1996

Top Off Mode

Continuous replacement of lost beam

Advanced Light Source

User Operations Shift underway: $1.9 \mathrm{GeV}, 276$ buckets, cam bucket 318 Refills at 9:00 am, 5:00 pm, and 1:00 am .

Acknowledgments

- Some material (mostly pictures) were "borrowed" from the USPAS 2013 school course "Design of Electron Storage and Damping Rings" by Andy Wolski and David Newton, USPAS, Fort Collins, Colorado, 2013
- SPRING 8 informational video available on YouTube

Appendix 1

Transverse and Longitudinal Motion in Electron Rings

Equations of Motion and Hill Equation

(x, y)-small deviations from the reference particle s is the independent variable instead of $\mathrm{t}\left(\mathrm{s}=\mathrm{v}^{*} \mathrm{t}\right)$

$$
\begin{array}{|l|}
\begin{array}{l}
\frac{d^{2} x}{d s^{2}}+\frac{1-n}{\tau^{2}} x=\frac{1}{2}\left(\frac{\Delta p}{p}-\frac{\Delta B}{B}\right) \\
\frac{d^{2} y}{d s^{2}}+\frac{h}{\tau^{2}} y=0
\end{array} \quad-\text { Dipole magnet with gradient focusing } n=-\frac{r_{0}}{B}\left(\frac{d B}{d r}\right)_{0} n \text { is the field index }
\end{array}
$$

$$
\begin{aligned}
& \frac{d^{2} x}{d s^{2}}+\frac{e B^{\prime} x}{c p}=0 \\
& \frac{d^{2} y}{d s^{2}}-\frac{e B^{\prime} y}{c p}=0
\end{aligned}
$$

- Quadrupole

$$
\begin{aligned}
& \frac{d^{2} x}{d s^{2}}=0 \\
& \frac{d^{2} y}{d s^{2}}=0
\end{aligned}
$$

- Drift

$$
\begin{aligned}
& x^{\prime \prime}+k(s) x=0 \\
& k(s)=k(s+c)
\end{aligned}
$$

- General Hill equation with periodic focusing

Example: Weak Focusing Azimuthally Symmetric Field with Gradient

$$
\begin{array}{ll}
x=A_{x} \cos \left(\frac{\sqrt{1-n}}{2} \cdot s+\varphi_{x}\right) & x^{\prime}=-A_{x} \sin \left(\frac{\sqrt{1-n}}{2} s+\varphi_{x}\right) \frac{\sqrt{1-n}}{2} \\
y=A_{y} \cdot \cos \left(\frac{\sqrt{n}}{2} s+\varphi_{y}\right) & y^{\prime}=-A_{y} \cdot \sin \left(\frac{\sqrt{n}}{2} s+\varphi_{y}\right) \cdot \frac{\sqrt{n}}{2}
\end{array}
$$

Solution
easily obtainable

Current is phase space density times area 1. Increase density
2. Increase aperture
3. Increase focusing

Increasing focusing in both planes is Impossible. Need other focusing
Mechanism (strong focusing)

Strong Focusing

Strong focusing can be achieved by introducing variable focusing as function of s. However, stability and properties of such motion needs to be investigated.

Linear Betatron Motion

Linear motion can be described by vectors and matrices

wine like solution $C(s)=1, C^{\prime}\left(s_{1}\right)=0$
Sine like dolution $S\left(S_{1}\right)=0, S^{\prime}\left(S_{1}\right)=1$.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
x^{\prime}
\end{array}\right]_{2}=\left[\begin{array}{ll}
C(s) & s(s) \\
c^{\prime}(s) & s^{\prime}(s)
\end{array}\right]\left[\begin{array}{l}
x \\
x^{\prime}
\end{array}\right]_{1} \quad\left(\left[\begin{array}{l}
x \\
x^{\prime}
\end{array}\right]_{1}=\left((s) x_{1}+s_{1}\left(s_{1}\right)_{1}^{\prime} x_{1}^{\prime}\right)\right.} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] x_{1}^{1} \\
& T(S, S+C)=M \text { - one turn matrix }
\end{aligned}
$$

Stability of Betatron Motion [1]
$T(S, S+C)=M$ - one turn matrix Y_{1} and Y_{2} - Eigen vectors of M (basis) with eigen values λ_{1} and λ_{2}.

$$
\begin{array}{ll}
\binom{x}{x^{\prime}}_{S}=\alpha_{1} Y_{1}+\alpha_{2} Y_{2} & \text { - initial vector } \\
\binom{x}{x^{\prime}}_{S+c}=M\binom{x}{x^{\prime}}_{S}=\alpha_{1} \lambda_{1} Y_{1}+\alpha_{2} \lambda_{2} y_{2} & \text { - after a turn } \\
\binom{x}{x^{1}}_{S+C \cdot N}=M^{N} \cdot\binom{x}{x^{\prime}}_{S}=\alpha_{1} \lambda_{1}^{N} Y_{1}+\alpha_{2} \lambda_{2}^{N} Y_{2} & \text { - after } N \text { turns }
\end{array}
$$

\qquad

For the motion to be stable

$$
\left|\lambda_{1}\right|,\left|\lambda_{2}\right| \leqslant 1
$$

Stability of Betatron Motion [2]

Matrices T and M are Wronskians => $\operatorname{det}(\mathrm{T})$ - constant. $\operatorname{det}(\mathrm{T})=\operatorname{det}(\mathrm{M})=1-$ obtain from initial conditions

$$
\begin{aligned}
& \lambda_{1} \cdot \lambda_{2}=1 . \\
& \lambda_{1}=\bar{\lambda}_{2}-C . C . \\
& \Rightarrow \lambda_{1}=e^{i \mu} \quad \mu \text { is the betatron phase advance per turn } \\
&\left|M_{1}-\lambda E\right|=0 \\
& \lambda^{2}- \lambda\left(m_{11}+m_{22}\right)+\operatorname{det} M=0 \\
& \lambda= \frac{T_{2} M}{2} \pm i \sqrt{1-\left(\frac{T_{2} M}{2}\right)^{2}}=e^{i \mu} \\
& \cos \mu=\frac{T_{2} M}{2} \\
&-1<\frac{T_{2} M}{2}<1-\text { Stalidity condition }
\end{aligned}
$$

Twiss Parametrization

$$
\begin{array}{ll}
M=I \cos \mu+J \sin \mu= & I \text {-unitymatix } \\
=\left[\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right] & J=\left[\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right]
\end{array}
$$

Twiss parametrization Because $\operatorname{det}(\mathrm{M})=1$

$$
-\alpha^{2}+\beta \gamma=1
$$

Essen Vector

$$
y=\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right] \quad M\left[\begin{array}{l}
y \\
y_{1}
\end{array}\right]=e^{ \pm i \mu}\left[\begin{array}{l}
y \\
y^{1}
\end{array}\right]
$$

$$
(\cos \mu+\alpha \sin \mu) y+\beta \sin \mu y^{\prime}=e^{ \pm i / \mu} \cdot y
$$

Equalize sine and cos, ice terms $\alpha y+\beta y^{\prime}= \pm i y$

$$
\begin{aligned}
& \frac{y^{\prime}}{y}=\frac{ \pm i-\alpha}{\beta} \\
& \Rightarrow \quad y=\left[\begin{array}{c}
\sqrt{\beta} \\
\pm \frac{i-\alpha}{\sqrt{\beta}}
\end{array}\right] \leftarrow \text { eigenvector }
\end{aligned}
$$

Evolution of Particle Coordinates at Specific Location s

$$
\begin{array}{ll}
x=\alpha_{1} \sqrt{\beta}+\alpha_{2} \sqrt{\beta} \quad \alpha_{1}, \alpha_{2} \text {-complex, nu st be } \\
x^{\prime}=\alpha_{1} \frac{i-\alpha}{\sqrt{\beta}}+\alpha_{2} \frac{i-\alpha}{\sqrt{\beta}} \quad \alpha_{1}=\alpha_{2}^{*} \\
\Rightarrow & \alpha_{1}=A e^{i \varphi}, \alpha_{2}=A e^{-i \varphi} \\
& x^{\prime}=-\frac{A}{\sqrt{\beta}}(\operatorname{cin} \varphi+\alpha \cdot \cos \varphi)
\end{array}
$$

\Rightarrow After N turns
$x=A \sqrt{\beta} \cdot \cos \left(\varphi+N_{j} \mu\right) \quad \mu$ is the betatron phase advance per turn $x^{\prime}=-\frac{A}{\sqrt{13}}(\sin (\varphi+N \cdot \mu)+\alpha \cdot \cos (\varphi+N \cdot \mu))$

Courant-Snyder Ellipse At Specific Location s

$$
\begin{aligned}
& x=A \sqrt{\beta} \cos \psi \quad \psi=\varphi+\mu \cdot \\
& x^{\prime}=-\frac{A}{\sqrt{\beta}}(\alpha \cos x+\sin \psi) \quad \\
& A \cos \psi=\frac{x}{\sqrt{\beta}} \\
& A \sin \psi=-\left(x^{\prime} \sqrt{\beta}+\frac{\alpha x}{\sqrt{\beta}}\right) \\
& A^{2}=A^{2} \cos ^{2} x+A^{2} x^{2} \psi^{2} \psi= \\
& =\frac{1+\alpha^{2}}{\beta} x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}= \\
& =\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2} \rightarrow \text { in variant }
\end{aligned}
$$

Mismatch

Area of $\varepsilon 1>$ Area of $\varepsilon 2$ However, effective area of ε_{2} is larger than E1.

Particle Motion Along Accelerator Equations for $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$
(1)

$$
\begin{aligned}
& \left(\frac{y^{\prime}}{y}\right)=\frac{ \pm i-\alpha}{\beta} \\
& Y_{1,2}=\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right] \text {-eigenvector }
\end{aligned}
$$

$$
y^{\prime \prime}+k y=0
$$

Differentiate left and rich ports of (1)

$$
\begin{aligned}
& \left(\frac{y^{\prime}}{y}\right)^{\prime}=-k-\left(\frac{y^{\prime}}{y}\right)^{2}=-k-\left(\frac{ \pm i^{\prime}-\alpha}{\beta}\right)^{2} \\
& \left(\frac{ \pm i-\alpha}{\beta}\right)^{\prime}=-\frac{\alpha^{\prime}}{\beta}-\frac{(\pm i-\alpha)}{\beta^{2}} \beta^{\prime}
\end{aligned}
$$

Equalize real and complex parts:

$$
\begin{aligned}
\Rightarrow \quad \beta^{\prime} & =-2 \alpha \\
\alpha^{\prime} & =k \beta-\frac{1+\alpha^{2}}{\beta} \quad \begin{array}{r}
\text { system of equations for } \\
\alpha \text { and } \beta
\end{array} \\
02 \quad \frac{1}{2} \beta \beta^{\prime \prime}+k \beta^{2}-\beta^{\prime 2} / 4 & =1
\end{aligned}
$$

Particle Motion Along Accelerator Phase Advance

$$
\begin{aligned}
& \frac{y^{\prime}}{y}=\frac{ \pm i-\alpha}{\beta}=\frac{ \pm i+\beta^{\prime} / 2}{\beta} \\
& \frac{d y}{y}= \pm i \frac{d s}{\beta}+\frac{1}{2} \frac{d \beta}{\beta} \\
& y=\alpha \sqrt{\beta} e^{ \pm i \int \frac{d s}{\beta}} \\
& x=A \cdot \sqrt{\beta} \cdot \cos _{s+\infty}^{s+s}\left(\int_{\infty}^{s} \frac{d s}{\beta(s)}+\varphi\right) \\
& \int_{s_{0}}^{s_{0}+c} \frac{d s}{\beta}=\mu \text {-phase advance perturb } \\
& \nu=\frac{\pi}{2 \pi}=\frac{1}{2 \pi} \int_{s_{0}}^{s+c} \frac{d s}{\beta} \quad \text { - Betatron tune }
\end{aligned}
$$

Example
Small Focusing Perturbation

Thin, weak lens added to a ring with the one-turn matrix M0 Find new betatron tune and β at the location of the lens

$$
\begin{gathered}
M=\left[\begin{array}{cc}
F & \mu_{0} \\
-1 / f & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \mu_{0}+\alpha \sin \mu_{0} & \beta \sin \mu_{0} \\
-\gamma_{0} \sin \mu_{0} & \cos \mu_{0}-\alpha \sin \mu_{0}
\end{array}\right] \\
=\left[\begin{array}{lc}
-\cos \mu_{0}+\alpha \sin \mu_{0} & \beta \sin \mu_{0} \\
-\frac{1}{f}\left(\cos \mu_{0}+\alpha \sin \mu_{0}-\gamma_{0} \sin \mu_{0}\right. & \cos \mu_{0}-\alpha_{0} \sin \mu_{0}-\beta / \rho \sin \mu_{0}
\end{array}\right]
\end{gathered}
$$

$$
\cos \mu=\cos \left(\mu_{0}+\Delta \mu\right)=\frac{T_{2} M}{2}=\cos \mu_{0}-\frac{\beta_{0}}{2 f} \cdot \sin \mu_{0}
$$

$\cos \left(\mu_{0}+\Delta \mu\right) \simeq \cos \mu_{0}-\sin \mu \cdot \Delta \mu \quad$ For small $\delta \mu$

$$
\Rightarrow \Delta \mu=\frac{\beta}{2 f}
$$

$$
\Rightarrow \Delta \nu=\frac{\Delta \mu}{2 n}=\frac{\beta}{4 n f}
$$

Motion of Particle With Energy Deviation

Change on Cizumenference

$$
\begin{aligned}
\Delta c & =\oint \frac{x_{p}}{2}=\frac{\Delta p}{p} \oint \frac{\eta}{2} d s=\alpha_{p} c \frac{\Delta p}{p} \\
\alpha_{p} & =\frac{1}{c} \int \frac{\eta}{2} d s \\
\Rightarrow \frac{\Delta C}{c} & =\alpha_{p} \frac{\Delta p}{p}
\end{aligned}
$$

Azimuthally Symmetric Case

$$
\begin{aligned}
& x^{\prime \prime}+\frac{1-n}{\tau^{2}} x=\frac{1}{2} \frac{\Delta p}{p} \\
& \eta^{\prime \prime}+\frac{1-n}{\tau^{2}} \eta=\frac{1}{\tau} \\
& \eta=\frac{\tau}{1-n} \quad\left(\text { trend } \quad \eta \sim \frac{\tau}{v_{x}^{2}}\right) \\
& \alpha_{p}=\frac{1}{1-n}
\end{aligned}
$$

Energy-Phase Motion with RF [1]

$$
T=\frac{2 \phi}{\omega}-\text { revolution time } T=\frac{C}{v}
$$

$$
\Delta T=\Delta\left(\frac{c}{v}\right)=\frac{\Delta c \cdot v-\Delta v \cdot c}{v^{2}}=T\left(\frac{\Delta c}{c}-\frac{\Delta v}{v}\right)=T\left(\alpha_{p}-\frac{1}{r^{2}}\right) \frac{\Delta p}{p}
$$

$=T\left(\alpha_{p}-\frac{1}{r^{2}}\right) \frac{\Delta p}{p} \quad \alpha_{1}-\frac{1}{\gamma^{2}}-$ os typially positive for electionzings (can be negative for ion andprotoruings)

$$
\varphi_{1}<\varphi_{2}
$$

means particle 1 arrives earlier than particle 2

Energy-Phase Motion with RF [2]
Rate of phase change

$$
\varphi_{i+1}=\varphi_{i}+h w T\left(\alpha_{p}-1 / \gamma^{2}\right) \frac{\Delta p}{p} \quad \frac{d \varphi}{d t}=\frac{\Delta \varphi}{T}=h \omega\left(\alpha_{p}-1 / \gamma^{2}\right) \frac{\Delta p}{p} \quad \begin{aligned}
& \text { Assumes slow } \\
& \text { Change per turn }
\end{aligned}
$$

Rate of energy change

$$
\begin{gathered}
E_{i+1}=E_{i}+e u \cdot \sin \varphi-\omega_{0} \\
E_{s}=E_{s}+e \mu \cdot \sin \varphi_{s}-\omega_{0} \\
\varepsilon_{i+1}=\varepsilon_{i}+\mu\left(\sin \varphi-\sin \varphi_{s}\right) \\
\frac{d \varepsilon}{d t}=\frac{\Delta E}{T}=\frac{e \mu\left(\sin \varphi-\sin \varphi_{s}\right)}{T} \\
d \varepsilon=\rho v \frac{d p}{r} \\
\Rightarrow \frac{d}{d t}\left(\frac{\Delta p}{p}\right)=\frac{e \mu}{p v T}\left(\sin \varphi-\sin \varphi_{s}\right)
\end{gathered}
$$

W_{0} is energy loss per turn to radiation For synchronous phase, φ_{S}, W_{0} is exactly compensated by energy gain

$$
\varepsilon=E-E_{S}
$$

Equations of energy-phase motion

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\Delta p}{p}\right)=\frac{\mu \mu}{\rho u T}\left(\sin \varphi-\sin \varphi_{s}\right) \\
& \frac{d \varphi}{d t}=\operatorname{h\omega }\left(\alpha_{p}-1 / \gamma^{2}\right) \frac{\Delta p}{p}
\end{aligned}
$$

Small Oscillations

For small deviations in phase from the synchronous phase

$$
\Delta \varphi=\varphi-\varphi_{s} \ll 1
$$

$\sin \varphi-\sin \varphi_{s}=\sin \left(\varphi_{s}+\Delta \varphi\right)-\sin \varphi_{s} \simeq \cos \varphi_{s} \Delta \varphi_{s}$

$$
d \varphi=d \Delta \varphi
$$

$$
\begin{aligned}
& \frac{d \Delta \varphi}{d t}=h \omega\left(\alpha_{p}-1 / r^{2}\right) \Delta p \\
& \frac{d}{d t}\left(\frac{\Delta p}{p}\right)=\frac{e u \cdot v s \varphi_{s} \Delta \varphi}{p u T}
\end{aligned}
$$

Equations of energy-phase motion for small amplitudes

$$
\begin{aligned}
& \quad \frac{d^{2} \Delta \varphi}{d t^{2}}=+\frac{h \omega^{2}\left(\alpha_{p}-1 / r^{2}\right) e U \cos \varphi_{s}}{2 n p v} \Delta \varphi_{1} \\
& \omega_{s}^{2}=-\frac{h \omega^{2}\left(\alpha_{p}-1 / r^{2}\right) e U-\cos \varphi_{s}}{2 \pi p v} \quad-\text { synchrotron frequency } \\
& \Rightarrow y_{s}=\sqrt{-\frac{h\left(\alpha_{p}-1 / r^{2}\right) e U \cdot \cos \varphi_{s}}{2 n p v}} \text { - normalized synchrotron tune } \\
& \text { s. Lidia, Electron Synchrotrons, Slide } 51
\end{aligned}
$$

Hamiltonian of Energy-Phase Motion with RF

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\Delta p}{p}\right)=\frac{e u\left(\sin \varphi-\sin \varphi_{s}\right)}{p \nu T} \\
& \frac{d \varphi}{d t}=h \omega\left(\alpha_{p}-1 / r^{2}\right) \frac{\Delta p}{p}
\end{aligned}
$$

H-Hamiltonian $\frac{\Delta p}{p}$-momentum $(p), q$-coordinate (q)

$$
\dot{q}=\frac{\partial H}{\partial p} \quad \dot{p}=-\frac{\partial H}{\partial q}
$$

$$
\begin{aligned}
H= & \frac{1}{2} h \omega\left(\alpha_{p}-1 / r^{2}\right)\left(\frac{\Delta p}{p}\right)^{2}+\frac{e u}{p \Delta T}\left(\cos \varphi+\sin \varphi_{s} \cdot \varphi\right) \\
& =1 / 2 h \omega\left(\alpha_{p}-1 / r^{2}\right)\left(\frac{\Delta p}{p}\right)^{2}+\frac{e u}{p u T} \cdot \cos \varphi+\frac{\omega_{0}}{p v T} \cdot \varphi
\end{aligned}
$$

Energy-Phase Motion with RF with Arbitrary Amplitudes

Chromatism of Betatron Oscillations [1]

Chromatism of Retation Drcellations:

$$
\begin{aligned}
& x^{\prime \prime}+k x=0 \\
& \text { Quad: } \\
& k=\frac{e B^{\prime}}{\rho^{c}} \\
& B^{\prime \prime}=B_{0}+B^{\prime} x+\frac{1}{2} B^{\prime \prime} x^{2} \text { - Taylor series. } \\
& \text { dipole quad } \uparrow{ }^{\uparrow} \uparrow \text { sextyole } \\
& \Rightarrow \quad\left(\frac{d B}{d x}\right)_{x=02 b i t}=B^{\prime}+B^{\prime \prime} x_{\text {orbit }} \quad x_{\text {obit }}=\eta \frac{\delta p}{p}
\end{aligned}
$$

Chromatism of Betatron Oscillations [2]

$$
\begin{aligned}
k & =\frac{e\left(B^{\prime}+B^{\prime \prime} x_{0}\right)}{c p(1+\delta p / p)} \xrightarrow{\substack{\text { TBt+oreser }}} \frac{e}{c p}\left(B^{\prime}+\left(B^{\prime \prime} \eta-B^{\prime}\right) \frac{\delta p}{p}\right) \\
\Delta V & =\frac{\Delta \mu}{2 \pi}=\frac{1}{4 \pi} \frac{\beta}{f} \text {-thin lease } \quad k_{0} \quad \Delta k \\
\Rightarrow \Delta V & =\frac{1}{4 \pi} \frac{\delta p}{p} \oint \frac{\beta^{\prime \prime} \eta-B^{\prime}}{p c} \cdot \beta d S
\end{aligned}
$$

If $B^{\prime \prime}=0, \Delta V / \frac{\delta p}{p}<0$. Tune spread can be very large Tire spread can be compensated if sextupoles added

$$
\text { 量 } \beta_{s} B^{\prime \prime} \eta \cdot l_{\text {sext }}=B^{\prime} \cdot l_{\text {quad }} \beta_{q}
$$

Beneficial to install Sextupoles At locations with a large beta function

Appendix 2

Quantum Excitation of Radiation and Synchrotron Integrals

Quantum Nature of Synchrotron Radiation

Number of photons emitted per turn $N \approx \alpha \gamma=\frac{\gamma}{137}$
α - is the fine-structure constant
Statistical emission of a quantum appears as a change in an equilibrium orbit by recoil, causing oscillations around that new orbit - increases betatron oscillations.

Multiple emissions behave like Brownian motion causing diffusion and increase of emittance.
emitted

Quantum oscillations ultimately limit the equilibrium emittance.
The equilibrium emittance is defined by the damping rate and by the growth rate caused by random emissions of light quanta.

Quantum Statistics of Synchrotron Emission

Parameter	Value
Mean photon energy, $\langle\epsilon\rangle$	$\frac{8}{15 \sqrt{3}} \epsilon_{\text {crit }}$
RMS photon energy, $\left\langle\epsilon^{2}\right\rangle$	$\frac{11}{27} \epsilon_{\text {crit }}^{2}$
Total photon flux, $\dot{N}_{p h}$	$\frac{15 \sqrt{3}}{8} \frac{P_{\gamma}}{\epsilon_{\text {crit }}}$
Product, $\dot{N}_{p h}\left\langle\epsilon^{2}\right\rangle$	$\frac{55}{24 \sqrt{3}} P_{\gamma} \epsilon_{c r i t}=\frac{55}{24 \sqrt{3}} \hbar c^{2} r_{e} m c^{2} \frac{\gamma^{7}}{\left\|\rho^{3}\right\|}$
Luantum excitation over path length, L	$\left.\Delta \sigma_{E}^{2}\right\|_{\text {quant }}=\frac{55(\hbar c)^{2}}{48 \sqrt{3}} \gamma^{7} \int_{0}^{L}\left(\frac{1}{\left\|\rho_{x}^{3}\right\|}+\frac{1}{\left\|\rho_{y}^{3}\right\|}\right) d s$
mittance increase over path length, L	$\left.\Delta \varepsilon_{u}\right\|_{q u a n t}=\frac{55 r_{e} \hbar c}{48 \sqrt{3} m c^{2}} \gamma^{5} \int_{0}^{L} \frac{\mathcal{H}_{u}}{\left\|\rho_{u}^{3}\right\|}$

Equilibrium Lattice

Energy spread	$\begin{gathered} \left\langle d \sigma_{E}^{2} /\left.d t\right\|_{\text {quant }}\right\rangle_{s}=\left\langle d \sigma_{E}^{2} /\left.d t\right\|_{d a m p}\right\rangle_{s} \\ =-2 \alpha_{s} \sigma_{E}^{2} \end{gathered}$	$\begin{gathered} \frac{\sigma_{E}^{2}}{E_{0}^{2}}=C_{q} \gamma^{2} \frac{J_{3}}{2 J_{2}+J_{4 x}+J_{4 y}} \\ C_{q}=\frac{55 \hbar c}{32 \sqrt{3} m c^{2}} \\ =0.38319 \mathrm{pm} \end{gathered}$
Bunch length	$\left.\sigma_{z}=\frac{c \mid \eta_{s l i p}}{\omega_{s}} \right\rvert\, \frac{\sigma_{E}}{E_{0}}$	$\sigma_{z}=\frac{\sqrt{2 \pi} c}{\omega_{0}} \sqrt{\frac{-\eta_{s l i p} E_{0}}{\text { heV } V_{r f} \cos \phi_{s}}} \frac{\sigma_{E}}{E_{0}}$

Horizontal beam emittance

$$
\left\langle d \varepsilon_{x} /\left.d t\right|_{d a m p}\right\rangle_{s}=-\left.2 \alpha_{x} \varepsilon_{x} \quad \quad \varepsilon_{x}\right|_{e q u}=C_{q} \frac{\gamma^{2}}{J_{x}} \frac{J_{5 x}}{J_{2}}
$$

Vertical beam emittance

$$
\left\langle d \varepsilon_{y} /\left.d t\right|_{d a m p}\right\rangle_{s}=-2 \alpha_{y} \varepsilon_{y}
$$

(Hor and Ver can mix due to misalignments)
$\mathcal{H}_{y}=0$ (no dispersion)
$\left.\varepsilon_{y}\right|_{e q u}=\frac{C_{q}\left\langle\beta_{y}\right\rangle_{s}}{2 J_{y}} \frac{\left\langle\rho^{-3}\right\rangle}{\left\langle\rho^{-2}\right\rangle}$

Synchrotron Radiation Integrals

$$
\begin{aligned}
& J_{1}[m]=\oint\left(\frac{D_{x}}{\rho_{x}}+\frac{D_{y}}{\rho_{y}}\right) d s \\
& J_{2}\left[m^{-1}\right]=\oint\left(\frac{1}{\rho_{x}^{2}}+\frac{1}{\rho_{y}^{2}}\right) d s \\
& J_{3}\left[m^{-2}\right]=\oint\left(\frac{1}{\left|\rho_{x}\right|^{3}}+\frac{1}{\left|\rho_{y}\right|^{3}}\right) d s \\
& \left\langle P_{\gamma}\right\rangle=\frac{1}{C} \oint P_{\gamma} d s=\frac{c C_{\gamma}}{2 \pi C} E^{4} J_{2} \quad U_{0}=\frac{C_{\gamma}}{2 \pi} E^{4} J_{2} \\
& \alpha_{u}=1 / \tau_{u}=\frac{C_{\alpha}}{C} E^{3} J_{2}\left(1-J_{4 u} / J_{2}\right) \\
& \alpha_{s}=1 / \tau_{s}=\frac{C_{\alpha}}{C} E^{3} J_{2}\left[2+\left(J_{4 x}+J_{4 y}\right) / J_{2}\right] \\
& J_{4 u}\left[\mathrm{~m}^{-1}\right]=\left\{\begin{array}{l}
\oint \frac{D_{u}}{\rho_{u}^{3}}\left(1 \pm 2 \rho_{u}^{2} k\right) d s, \text { sector } \\
\pm \oint 2 \frac{D_{u} k}{\rho_{u}} d s, \text { rectangular }
\end{array}\right. \\
& C_{\gamma}=\frac{4 \pi}{3} \frac{r_{e}}{\left(m c^{2}\right)^{3}}=8.84610^{-5} \frac{\mathrm{~m}}{\mathrm{GeV}^{3}} \\
& J_{5 u}\left[m^{-1}\right]=\oint \frac{\mathcal{H}_{u}}{\left|\rho_{u}\right|^{3}} d s \\
& \begin{array}{c}
\mathcal{H}_{u}=\beta_{u} D_{u}^{\prime 2}+2 \alpha_{u} D_{u} D_{u}^{\prime}+\gamma_{u} D_{u}^{2} \\
k=\frac{\partial B_{x}}{\partial y} /[B \rho] \quad u=x, y \quad \pm=\begin{array}{c}
x \\
y
\end{array}
\end{array} \\
& J_{6 u}\left[m^{-1}\right]=\oint k^{2} D_{u}^{2} d s
\end{aligned}
$$

Robinson Theorem of the Sum of Decrements

$$
\begin{gathered}
\frac{1}{\tau_{x}}+\frac{1}{\tau_{y}}+\frac{1}{\tau_{s}}=\frac{2 w_{0}}{T E}=\frac{w_{0}}{2 T E}\left(J_{x}+J_{y}+J_{s}\right) \\
J_{x}+J_{y}+J_{s}=4
\end{gathered}
$$

$$
\frac{1}{\xi_{x}}=\frac{v_{0}}{2 E T}(1-D)
$$

$$
\frac{1}{\tau_{s}}=\frac{\omega_{0}}{2 E_{T}}(2+D)
$$

$$
\frac{1}{\tau_{y}}=\frac{w_{0}}{2 E T}
$$

For most modern large scale machines

$$
D \approx \alpha_{p} \frac{\bar{R}}{r} \ll 1
$$

\bar{R} is the average machine radius
α_{p} is the compaction factor r is the magnet radius

