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A ring is a an electromagnetic system with a closed particle orbit. 
• The closed orbit is a natural choice of the reference orbit in rings. The 

motion of particles typically is described relatively to the closed orbit.

We will be interested in systems with a stable orbit. That is, particles 
with a small enough deviation from the closed orbit are stable in 
respect to the closed orbit.
Electrons in circular accelerators can make many turns and interact 

with accelerating RF many times, reaching high energy over an 
extended period of time. 
• In linacs, this happens only once or several times (recirculating linacs).

Also, rings can store electrons (and positrons) for significant amount of 
time (hours), providing unique experimental capabilities as colliders 
and synchrotron light sources. 

Introduction: 
Electron Rings
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Electron synchrotron boosters accelerate electrons to a specific energy 
to inject them into other accelerators. Electron linacs are frequently 
used as injectors to boosters: source→linac→booster ring→storage ring

Historically, boosters were used for fixed target experiments. However, 
those machines have been decommissioned long time ago

Introduction:
Electron Synchrotron Boosters
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The first synchrotron to 
use the "racetrack" design 
with straight sections, a 
300 MeV electron 
synchrotron at University 
of Michigan in 1949, 
designed by Dick Crane.



Introduction:
Electron-Electron, Electron-Positron Colliders
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VEP-1, 1963
Russia, Novosibirsk

Particles: electron – electron
Collision energy: 160 MeV
Luminosity: 1028 1/(cm2s)
Rings size: two 1m x 1m

Large Electron–Positron Collider (LEP)
Operational: 1989 - 2000
Tunnel was used for LHC after LEP was 
decommissioned
Particles: electron – positron
Collision energy: 100 GeV
Luminosity: 1032 1/(cm2s)
Circumference: 27 km



Introduction: Light Sources
Main Application of Modern Electron Rings
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Particles: electrons
Energy: 3 GeV
Beam current: 0.5 A
Circumference: 792m
Number of bunches: 1056
Beam size (v/h): 3-13 𝜇𝜇m / 30-150 𝜇𝜇m
Experimental beamlines: 58



Basic subcomponents of electron rings:
• Bending magnets or electrostatic bends -

dipoles
• Focusing magnets – quads (can be 

incorporated into dipoles)
• Multiple magnets to achieve specific 

beam dynamics characteristics
• RF cavities to accelerate or compensate 

losses due to synchrotron losses and 
keep beam bunched

• Injection/extraction systems
 Simplified lattice example

• Bend
• FODO doublet (Qx, Qy)
• Sextupoles to compensate tune chromatism 

(Sx, Sy)

Simple Electron Ring Lattice
and Typical Subcomponents
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Qx QyDipoleSx Sy



The single particle equations of motion have 
been derived previously.

Accelerator Model Review 
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 The lattice defines the environment in which the particles respond to 
perturbations

Lattice Functions
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𝜂𝜂𝑥𝑥 is also commonly used

𝐶𝐶: 𝑠𝑠𝑝𝑝𝑢𝑢𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡𝑐𝑐 𝑜𝑜𝑜𝑜𝑢𝑢𝑡𝑡𝑐𝑐 𝑐𝑐𝑡𝑡𝑜𝑜𝑐𝑐𝑢𝑢𝑐𝑐𝑠𝑠𝑢𝑢𝑜𝑜𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢



 Longitudinal motion is oscillatory and defined by the slippage factor 

Longitudinal Motion [1]
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Below transition energy, 𝜼𝜼𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 < 0 Above transition energy, 𝜼𝜼𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 > 0
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Longitudinal Motion [2]
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J. Murphy, ed., Synchrotron Light Source Data Booklet, v.4, 1996

Now with acceleration

Bunch length

RF acceptance

Note!

𝒉𝒉 = ⁄𝝎𝝎𝑹𝑹𝑹𝑹 𝝎𝝎𝒓𝒓𝒓𝒓𝒓𝒓 ≫ 𝟏𝟏

𝑉𝑉𝑅𝑅𝑅𝑅 𝑠𝑠 = 𝑉𝑉𝑅𝑅𝑅𝑅 sin 𝜔𝜔𝑅𝑅𝑅𝑅𝑐𝑐

e𝑉𝑉𝑅𝑅𝑅𝑅 sin 𝜙𝜙𝑠𝑠 = 𝑈𝑈𝑥

Synchronous particle: energy gain =  energy losses / revolution

‘harmonic index’

primarily synchrotron 
radiation losses

T0=c/2πR

Stable oscillations
Unbounded trajectories



 The linear motion has known solutions

Solutions to Hill’s Equation
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𝑥𝑥𝛽𝛽′′ + 𝑘𝑘𝛽𝛽𝑥𝑥2 𝑥𝑥𝛽𝛽 = 0 ⟹

𝑥𝑥𝛽𝛽 𝑠𝑠

= 𝛽𝛽𝑥𝑥 𝑠𝑠 cos �
𝑑𝑑𝑠𝑠
𝛽𝛽𝑥𝑥

+ 𝜗𝜗𝑥𝑥

= �𝑥𝑥
𝛽𝛽𝑥𝑥 𝑠𝑠
𝛽𝛽𝑥

cos 𝜓𝜓𝑥𝑥 𝑠𝑠 D. Robin, et al, PhysRevSTAB.11.024002. 

Advanced Light Source (1 of 12 Sectors)

𝑥𝑥𝛽𝛽′′ + 𝜈𝜈𝑥𝑥𝑥
𝑅𝑅

2
𝑥𝑥𝛽𝛽 = 0 Hill’s Equation



 The presence of energy spread in the beam leads to variations in the 
betatron tune. 
Any lattice has a ‘natural’ chromaticity

Uncorrected, this natural chromaticity results in strong variations in 
betratron functions with energy deviations.
Negative chromaticity is also to be avoided so that head-tail 

instabilities and coupled-bunch oscillations may be suppressed.
 The addition of a sextupole magnet (length, l) is commonly used to 

correct the natural chromaticity. But this introduces nonlinearity into the 
ring dynamics.

Natural Chromaticity
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𝜉𝜉𝑟𝑟𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛𝑠𝑠 = −
1
4𝜋𝜋

�𝑘𝑘𝛽𝛽2𝛽𝛽𝑑𝑑𝑠𝑠
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𝐷𝐷𝛽𝛽 𝐵𝐵′′𝑠𝑠

𝐵𝐵𝐵𝐵
(+) for bend plane (eg. horizontal)
(-)  for out-of-plane (eg. vertical)

𝑘𝑘𝛽𝛽𝑥𝑥 =
𝜈𝜈𝑥𝑥𝑥
𝑅𝑅

𝑘𝑘𝛽𝛽𝑥𝑥2 =
𝐵𝐵′

𝐵𝐵𝜌𝜌
+

1
𝜌𝜌2



Non-ideal elements and symmetry-breaking insertions provide 
localized sources of perturbations

Small perturbation –> orbit distortion

 Large perturbation –> secular growth, nonlinear island formation

Introduction to Lattice Perturbations
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𝑦𝑦′′ +
𝜈𝜈𝑦𝑦𝑥
𝑅𝑅

2
𝑦𝑦 = −𝐾𝐾𝑦𝑦 ⟹ 𝑦𝑦′′ +

𝜈𝜈𝑦𝑦𝑥
𝑅𝑅

2
− 𝐾𝐾 𝑦𝑦 = 0

=
𝜈𝜈𝑦𝑦
𝑅𝑅

2
𝜈𝜈𝑦𝑦2 = 𝜈𝜈𝑦𝑦𝑥2 − 𝐾𝐾𝑅𝑅2

𝑦𝑦𝛽𝛽 𝑠𝑠 = �𝑦𝑦
𝛽𝛽𝑦𝑦 𝑠𝑠 + ∆𝛽𝛽𝑦𝑦

𝛽𝛽𝑥
cos 𝜓𝜓𝑦𝑦 𝑠𝑠Δ𝜈𝜈𝑦𝑦 = 𝜈𝜈𝑦𝑦 − 𝜈𝜈𝑦𝑦𝑥 ≈ −

𝐾𝐾𝑅𝑅2

2𝜈𝜈𝑦𝑦𝑥

𝜈𝜈𝑦𝑦2 = 𝜈𝜈𝑦𝑦𝑥2 − 𝐾𝐾𝑅𝑅2 < 0

example 
perturbation



Coupling between planes from skew and solenoidal components, 
misalignments, etc.

Analysis of motion (similar to development of Courant-Snyder 
parameters) finds at lowest order of perturbation

Linear coupling between planes
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𝑥𝑥 = 𝑥𝑥𝑥 + 𝑥𝑥𝛽𝛽 + 𝑥𝑥𝐷𝐷 = 𝑥𝑥𝑥 + �𝑥𝑥
𝛽𝛽𝑥𝑥
𝛽𝛽𝑥

cos 𝜓𝜓𝑥𝑥 + 𝐷𝐷𝑥𝑥 𝛿𝛿

𝑦𝑦 = 𝑦𝑦𝑥 + 𝑦𝑦𝛽𝛽 + 𝑦𝑦𝐷𝐷= 𝑦𝑦𝑥 + �𝑦𝑦
𝛽𝛽𝑦𝑦
𝛽𝛽𝑥

cos 𝜓𝜓𝑦𝑦 + 𝐷𝐷𝑦𝑦𝛿𝛿

𝑥𝑥′′ + 𝑘𝑘𝛽𝛽𝑥𝑥2 𝑥𝑥 = 𝑆𝑆𝑦𝑦 + 𝑅𝑅𝑦𝑦′ +
1
2
𝑅𝑅′𝑦𝑦 + ⋯

𝑦𝑦′′ + 𝑘𝑘𝛽𝛽𝑦𝑦2 𝑦𝑦 = 𝑆𝑆𝑥𝑥 − 𝑅𝑅𝑥𝑥′ −
1
2
𝑅𝑅′𝑥𝑥 + ⋯

𝑆𝑆 𝑠𝑠 =
𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′

𝐵𝐵𝜌𝜌
=

⁄𝜕𝜕𝐵𝐵𝑥𝑥 𝜕𝜕𝑥𝑥
𝐵𝐵𝜌𝜌

𝑅𝑅 =
𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝐵𝐵𝜌𝜌

�𝑥𝑥2 + �𝑦𝑦2 = 𝑐𝑐𝑜𝑜𝑢𝑢𝑠𝑠𝑐𝑐𝑡𝑡𝑢𝑢𝑐𝑐 𝜈𝜈𝑥𝑥 − 𝜈𝜈𝑦𝑦 = 𝐼𝐼𝑢𝑢𝑐𝑐𝑢𝑢𝐼𝐼𝑢𝑢𝑜𝑜
�𝑥𝑥2 − �𝑦𝑦2 = 𝑐𝑐𝑜𝑜𝑢𝑢𝑠𝑠𝑐𝑐𝑡𝑡𝑢𝑢𝑐𝑐 𝜈𝜈𝑥𝑥 + 𝜈𝜈𝑦𝑦 = 𝐼𝐼𝑢𝑢𝑐𝑐𝑢𝑢𝐼𝐼𝑢𝑢𝑜𝑜

Difference resonance, bounded
Sum resonance, unbounded



Tune Diagram with Resonances
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Tune Diagram between 2 
and 3 for 𝑘𝑘, 𝑡𝑡 ≤ 4

 In general, the resonances happen when 
tunes satisfy equation 

𝑘𝑘𝜈𝜈𝑥𝑥 + 𝑡𝑡𝜈𝜈𝑦𝑦 = 𝑐𝑐
𝑘𝑘, 𝑡𝑡,𝑐𝑐 − 𝑡𝑡𝑢𝑢𝑐𝑐𝑢𝑢𝐼𝐼𝑢𝑢𝑜𝑜𝑠𝑠

 The strength of the resonances and their 
destructive effects reduce with the 
resonance order (m )
Resonances higher than 4th order rarely 

cause instantaneous beam loss but can 
cause emittance increase and beam 
quality reduction. 
Resonance harmonics equal to machine 

periodicity (q ) can be particularly strong 
(ie. excited at every lattice cell)

𝜈𝜈𝑥𝑥

𝜈𝜈𝑦𝑦



Tune Diagram with Resonances
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Red circles show approximate 
area typically used by electron 
ring synchrotrons for operations.

 In general, the resonances happen 
when tunes satisfy equation 

𝑘𝑘𝜈𝜈𝑥𝑥 + 𝑡𝑡𝜈𝜈𝑦𝑦 = 𝑐𝑐
𝑘𝑘, 𝑡𝑡,𝑐𝑐 − 𝑡𝑡𝑢𝑢𝑐𝑐𝑢𝑢𝐼𝐼𝑢𝑢𝑜𝑜𝑠𝑠

 The strength of the resonances and their 
destructive effects reduce with the 
resonance order (m )
Resonances higher than 4th order rarely 

cause instantaneous beam loss but can 
cause emittance increase and beam 
quality reduction. 
Resonance harmonics equal to machine 

periodicity (q ) can be particularly strong 
(ie. excited at every lattice cell)

𝜈𝜈𝑦𝑦

𝜈𝜈𝑥𝑥



Nonlinear elements can severely affect beam dynamics in the rings
• Cause fast beam losses and beam quality degradation
• Limit beam lifetime in an accelerator
• Limit suitable selection of betatron tunes

Accurate treatment of nonlinear motion still is not possible. There is no 
mathematical apparatus that would allow us to do that in a general 
case (except some specific cases)
 Iterative perturbation analysis and averaging are used and produce 

good results. However, this treatment is beyond the scope of the 
course (although it is not too complicated and relies on analysis of 
corresponding Hamiltonian Functions. It is just time consuming.)
We study a simple model numerically to get a qualitative picture

Non-Linear Dynamics and Its Treatment

S. Lidia, Electron Synchrotrons, Slide 18



Numerical Model
and Motion Far From Resonances

S. Lidia, Electron Synchrotrons, Slide 19

Step 1 – one turn transformation, linear optics

Step 2 – thin sextupole and octupole transformations

𝜈𝜈 = 0.171 - far from resonances, motion with 
nonlinearities is perturbed but not dramatically. 
Linear motion shows no perturbations (ellipse).

Linear With Nonlinearities

S= 0.05, O= -0.01
𝜕𝜕𝜈𝜈
𝜕𝜕𝐴𝐴2 > 0 for O < 0

Tune shift is positive for large amplitudes 

𝑥𝑥
𝑥𝑥′ 2

= cos 2𝜋𝜋𝜈𝜈𝑥𝑥 sin 2𝜋𝜋𝜈𝜈𝑥𝑥
−sin 2𝜋𝜋𝜈𝜈𝑥𝑥 cos 2𝜋𝜋𝜈𝜈𝑥𝑥

𝑥𝑥
𝑥𝑥′ 1

𝑥𝑥
𝑥𝑥′ 3

= 0
𝑆𝑆𝑥𝑥22 + 𝑂𝑂𝑥𝑥23

Sextupole
term

Octupole
term



𝝂𝝂 = 𝒒𝒒/𝟑𝟑 Resonance
(in horizontal x-x’ phase space plane)
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𝜈𝜈 = 0.32 𝜈𝜈 = 0.33 𝜈𝜈 = 0.34𝜈𝜈 = 0.31

𝜈𝜈 = 0.32 𝜈𝜈 = 0.33 𝜈𝜈 = 0.34𝜈𝜈 = 0.31𝜈𝜈 = 0.30

Linear motion, sext = 0, oct = 0 – no phase space perturbation

Non-linear motion, Sext = 0.05, Oct = -0.01 – strong perturbation of phase space. 
Particles become unstable (Amplitude → ∞), causing losses in a few turns

Particles with larger amplitudes get have a higher frequency, see previous slide

3𝜈𝜈𝑥𝑥 = 𝑞𝑞



𝝂𝝂 = 𝒒𝒒/𝟒𝟒 Resonance
(in horizontal x-x’ phase space plane)
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Linear motion, sext = 0, oct = 0 – no phase space perturbation
𝜈𝜈 = 0.23 𝜈𝜈 = 0.245 𝜈𝜈 = 0.27

𝜈𝜈 = 0.23 𝜈𝜈 = 0.24 𝜈𝜈 = 0.245 𝜈𝜈 = 0.25 𝜈𝜈 = 0.27

Non-linear motion, sext = 0.05, oct = -0.01 – strong perturbation of phase space 



 Frequency map analysis is a very powerful 
tool to understand and improve the 
nonlinear dynamic behavior in particle 
accelerators. 
 Frequency map analysis is used to 

compare the performance of different 
lattices and to carry out an automated 
lattice optimization. 
Experimentally, ‘pinger’ magnets are used 

to excite motion and explore areas of the 
nonlinear dynamic aperture. Turn-by-turn 
motion is measured with BPMs.
See http://www.cpt.univ-

mrs.fr/~hscopp04/Abstracts/Laskar.pdf

Frequency Map Analysis

S. Lidia, Electron Synchrotrons, Slide 22

C. Steier, W. Wan, IPAC 2010

http://www.cpt.univ-mrs.fr/%7Ehscopp04/Abstracts/Laskar.pdf


Synchrotron radiation is a by-product of 
transverse acceleration of charged 
particles.
Predicted by Ivanenko and Pomeranchuk

in 1943.
Observed in 1947 in General Electric 

electron synchtrotron.
Originally considered a nuisance as it 

provides a channel to drain energy from 
the stored beam – with a strong 
dependence on beam energy.
Nowadays it provides the basis of 

incredibly useful facilities for scientific 
discovery.

Synchrotron Radiation [1]
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Radiation is emitted by relativistic charged particles due to acceleration 
in a magnetic field.
Radiation is quantum in nature, but the high intensity of the field leads 

to classical analysis. 
Radiation is emitted over a broad spectrum of low photon energies and 

falls off exponentially above the critical energy 

 The total power radiated is given by

 This power must be replenished by the synchrotron’s RF system

Synchrotron Radiation [2]

S. Lidia, Electron Synchrotrons, Slide 24

𝜖𝜖𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡 = ℏ𝜔𝜔𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡 =
3ℏ𝑐𝑐𝛾𝛾3

2𝜌𝜌
⟹ 𝜖𝜖𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡 𝑘𝑘𝑢𝑢𝑉𝑉 = 0.665 𝐵𝐵 𝑇𝑇 𝐸𝐸2 𝐺𝐺𝑢𝑢𝑉𝑉

𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑛𝑛𝑠𝑠 =
4𝜋𝜋𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐2

3𝑢𝑢
𝛾𝛾4

𝜌𝜌 𝐼𝐼 ⟹ 𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑛𝑛𝑠𝑠 𝑘𝑘𝑘𝑘 = 𝑈𝑈𝑥 𝑘𝑘𝑢𝑢𝑉𝑉 𝐼𝐼 𝐴𝐴 =
88.5 𝐸𝐸4 𝐺𝐺𝑢𝑢𝑉𝑉

𝜌𝜌 𝑐𝑐
𝐼𝐼 𝐴𝐴



Spectrum of Synchrotron Radiation

S. Lidia, Electron Synchrotrons, Slide 25

Characteristic energy of SR spectrum

Spectrum of SR
from a 0.5 T magnet

𝝐𝝐𝒄𝒄𝒓𝒓𝒔𝒔𝒄𝒄 = ℏ𝝎𝝎𝒄𝒄𝒓𝒓𝒔𝒔𝒄𝒄 =
𝟑𝟑ℏ𝒄𝒄𝜸𝜸𝟑𝟑

𝟐𝟐𝟐𝟐



Quantum Nature of Synchrotron Radiation
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Number of photons emitted per turn 𝑁𝑁 ≈ 𝛼𝛼𝛾𝛾 = 𝛾𝛾
137

𝛼𝛼- is the fine-structure constant
Statistical emission of a quantum appears as a change in an 
equilibrium orbit by recoil, causing oscillations around that new 
orbit - increases betatron oscillations.

Multiple emissions behave like Brownian motion causing diffusion 
and increase of emittance.

Quantum oscillations ultimately limit the equilibrium emittance. 
The equilibrium emittance is defined by the damping rate and by the growth rate 
caused by random emissions of light quanta. 



Quantum Statistics of Synchrotron Emission
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Parameter Value

Mean photon energy, 𝜖𝜖
8

15 3
𝜖𝜖𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡

RMS photon energy, 𝜖𝜖2 11
27

𝜖𝜖𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡2

Total photon flux, �̇�𝑁𝑠𝑠𝑝
15 3

8
𝑃𝑃𝛾𝛾
𝜖𝜖𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡

Product, �̇�𝑁𝑠𝑠𝑝 𝜖𝜖2
55

24 3
𝑃𝑃𝛾𝛾𝜖𝜖𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡 =

55
24 3

ℏ𝑐𝑐2𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐2
𝛾𝛾7

𝜌𝜌3

�∆𝜎𝜎𝐸𝐸2 𝑞𝑞𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡
=

55 ℏ𝑐𝑐 2

48 3
𝛾𝛾7 �

𝑥

𝐿𝐿 1
𝜌𝜌𝑥𝑥3

+
1
𝜌𝜌𝑦𝑦3

𝑑𝑑𝑠𝑠Quantum excitation over path length, L

�∆𝜀𝜀𝑛𝑛 𝑞𝑞𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡
=

55𝑜𝑜𝑠𝑠ℏ𝑐𝑐
48 3𝑐𝑐𝑐𝑐2

𝛾𝛾5 �
𝑥

𝐿𝐿 ℋ𝑛𝑛

𝜌𝜌𝑛𝑛3
Emittance increase over path length, L



Emission of synchrotron radiation reduces the electron energy.
An electron radiates at the average rate  U0/T0 where T0=c/2πR is the 

average revolution time.
Electrons on different betatron oscillations, but with the same energy, 

will lose the same amount of energy (when averaged, in linear 
approximation)

Electrons with different energies, will radiate different amounts

Electrons emit photons within an angle 1/γ of the forward motion
• Longitudinal momentum is replaced by RF acceleration
• Transverse momentum is damped

Radiation Damping
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M. Sands, SLAC-121 (1970)



Damping of Synchrotron Oscillations 
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Energy transformation after 
1 turn for electron with energy
deviated from the synchronous
energy

Energy and phase of synchronous 
particle 

For small oscillations



Damping of Vertical Oscillations
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δp
Friction



Beam Lifetime
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Gas scattering 𝜏𝜏𝑠𝑠𝑐𝑐𝑛𝑛𝑡𝑡−1 4𝑜𝑜𝑠𝑠2𝑍𝑍2𝜋𝜋𝜌𝜌𝑐𝑐
2𝛾𝛾2

𝛽𝛽𝑥𝑥 𝛽𝛽𝑥𝑥,𝑚𝑚𝑛𝑛𝑥𝑥
𝑡𝑡2 +

𝛽𝛽𝑦𝑦 𝛽𝛽𝑦𝑦,𝑚𝑚𝑛𝑛𝑥𝑥

𝑢𝑢2

Bremsstrahlung on 
nuclei 𝜏𝜏𝑏𝑏𝑡𝑡𝑠𝑠𝑚𝑚−1 16𝑜𝑜𝑠𝑠2𝑍𝑍2𝜌𝜌𝑐𝑐

411 𝑡𝑡𝑢𝑢
183
𝑍𝑍1/3 −𝑡𝑡𝑢𝑢𝜀𝜀𝑅𝑅𝑅𝑅 −

5
8

Touschek half-life 𝜏𝜏𝑇𝑇𝑠𝑠𝑛𝑛𝑠𝑠−1 𝜋𝜋𝑡𝑡𝑒𝑒2𝑐𝑐𝑐𝑐𝑐𝑐 𝜁𝜁
𝜎𝜎𝑥𝑥′𝛾𝛾3𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎2 𝑉𝑉

, 𝑉𝑉 = 8𝜋𝜋3/2𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦𝜎𝜎𝑧𝑧, 𝜁𝜁 = ⁄𝜀𝜀𝑛𝑛𝑐𝑐𝑐𝑐 𝛾𝛾 𝜎𝜎𝑥𝑥′ 2

Quantum 𝜏𝜏𝑞𝑞𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡
𝜏𝜏𝑠𝑠
2
𝑠𝑠𝜉𝜉

𝜉𝜉
,   ξ = �𝜀𝜀𝑟𝑟𝑟𝑟

2

2𝜎𝜎𝐸𝐸
2

J. Murphy, ed., Synchrotron Light Source Data Booklet, v.4, 1996

𝝉𝝉𝒄𝒄𝒕𝒕𝒄𝒄𝒕𝒕𝒔𝒔−𝟏𝟏 = 𝝉𝝉𝒔𝒔𝒄𝒄𝒕𝒕𝒄𝒄−𝟏𝟏 + 𝝉𝝉𝒃𝒃𝒓𝒓𝒓𝒓𝒃𝒃−𝟏𝟏 + 𝝉𝝉𝑻𝑻𝒕𝒕𝑻𝑻𝒔𝒔−𝟏𝟏 + 𝝉𝝉𝒒𝒒𝑻𝑻𝒕𝒕𝒒𝒒𝒄𝒄−𝟏𝟏



Top Off Mode
Continuous replacement of lost beam

S. Lidia, Electron Synchrotrons, Slide 32

Advanced Light Source



Some material (mostly pictures) were “borrowed” from the USPAS 
2013 school course “Design of Electron Storage and Damping Rings” 
by Andy Wolski and David Newton, USPAS, Fort Collins, Colorado, 
2013
SPRING 8 informational video available on YouTube 
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Appendix 1

Transverse and Longitudinal Motion in 
Electron Rings
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Equations of Motion and Hill Equation
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𝑥𝑥,𝑦𝑦 - small deviations from the reference particle
s is the independent variable instead of t (s=v*t)

- Dipole magnet with gradient focusing
n is the field index

- Quadrupole

- Drift

- General Hill equation with periodic focusing

𝑢𝑢 = −
𝑜𝑜𝑥
𝐵𝐵

𝑑𝑑𝐵𝐵
𝑑𝑑𝑜𝑜 𝑥



Example: Weak Focusing 
Azimuthally Symmetric Field with Gradient 
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Solution
easily obtainable

𝑢𝑢 = −
𝑜𝑜
𝐵𝐵
𝑑𝑑𝐵𝐵
𝑑𝑑𝑜𝑜

Current is phase space density times area
1. Increase density
2. Increase aperture
3. Increase focusing

Increasing focusing in both planes is 
Impossible. Need other focusing 
Mechanism (strong focusing)



Strong focusing can be achieved by introducing variable focusing as 
function of s. However, stability and properties of such motion needs to 
be investigated.

Strong Focusing

S. Lidia, Electron Synchrotrons, Slide 37

𝑦𝑦

𝑦𝑦



Linear Betatron Motion
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Linear motion can be described by vectors and matrices



Stability of Betatron Motion [1]
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- Eigen vectors of M (basis) with eigen values 𝜆𝜆1 and 𝜆𝜆2.

- after a turn

- after N turns

- initial vector

For the motion to be stable



Stability of Betatron Motion [2]

S. Lidia, Electron Synchrotrons, Slide 40

Matrices T and M are Wronskians => det(T) – constant.
det(T) = det(M) = 1 – obtain from initial conditions

𝜇𝜇 is the betatron phase advance per turn



Twiss Parametrization
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Twiss parametrization
Because det(M)=1
−𝛼𝛼2 + 𝛽𝛽𝛾𝛾 = 1



Evolution of Particle Coordinates
at Specific Location s
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𝜇𝜇 is the betatron phase advance per turn



Courant-Snyder Ellipse 
At Specific Location s
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Particle Motion Along Accelerator
Equations for 𝜶𝜶 and 𝜷𝜷
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Particle Motion Along Accelerator
Phase Advance
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- Betatron tune



Example
Small Focusing Perturbation
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Thin, weak lens added to a ring with the one-turn matrix M0
Find new betatron tune and 𝛽𝛽 at the location of the lens 

For small 𝛿𝛿𝜇𝜇



Motion of Particle With Energy Deviation
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Search for solution 
in this form
Equation for dispersion
function



Azimuthally Symmetric Case
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Energy-Phase Motion with RF [1]
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- sine dependence!



Energy-Phase Motion with RF [2]
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W0 is energy loss per turn to radiation 

For synchronous phase, 𝜑𝜑𝑠𝑠, W0 is exactly 
compensated by energy gain 

Equations of energy-phase motion

Assumes slow 
Change per turn



Small Oscillations
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For small deviations in phase from the synchronous phase ≪ 1

Equations of energy-phase motion
for small amplitudes

- synchrotron frequency

- normalized synchrotron tune



Hamiltonian of Energy-Phase Motion with RF
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Energy-Phase Motion with RF 
with Arbitrary Amplitudes

S. Lidia, Electron Synchrotrons, Slide 53



Chromatism of Betatron Oscillations [1]
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B

x



Chromatism of Betatron Oscillations [2]

S. Lidia, Electron Synchrotrons, Slide 55

𝛽𝛽𝑠𝑠 𝛽𝛽𝑞𝑞
Beneficial to install Sextupoles
At locations with a large 
beta function 



Appendix 2

Quantum Excitation of Radiation and 
Synchrotron Integrals
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Quantum Nature of Synchrotron Radiation
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Number of photons emitted per turn 𝑁𝑁 ≈ 𝛼𝛼𝛾𝛾 = 𝛾𝛾
137

𝛼𝛼- is the fine-structure constant
Statistical emission of a quantum appears as a change in an 
equilibrium orbit by recoil, causing oscillations around that new 
orbit - increases betatron oscillations.

Multiple emissions behave like Brownian motion causing diffusion 
and increase of emittance.

Quantum oscillations ultimately limit the equilibrium emittance. 
The equilibrium emittance is defined by the damping rate and by the growth rate 
caused by random emissions of light quanta. 



Quantum Statistics of Synchrotron Emission
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Parameter Value

Mean photon energy, 𝜖𝜖
8

15 3
𝜖𝜖𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡

RMS photon energy, 𝜖𝜖2 11
27

𝜖𝜖𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡2

Total photon flux, �̇�𝑁𝑠𝑠𝑝
15 3

8
𝑃𝑃𝛾𝛾
𝜖𝜖𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡

Product, �̇�𝑁𝑠𝑠𝑝 𝜖𝜖2
55

24 3
𝑃𝑃𝛾𝛾𝜖𝜖𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡 =

55
24 3

ℏ𝑐𝑐2𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐2
𝛾𝛾7

𝜌𝜌3

�∆𝜎𝜎𝐸𝐸2 𝑞𝑞𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡
=

55 ℏ𝑐𝑐 2

48 3
𝛾𝛾7 �

𝑥

𝐿𝐿 1
𝜌𝜌𝑥𝑥3

+
1
𝜌𝜌𝑦𝑦3

𝑑𝑑𝑠𝑠Quantum excitation over path length, L

�∆𝜀𝜀𝑛𝑛 𝑞𝑞𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡
=

55𝑜𝑜𝑠𝑠ℏ𝑐𝑐
48 3𝑐𝑐𝑐𝑐2

𝛾𝛾5 �
𝑥

𝐿𝐿 ℋ𝑛𝑛

𝜌𝜌𝑛𝑛3
Emittance increase over path length, L



Equilibrium Lattice
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Energy 
spread

�⁄𝑑𝑑𝜎𝜎𝐸𝐸2 𝑑𝑑𝑐𝑐
𝑞𝑞𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡 𝑠𝑠

= �⁄𝑑𝑑𝜎𝜎𝐸𝐸2 𝑑𝑑𝑐𝑐
𝑑𝑑𝑛𝑛𝑚𝑚𝑠𝑠 𝑠𝑠

= −2𝛼𝛼𝑠𝑠𝜎𝜎𝐸𝐸2

𝜎𝜎𝐸𝐸2

𝐸𝐸𝑥2
= 𝐶𝐶𝑞𝑞𝛾𝛾2

ℐ3
2ℐ2 + ℐ4𝑥𝑥 + ℐ4𝑦𝑦

𝐶𝐶𝑞𝑞 =
55ℏ𝑐𝑐

32 3𝑐𝑐𝑐𝑐2
= 0.38319 𝑝𝑝𝑐𝑐

Bunch 
length 𝜎𝜎𝑧𝑧 =

𝑐𝑐 𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜔𝜔𝑠𝑠

𝜎𝜎𝐸𝐸
𝐸𝐸𝑥

𝜎𝜎𝑧𝑧 =
2𝜋𝜋𝑐𝑐
𝜔𝜔𝑥

−𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐸𝐸𝑥
𝑢𝑢𝑢𝑉𝑉𝑡𝑡𝑟𝑟 cos𝜙𝜙𝑠𝑠

𝜎𝜎𝐸𝐸
𝐸𝐸𝑥

Horizontal 
beam 

emittance
�⁄𝑑𝑑𝜀𝜀𝑥𝑥 𝑑𝑑𝑐𝑐
𝑑𝑑𝑛𝑛𝑚𝑚𝑠𝑠 𝑠𝑠

= −2𝛼𝛼𝑥𝑥𝜀𝜀𝑥𝑥 �𝜀𝜀𝑥𝑥 𝑠𝑠𝑞𝑞𝑛𝑛
= 𝐶𝐶𝑞𝑞

𝛾𝛾2

𝐽𝐽𝑥𝑥
ℐ5𝑥𝑥
ℐ2

Vertical 
beam 

emittance

�⁄𝑑𝑑𝜀𝜀𝑦𝑦 𝑑𝑑𝑐𝑐
𝑑𝑑𝑛𝑛𝑚𝑚𝑠𝑠 𝑠𝑠

= −2𝛼𝛼𝑦𝑦𝜀𝜀𝑦𝑦

(Hor and Ver can mix due to misalignments)

ℋ𝑦𝑦 = 0 (no dispersion)

�𝜀𝜀𝑦𝑦 𝑠𝑠𝑞𝑞𝑛𝑛
=
𝐶𝐶𝑞𝑞 𝛽𝛽𝑦𝑦 𝑠𝑠

2𝐽𝐽𝑦𝑦
𝜌𝜌−3

𝜌𝜌−2
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ℐ1 𝑐𝑐 = �
𝐷𝐷𝑥𝑥
𝜌𝜌𝑥𝑥

+
𝐷𝐷𝑦𝑦
𝜌𝜌𝑦𝑦

𝑑𝑑𝑠𝑠

ℐ2 𝑐𝑐−1 = �
1
𝜌𝜌𝑥𝑥2

+
1
𝜌𝜌𝑦𝑦2

𝑑𝑑𝑠𝑠

ℐ3 𝑐𝑐−2 = �
1
𝜌𝜌𝑥𝑥 3 +

1

𝜌𝜌𝑦𝑦
3 𝑑𝑑𝑠𝑠

ℐ4𝑛𝑛 𝑐𝑐−1 =

�
𝐷𝐷𝑛𝑛
𝜌𝜌𝑛𝑛3

1 ± 2𝜌𝜌𝑛𝑛2𝑘𝑘 𝑑𝑑𝑠𝑠 , 𝑠𝑠𝑢𝑢𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜

±�2
𝐷𝐷𝑛𝑛𝑘𝑘
𝜌𝜌𝑛𝑛

𝑑𝑑𝑠𝑠, 𝑜𝑜𝑢𝑢𝑐𝑐𝑐𝑐𝑡𝑡𝑢𝑢𝐼𝐼𝑢𝑢𝑡𝑡𝑡𝑡𝑜𝑜

ℐ5𝑛𝑛 𝑐𝑐−1 = �
ℋ𝑛𝑛
𝜌𝜌𝑛𝑛 3 𝑑𝑑𝑠𝑠

ℐ6𝑛𝑛 𝑐𝑐−1 = �𝑘𝑘2𝐷𝐷𝑛𝑛2𝑑𝑑𝑠𝑠
𝑘𝑘 = �

𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝑦𝑦 𝐵𝐵𝜌𝜌 𝑢𝑢 = 𝑥𝑥,𝑦𝑦 ±=

𝑥𝑥
𝑦𝑦

ℋ𝑛𝑛 = 𝛽𝛽𝑛𝑛𝐷𝐷𝑛𝑛′
2 + 2𝛼𝛼𝑛𝑛𝐷𝐷𝑛𝑛𝐷𝐷𝑛𝑛′ + 𝛾𝛾𝑛𝑛𝐷𝐷𝑛𝑛2

𝐶𝐶𝛾𝛾 =
4𝜋𝜋
3

𝑜𝑜𝑠𝑠
𝑐𝑐𝑐𝑐2 3 = 8.846 10−5

𝑐𝑐
𝐺𝐺𝑢𝑢𝑉𝑉3

𝐶𝐶𝛼𝛼 = 2113.1
𝑐𝑐2

𝐺𝐺𝑢𝑢𝑉𝑉3 𝑠𝑠

𝑃𝑃𝛾𝛾 =
1
𝐶𝐶
�𝑃𝑃𝛾𝛾 𝑑𝑑𝑠𝑠 =

𝑐𝑐𝐶𝐶𝛾𝛾
2𝜋𝜋𝐶𝐶

𝐸𝐸4ℐ2 𝑈𝑈𝑥 =
𝐶𝐶𝛾𝛾
2𝜋𝜋

𝐸𝐸4ℐ2

𝛼𝛼𝑛𝑛 = �1 𝜏𝜏𝑛𝑛 =
𝐶𝐶𝛼𝛼
𝐶𝐶
𝐸𝐸3ℐ2 1 − ℐ4𝑛𝑛/ℐ2

𝛼𝛼𝑠𝑠 = �1 𝜏𝜏𝑠𝑠 =
𝐶𝐶𝛼𝛼
𝐶𝐶
𝐸𝐸3ℐ2 2 + ℐ4𝑥𝑥 + ℐ4𝑦𝑦 /ℐ2
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For most modern large scale machines 

𝐷𝐷 ≈ 𝛼𝛼𝑠𝑠
�𝑅𝑅
𝑜𝑜 ≪ 1

�𝑅𝑅 is the average machine radius
αp is the compaction factor
r is the magnet radius
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