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• Introduction
• Beam Measurement Techniques

• Beam Generated Signals 
• Beam Properties
• Lattice Parameters
• Beam Processes

• Beam Instrumentation
• Beam-Sensor Interactions
• Diagnostic Architecture

• Exercises and References

Two Lecture Outline
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Beams are composed of 100’s to 10**8’s of individual particles.
Getting them all from point A to point B can be a challenge 

We need to perform certain operations on the beam
• Tuning, optimization of beam quality
• Targetry, beam collisions
• Monitoring, stability, minimizing losses,                                                                    

machine protection

Role of diagnostics and instrumentation
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• Measurements
• Incorporate (incomplete) knowledge of lattice, beam dynamics
• Point vs. Distributed (lattice-dependent) measurements

• Diagnostics are techniques involved in performing a measurement
• Direct vs indirect measurements
• Correlations – use known dependencies

• Instrumentation is the set of particular devices used in the 
execution of the measurement

• Set of beam sensors, signal transmission lines, data acquisition and 
reporting systems, controls and feedback

Measurements, diagnostics, and instrumentation
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Measurement Diagnostic Instrumentation

Beam current Beam wall return 
current

AC Current Transformer + 
electronics

Beam position Beam E-field 
distribution @ walls Capacitive pickups + electronics

Beam emittance (1DoF) Quad scan Quadrupole magnet + view
screen + camera

Diagnostics vs. Instrumentation examples

Particular diagnostic/instrumentation methodologies rely on particular types 
of beams and beam parameters/lattice functions, available beamline space 
and shielding, required measurement accuracy and precision, cost, . . . 
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• Only some beam and lattice parameters are directly measurable
• Typically involves an interceptive or destructive measurement

• Many quantities of interest are determined by known correlations
• Lattice parameters and beam parameters are determined iteratively, or through 

complementary means
• Space/time and frequency domain measurements are used extensively

• Single pass vs. multi-pass beamlines employ differing measurement modalities for the same 
quantity of interest

• Dedicated diagnostic stations are established with well known positions and 
alignment characteristics

Direct vs Indirect Measurements
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Typical beam measurements
Measurements and associated 
diagnostics and instrumentation are 
specific to

• Geometry of beamline
• linac, synchrotron booster, storage ring, 

analyzing beamline, injector, final focus, 
etc.)

• Particle type
• Hadron, lepton, neutron, neutral atom, 

rare isotope
• Beam energy
• Beam intensity
• Beam time structure
• . . . 
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SIS-18 Synchrotron at GSI: diagnostic suite
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𝑬𝑬 𝒙𝒙, 𝑡𝑡 = 𝑞𝑞
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𝑅𝑅𝑂𝑂𝑡𝑡𝑅𝑅𝑂𝑂𝑅𝑅𝑂𝑂𝑅𝑅 𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝
𝐴𝐴𝑝𝑝𝑝𝑝𝑅𝑅𝑂𝑂𝑂𝑂𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝

Transverse fields ~γ

Longitudinal fields ~1/γ2

Uniform motion, β<<1

Velocity fields
Acceleration fields
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• Lorentz Transformation of 
coordinates  (here 𝒏𝒏=β/β)

• Lorentz Transformation of fields 

• Lorentz Transformation of charge 
and current densities

Fields of beam bunches (constant velocity)

𝑬𝑬‖′ = 𝑬𝑬‖ 𝑩𝑩‖
′ = 𝑩𝑩‖

𝑬𝑬⊥′ = 𝛾𝛾 𝑬𝑬⊥ + 𝒗𝒗 × 𝑩𝑩 𝑩𝑩⊥
′ = 𝛾𝛾 𝑩𝑩⊥ −

𝟏𝟏
𝒄𝒄𝟐𝟐
𝒗𝒗 × 𝑬𝑬

𝑐𝑐𝜌𝜌′ = 𝛾𝛾 𝑐𝑐𝜌𝜌 − 𝛽𝛽𝒏𝒏 � 𝑱𝑱
𝑱𝑱′ = 𝑱𝑱 + 𝛾𝛾 − 1 𝑱𝑱 � 𝒏𝒏 𝒏𝒏 − 𝛾𝛾𝛽𝛽𝑐𝑐𝜌𝜌𝒏𝒏

𝑐𝑐𝑡𝑡′ = 𝛾𝛾 𝑐𝑐𝑡𝑡 − 𝛽𝛽𝒏𝒏 � 𝒓𝒓
𝒓𝒓′ = 𝒓𝒓 + 𝛾𝛾 − 1 𝒓𝒓 � 𝒏𝒏 𝒏𝒏 − 𝛾𝛾𝛽𝛽𝑐𝑐𝒕𝒕𝒏𝒏

Effect of metallic boundaries

2b

For a point charge on axis, 
the extent of the pulse is 
approximated by (cf. Shafer)

𝜎𝜎𝑟𝑟 ≅
𝑂𝑂

2𝛾𝛾𝛽𝛽𝑐𝑐

𝜎𝜎𝑟𝑟
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• In the limit of neglecting longitudinal end 
effects (bunch length >> pipe diameter), 
we can solve the 2D Laplace equation in 
the beam rest frame with Doppler shifted 
spectrum

• Include modulation effects (wavelength >> 
pipe diameter)

• For long pulses that are nonrelativistic or 
only mildly relativistic, the fields are well 
approximated by electrostatics

• Intense beams may require self-magnetic 
field corrections

Field from 2D Laplace Equation



Physics 862 Accelerator Systems, Fall 2019 Beam Measurements and Instrumentation I-II 13

• Assume a beam, carrying current I, of radius a
centered in a pipe of radius b.

• The radial electric field at the pipe surface is 
𝐸𝐸𝑟𝑟 = 𝜌𝜌𝑎𝑎2

2𝜀𝜀0𝑏𝑏
= 𝜆𝜆

2𝜋𝜋𝜀𝜀0𝑏𝑏

• The surface charge density induced at r=b is 
𝜎𝜎𝑠𝑠 = 𝜀𝜀0𝐸𝐸𝑟𝑟 = 𝜆𝜆

2𝜋𝜋𝑏𝑏
• The azimuthal magnetic field at the pipe surface 

𝐵𝐵𝜑𝜑 = 𝜇𝜇0𝐼𝐼
2𝜋𝜋𝑏𝑏

• With surface current density (longitudinally) 
𝐾𝐾𝑠𝑠 = −𝐼𝐼

2𝜋𝜋𝑏𝑏
= −𝑂𝑂𝜎𝜎𝑠𝑠

Simple beam model

𝜌𝜌 =
1
𝜋𝜋𝑅𝑅2

𝐼𝐼
𝑂𝑂

=
𝜆𝜆
𝜋𝜋𝑅𝑅2
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• Off center beam in pipe creates azimuthal surface charge density 
distribution

Wall currents and charges

ρ φ
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• RF and beam pulse structure
• Compromise between 

• Cavity rf frequency (aperture, transit factor) 
• Power generation and handling (CW/pulsed) 
• Experimental requirements

Time/Frequency description of beam signals

1 ms/div 50 ns/div 1 ns/div

Capacitive probe
Why is the signal 
bipolar?
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• Beam signals reveal the bunch 
structure and loading or fill pattern

• Multibunch dynamics are revealed in 
sidebands and harmonics of 
underlying carrier frequencies

Beam spectra examples
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• Beams carry signals, encoded in their 
time/frequency structure, transverse position, 
energy, etc.

• Time-dependent description (wakefields)
• Frequency-dependent description (impedances)

• Charged particle beams couple electromagnetically 
to their environment

• Noninterceptive means – resistive, capacitive, 
inductive, resonant, radiative

• Accelerator beams represent ‘nearly perfect current 
sources’

• Very high source impedance

• Sometimes the environment drives back on the 
beam

• Lorenz reciprocity
• Beam loading, instabilities!

Beam Coupling to its Environment
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• Current; charge, mass, polarization states
• Beam energy
• Beam position, orbit, tune

Beam parameters [1] – 1st Order Moments

LHC Day 1 Beam Position

Schottky spectra of 
stored and cooled rare 
isotopes from 197Au79+. 
Spectra of 16th

revolution harmonic. 

(Schlitt, et al., Nucl. Phys A626 (1997), 315.)
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• Profile (transverse, longitudinal), 
envelope, energy spread

• Phase space density, emittance 
measures

• Beam halo - transverse, longitudinal

Beam parameters [2] – 2nd Order (+ higher) Moments

Beam halo with wire scanner measurements
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• Single bunch vs. many bunch measurements
• Time domain vs. frequency domain

Beam parameters [3] – Bunch Trains

LHC Turn-by-turn Bunch Intensity (300 turns)
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Particle Identification

(Courtesy, A. Stolz)
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• Betatron tune Qx, Qy

Lattice parameters • Dispersion function

Large energy spread Nominal energy spread

BPMs @ A, B, C, D

𝑥𝑥0
𝑝𝑝0 ⟹

𝑥𝑥
𝑝𝑝 = 𝐷𝐷𝑥𝑥 𝑝𝑝, 𝑂𝑂

∆𝑝𝑝
𝑝𝑝0

𝑝𝑝0 + ∆𝑝𝑝
= 𝐷𝐷𝑥𝑥 𝑝𝑝, 𝑂𝑂 𝛿𝛿

𝑝𝑝0 1 + 𝛿𝛿

𝑥𝑥 = 𝑥𝑥0 + 𝑥𝑥𝛽𝛽+𝑥𝑥𝐷𝐷 = 𝑥𝑥0 + �𝑥𝑥 𝛽𝛽𝑥𝑥
𝛽𝛽0

cos 𝜓𝜓𝑥𝑥 + 𝐷𝐷𝑥𝑥 𝛿𝛿

𝑦𝑦 = 𝑦𝑦0 + 𝑦𝑦𝛽𝛽+𝑦𝑦𝐷𝐷 = 𝑦𝑦0 + �𝑦𝑦 𝛽𝛽𝑦𝑦
𝛽𝛽0

cos 𝜓𝜓𝑦𝑦 + 𝐷𝐷𝑦𝑦𝛿𝛿
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Multi-turn Orbit Measurement on PEP-II
Turn-by-turn BPM readings of 500th bunch in 1760 bunch train

FFT of BPM readings

Dispersive region Non-dispersive region

• At high current, the beam 
oscillations are self-excited.

• Slow oscillations corresponds to 
synchrotron motion.

• Fast oscillations are betatron
motion.

• FFTs yield betatron and 
synchrotron tunes.

(Courtesy U. Wienands, J. Seeman, et al., 1998)
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Lattice parameters Matched distributions Mismatched distributions

Power density (Gy/s) at 200 MeV

• Loss distributions in SC RF modules
• Beam envelope matching to lattice



Physics 862 Accelerator Systems, Fall 2019 Beam Measurements and Instrumentation I-II 27

• Emittance growth for mismatched beams
• Instabilities
• Electron cloud effects
• Beam losses

Dynamic parameters

Direct phase measurement in resonant BPM configuration
(DeSantis, et al, PAC09 TH5RFP071) 
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End of Part I
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• Introduction
• Beam Measurement Techniques

• Beam Generated Signals
• Beam Properties
• Lattice Parameters
• Beam Processes

• Beam Instrumentation
• Beam-Sensor Interactions
• Diagnostic Architecture

• Exercises and References

Two Lecture Outline
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• Physics of beam-sensor interactions
• EM, Nuclear, AMO, Solid State
• Charge and mass interception
• Capacitive, inductive, resonant, thermal 

field sensing
• Secondary radiation fields

• Mechanical design 
• Thermal, structural, vacuum, actuator

• Electrical design
• Grounding/shielding
• HV bias and insulation

• Electronics
• Signal acquisition, conditioning, 

processing
• Noise, bandwidth, sensitivity,      

response time

Diagnostic/instrumentation design elements

System 
Interface 
Diagram
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Faraday cups

Negative HV Bias

Suppressor Collector
V

I/V
Incoming ions

e- Transimpedance
amplifier

• Fully intercepting charge measurement
• Sensitivity to 10 pC. ~100 Hz BW (‘slow’, deep cup)
• Beam charges impinge on Collector, are collected by 

electronics
• Suppressor negatively biased to repel electrons
• Design is to prevent escape of secondary electrons
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• Based on scintillator and camera
• Coated screen (reflection mode)
• Solid, thick (100 µm) scintillator 

(transmission mode)

• Scintillator can be single- or multi-
crystalline, or sintered powder

• Direct 2D measurement
• Direct digital output
• Video out and frame grabber

• Resolution depends on scintillator 
material (grains), CCD size, optics

• Amplitude response depends on 
field flatness, scintillator dose and 
aging effects, temperature

Viewers
GSI linac, 4 MeV/u, low current, YAG:Ce
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• Analyzes intensity J(x or y) at first slit
• Applied voltage across plates + drift 

+ exit slit analyzes momentum
• Reconstructs phase space density

Allison Scanner
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Pepperpots, slits, and pinholes
• Devices scan a 1D or 2D beam distribution
• Analyze intensity J(x,y)
• Analyze transverse velocity over drift
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Emittance analysis

x

x’
𝛾𝛾𝑥𝑥2 + 2𝛼𝛼𝑥𝑥𝑥𝑥′ +𝛽𝛽𝑥𝑥′2 = 𝜀𝜀

(x0, -(α/β) x0)

2∆x0’

∆x0’=[ε/β – x0
2/β2]1/2

2a

Σ4 =

𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥′ 𝑥𝑥𝑦𝑦 𝑥𝑥𝑦𝑦′
𝑥𝑥𝑥𝑥′ 𝑥𝑥′𝑥𝑥′ 𝑥𝑥′𝑦𝑦 𝑥𝑥′𝑦𝑦′
𝑥𝑥𝑦𝑦 𝑥𝑥′𝑦𝑦 𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑦′
𝑥𝑥𝑦𝑦′ 𝑥𝑥′𝑦𝑦′ 𝑦𝑦𝑦𝑦′ 𝑦𝑦′𝑦𝑦′

=
Σ𝑥𝑥 𝐶𝐶
𝐶𝐶𝑇𝑇 Σ𝑦𝑦

det Σ𝑥𝑥 = Σ𝑥𝑥 = 𝑥𝑥𝑥𝑥 𝑥𝑥′𝑥𝑥′ − 𝑥𝑥𝑥𝑥′ 2 = ̃𝜀𝜀𝑥𝑥2𝑓𝑓𝑓𝑓 =
∑𝑖𝑖 𝜌𝜌𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖
∑𝑖𝑖 𝜌𝜌𝑖𝑖
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Slice envelope properties from slit/slit-cup diagnostic

50 mA Li+
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Profile monitors
• Interceptive diagnostic onto W, C, Cu-Be wires
• Wide range of wire based geometries
• Biased wire to discourage (or encourage) secondary e-’s
• Slit + Faraday cup

Linear actuated 
(3 wires)

Rotating wire
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• We observe day-to-day variation of transverse beam parameters
• Two most significant factors are: ECR  setting and beam center matching to the RFQ

Reconstruct beam parameters from profile data

Typical Large emittance 

(FRIB data courtesy T. Maruta)
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Bunch Shape Monitor
A.V.Feschenko, et. al, Proc. of the XIX Int. Linear Acc. Conf., 1998, p.905-907. 

• Used for hadron 
beamlines

• Scanning wire produces 
secondary electrons

• Electrons are 
accelerated in DC field, 
sorted in RF field

• Time-correlation 
converted to position on 
detector
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Assuming Cartesian geometry and variation only along n12 we can show that

Frequency dependence of wall currents, skin depth
𝒏𝒏12

σ1, ε1, µ1

σ2, ε2, µ2

𝒏𝒏12 × 𝑬𝑬2 − 𝑬𝑬1 = 0
𝒏𝒏12 � 𝑫𝑫2 − 𝑫𝑫1 = 𝜌𝜌𝑠𝑠
𝒏𝒏12 × 𝑯𝑯2 − 𝑯𝑯1 = 𝑲𝑲𝑠𝑠
𝒏𝒏12 � 𝑩𝑩2 − 𝑩𝑩1 = 0

𝜌𝜌𝑠𝑠,𝑲𝑲𝑠𝑠

𝜵𝜵 × 𝑬𝑬 = 𝑗𝑗𝑗𝑗𝑩𝑩 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑯𝑯
𝜵𝜵 × 𝑯𝑯 = 𝑱𝑱 − 𝑗𝑗𝑗𝑗𝑫𝑫

In metals:

𝑗𝑗𝑫𝑫 ≪ 𝑱𝑱Good conductor:
Ohm’s Law: 𝑱𝑱 = ⁄𝑬𝑬 𝜎𝜎

𝜵𝜵 × 𝑱𝑱 = 𝑗𝑗𝑗𝑗𝜎𝜎𝑩𝑩
𝜵𝜵 × 𝑩𝑩 = 𝑗𝑗𝑱𝑱

𝑩𝑩⊥ 𝑧𝑧 = 𝑩𝑩⊥ 𝑧𝑧 = 0 𝑂𝑂− 1+𝑗𝑗 𝜅𝜅𝑧𝑧 𝐽𝐽∥ 𝑧𝑧 = 𝐽𝐽∥ 𝑧𝑧 = 0 𝑂𝑂− 1+𝑗𝑗 𝜅𝜅𝑧𝑧 where 𝜅𝜅 = �1
𝛿𝛿𝑐𝑐 =

𝑗𝑗𝑗𝑗𝜎𝜎
2

𝑱𝑱
𝒏𝒏12

⨂𝑩𝑩

𝑧𝑧
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• The tangential electric field in the 
conductor derives from Ohm’s Law (not 
present in perfect conductor)

• The transverse electric field satisfies an 
impedance boundary condition, with 
surface impedance, ZS

• A surface resistance (Ohms) is defined as 

• Power deposition (W/area) to the surface 
follows from

Surface resistance and Joule losses

𝑬𝑬 =
1
𝜎𝜎
𝛻𝛻 × 𝑯𝑯 ≅

1
𝜎𝜎
𝒏𝒏 ×

𝜕𝜕𝑯𝑯
𝜕𝜕𝑧𝑧

= −𝑍𝑍𝑠𝑠𝒏𝒏 × 𝑯𝑯⊥

𝑍𝑍𝑠𝑠 =
1 + 𝑗𝑗𝑂𝑂𝑓𝑓𝑝𝑝 𝑗𝑗

𝜎𝜎𝛿𝛿𝑐𝑐
= 𝑅𝑅𝑠𝑠 1 + 𝑗𝑗𝑂𝑂𝑓𝑓𝑝𝑝 𝑗𝑗

𝑅𝑅𝑠𝑠 =
1
𝜎𝜎𝛿𝛿𝑐𝑐

=
𝑗𝑗𝑗𝑗
2𝜎𝜎

𝑅𝑅𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠
𝑅𝑅𝐴𝐴

= 𝑺𝑺 � 𝒏𝒏 =
1
2
𝔑𝔑 𝑬𝑬 × 𝑯𝑯∗ � 𝒏𝒏

=
1
2
𝑅𝑅𝑠𝑠 𝐾𝐾𝑠𝑠 2
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The beam senses the wall through resistive loading
• The longitudinal resistive wall impedance can be defined as 

• The beam will experience a voltage change

• Impedance: 𝑍𝑍0
∥ = 𝑅𝑅𝑂𝑂𝑍𝑍0

∥ + 𝑗𝑗 𝐼𝐼𝐼𝐼𝑍𝑍0
∥ (longitudinal, monopole)

Resistive wall impedance

𝑍𝑍0
∥

𝑙𝑙𝑂𝑂𝑝𝑝𝑓𝑓𝑡𝑡𝑙
=

𝑍𝑍𝑠𝑠
2𝜋𝜋𝑂𝑂

=
1

2𝜋𝜋𝑂𝑂
𝑗𝑗𝑗𝑗
2𝜎𝜎

1 + 𝑗𝑗𝑂𝑂𝑓𝑓𝑝𝑝 𝑗𝑗

𝑉𝑉 𝑗𝑗 = −𝐼𝐼 𝑗𝑗 𝑍𝑍0
∥ 𝑗𝑗

What is the significance of the of the resistive and reactive components?
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Building a detector

Measured ceramic gap impedance

• A non-intercepting monitor can be based on 
monitoring the wall return currents.

• A ceramic break in the beampipe will force the wall 
current to seek other paths.

• If nothing else is done, the wall currents will find 
alternative paths. 

• The gap impedance is a combination of the gap 
capacitance and all external parallel elements

• At low frequencies the lowest impedance return path can 
be distant from the gap itself

• The gap voltage 𝑉𝑉𝑔𝑔𝑎𝑎𝑔𝑔 = 𝐼𝐼𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤𝑍𝑍𝑔𝑔𝑎𝑎𝑔𝑔 = 𝐼𝐼𝑏𝑏𝑟𝑟𝑎𝑎𝑏𝑏𝑍𝑍𝑔𝑔𝑎𝑎𝑔𝑔
can be generated up to the beam voltage
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• We model the beam-monitor interaction with 
an equivalent circuit

• Beam drive is modeled as a pure current source 
(infinite input impedance)

• A gap impedance Cgap is inevitably present
• Electrodes pierce the beam wall with isolated 

feedthroughs
• Typically few – 100s pF

• The specific signal pickup as well as the signal 
transmission line and passive analog 
components are represented by Zmon.

Impedance models and behavior

Zmon

Cgap

iw

𝑉𝑉𝑏𝑏𝑚𝑚𝑚𝑚 𝑗𝑗 = 𝑝𝑝𝑤𝑤 𝑗𝑗
𝑍𝑍𝑏𝑏𝑚𝑚𝑚𝑚

1 − 𝑗𝑗𝑗𝑗𝐶𝐶𝑔𝑔𝑎𝑎𝑔𝑔𝑍𝑍𝑏𝑏𝑚𝑚𝑚𝑚
= 𝑝𝑝𝑏𝑏 𝑗𝑗 𝑍𝑍𝑟𝑟 𝑗𝑗

Zmon
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• We add a network of n resistors across the gap.  
Rtot = Rsingle/n

• Zmon = Rtot || Cgap

• Broadband pickup 
• 𝑉𝑉𝑏𝑏𝑚𝑚𝑚𝑚 𝑗𝑗 = 𝑝𝑝𝑏𝑏 𝑗𝑗 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡

1−𝑗𝑗𝜔𝜔𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡
• Within passband 𝑉𝑉𝑏𝑏𝑚𝑚𝑚𝑚 𝑗𝑗 = ⁄𝑅𝑅𝑠𝑠𝑖𝑖𝑚𝑚𝑔𝑔𝑤𝑤𝑟𝑟 𝑝𝑝 𝑝𝑝𝑏𝑏 𝑗𝑗

• Practical implementations (eg. SPS WCM)
• Ceramic gap
• Many resistors (30 – 100) to reduce sensitivity to 

beam position
• Ferrite rings to tailor low frequency response ~10 kHz
• High frequency response to several GHz
• Shield for ground currents and noise isolation

Wall current monitor

Rtot

Cgap
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• Very high frequency response 
dominated by gap capacitance  

• Very low frequency response 
dominated by ferrite and shield 
induction

Wall Current Monitor equivalent circuit and response

Z0

Z0

Cgap

iw

…
R Lferrite

𝝎𝝎𝒄𝒄𝒄𝒄𝒕𝒕𝒄𝒄𝒄𝒄𝒄𝒄

𝝎𝝎𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 = 𝟏𝟏/𝑹𝑹𝑹𝑹

𝝎𝝎𝒍𝒍𝒄𝒄𝒍𝒍 = 𝑹𝑹/𝑳𝑳

log

1/RCR/L
ω
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• Induced charge densities on the beam pipe 
walls can be approximated or numerically 
calculated.

• Total induced charges on the electrodes 
(assuming 2D Laplace solution) for 
electrodes of length L

𝑄𝑄𝑔𝑔𝑤𝑤𝑎𝑎𝑟𝑟𝑟𝑟 = 𝐿𝐿𝑂𝑂 �
𝑠𝑠𝑟𝑟𝑐𝑐𝑟𝑟𝑚𝑚𝑟𝑟

𝜎𝜎 𝜃𝜃 𝑅𝑅𝜃𝜃

Induced charge densities from capacitive coupling

ρ φ

b

← 𝜎𝜎 𝜃𝜃
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• The pickup plate presents a capacitance C to ground.
• The finite length of the pickup drives a differential 

current into the monitor.
• 𝑉𝑉𝑏𝑏𝑚𝑚𝑚𝑚 𝑗𝑗 = 𝑝𝑝𝐵𝐵 𝑗𝑗 𝑍𝑍∥ 𝑗𝑗
• The image current on the pickup is related   

to the beam current

• 𝑝𝑝𝑖𝑖𝑏𝑏 𝑗𝑗 = 𝑗𝑗𝑗𝑗 𝐴𝐴
2𝜋𝜋𝑎𝑎𝑤𝑤

𝑤𝑤
𝛽𝛽𝑐𝑐
𝑝𝑝𝐵𝐵 𝑗𝑗

• 𝑉𝑉𝑏𝑏𝑚𝑚𝑚𝑚 𝑗𝑗 = 𝑅𝑅
1−𝑗𝑗𝜔𝜔𝐶𝐶𝑅𝑅

𝑝𝑝𝑖𝑖𝑏𝑏 𝑗𝑗 = 𝑅𝑅
1−𝑗𝑗𝜔𝜔𝐶𝐶𝑅𝑅

𝑗𝑗𝑗𝑗 𝐴𝐴
2𝜋𝜋𝑎𝑎𝑤𝑤

𝑤𝑤
𝛽𝛽𝑐𝑐
𝑝𝑝𝐵𝐵 𝑗𝑗

• 𝑍𝑍∥ 𝑗𝑗 = 1
𝛽𝛽𝑐𝑐

1
𝐶𝐶

𝐴𝐴
2𝜋𝜋𝑎𝑎

𝑗𝑗𝑅𝑅𝐶𝐶
1−𝑗𝑗𝜔𝜔𝑅𝑅𝐶𝐶

Signals from capacitive coupling

iB(t)

~ iB(t) ~ iB(t+∆t)

imon(t) = ~ [iB(t)- iB(t+∆t)]

iw(t)

l

2a A: plate area

Vmon(t)
R

C
iim

R Vmon

𝑝𝑝𝑖𝑖𝑏𝑏 𝑡𝑡 = −
𝐴𝐴

2𝜋𝜋𝑅𝑅𝑙𝑙
𝑅𝑅𝑄𝑄𝑏𝑏𝑟𝑟𝑎𝑎𝑏𝑏
𝑅𝑅𝑡𝑡

= −
𝐴𝐴

2𝜋𝜋𝑅𝑅𝑙𝑙
𝑙𝑙
𝛽𝛽𝑐𝑐

𝑅𝑅𝑝𝑝𝐵𝐵
𝑅𝑅𝑡𝑡

∆t=l/βc
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• Beam positions can be monitored 
using a 4-electrode array of 
capacitive pickups on the beampipe
circumference.

• Various geometries are employed 
for sensitivity, compactness, 
protection from intense radiation

Beam Position Monitors
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BPM Position Algorithm

Q1

Q2

Q3

Q4 x

y

• Positions are estimated from the normalized intensities 
using the difference over sum algorithm 

∆𝑥𝑥 = 1
𝑆𝑆𝑥𝑥

𝑉𝑉2−𝑉𝑉4
𝑉𝑉2+𝑉𝑉4

, ∆𝑦𝑦 = 1
𝑆𝑆𝑦𝑦

𝑉𝑉1−𝑉𝑉3
𝑉𝑉1+𝑉𝑉3

• Position sensitivities are proportionality constants 
between beam displacement and signal strength.
𝑆𝑆𝑥𝑥 = 𝑑𝑑

𝑑𝑑𝑥𝑥
∆𝑥𝑥
Σ𝑥𝑥

%
𝑏𝑏𝑏𝑏

𝑝𝑝𝑂𝑂 𝑆𝑆𝑥𝑥 = 𝑑𝑑
𝑑𝑑𝑥𝑥

𝑉𝑉2
𝑉𝑉4

𝑑𝑑𝐵𝐵
𝑏𝑏𝑏𝑏

where 𝑉𝑉2
𝑉𝑉4

𝑅𝑅𝐵𝐵 = 10 log 𝑉𝑉2
𝑉𝑉4

• Offset displacements also occur and must be measured 
and calibrated. 

• Button-button capacitive coupling introduces frequency 
dependent offset and sensitivity variation.

• Intensities at each button can be calculated from the 
transfer impedance, using the electrode surface area.  



Physics 862 Accelerator Systems, Fall 2019 Beam Measurements and Instrumentation I-II 54

Coupling to the beam’s magnetic field

Current Transformer
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The magnetic field of the beam is 
used to measure the beam current or 
intensity.

Inductive coupling

𝑩𝑩 = 𝑗𝑗
𝐼𝐼𝐵𝐵
2𝜋𝜋𝑂𝑂

𝝋𝝋
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Current Transformers
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Response from passive transformer
Stray cable 
capacitance 
increases 
risetime.
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• We adopt a single mode resonance to calculate the coupling impedance
• The transient cavity-beam-waveguide system can be expressed as an equivalent circuit 

equation (cf. Whittum)

𝑅𝑅2

𝑅𝑅𝑡𝑡2
+ 𝑗𝑗0

2 𝑉𝑉𝑐𝑐 = −
𝑗𝑗0

𝑄𝑄𝑤𝑤
𝑅𝑅
𝑅𝑅𝑡𝑡
𝑉𝑉𝑐𝑐 +

𝑗𝑗0

𝑄𝑄𝑟𝑟
𝑅𝑅
𝑅𝑅𝑡𝑡

𝑉𝑉𝐹𝐹 − 𝑉𝑉𝑅𝑅 + 𝑗𝑗0
𝑂𝑂
𝑄𝑄

𝑅𝑅
𝑅𝑅𝑡𝑡
𝐼𝐼𝑏𝑏

Here VF=nV+, VR=nV- are the normalized forward and reverse waveguide voltages, such 
that VC = VF + VR. Here, n is called the transformer ratio for the mode coupling.
• We can show that the longitudinal coupling impedance presented by this mode is

𝑍𝑍∥ 𝑗𝑗 =
𝑗𝑗𝑗𝑗𝑗𝑗0 ⁄𝑂𝑂 𝑄𝑄

𝑗𝑗02 − 𝑗𝑗2 + 𝑗𝑗𝑗𝑗𝑗𝑗0/𝑄𝑄𝐿𝐿
= 𝑄𝑄𝐿𝐿 ⁄𝑂𝑂 𝑄𝑄 cos𝜓𝜓 𝑂𝑂𝑗𝑗𝜓𝜓

• Impedances can be expressed as Z = R +j X with the reactance 𝑋𝑋 = 𝑗𝑗𝐿𝐿 − 1
𝜔𝜔𝐶𝐶

Resonant effects - Modal circuit equation
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Cavity Dipole-mode BPMs (resonant coupling)
• Used mainly for high energy electron beams
• Resonant dipole modes have higher shunt impedance 

than buttons or striplines
• High sensitivity
• Wakefields act back on beam

• Cavity BPMs have been developed to produce sub-µm 
position resolution, for ~mm displacements

• Monopole mode excitation is proportional to beam 
current

• Antennae pick up combined monopole+dipole signals. 
Technique requires independent calibration of 
monopole voltage. 
• Pillbox: fmono ~ 1.2-1.5* fdipole

• Qload for both modes ~100 – 1000
• Mode must decay before arrival of next pulse
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• Beam impedance response
• V(ω) = Ib(ω) Z(ω)

• Everything that sees the beam can 
be described in terms of a beam 
coupling impedance

• Narrowband impedances from 
resonant structures

• Related to wake functions
• Panofsky-Wenzel relates longitudinal 

to transverse wake/impedances for 
ultrarelativistic particles

Beam spectrum, impedances and beam loading
DAΦNE RF cavity longitudinal impedance

Fundamental mode
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• Devices may posses narrowband as well as 
broadband impedance characteristics.

• Impedances can be characterized on benchtop 
measurement stands

Beam coupling impedance to broadband device
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• Bremmstrahlung
• Synchrotron

• Other types 
found in beam 
diagnostics

• Cerenkov
• Transition
• Diffraction 

(electrons)

Far field EM radiation for high energy charged particle beams

1947
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• Relativistic beams, γ >>1

• Parasitic, nonintercepting

• Photon image reproduces 
electron beam distribution 

• Optics, coupling

• Impedances, instabilities

• IR -> Hard X-rays

Synchrotron Radiation

𝜀𝜀𝑐𝑐𝑟𝑟𝑖𝑖𝑟𝑟 = ℏ𝑗𝑗𝑐𝑐 = 3ℏ𝛾𝛾3𝑐𝑐
2𝜌𝜌

= 0.665
𝐸𝐸2 𝐺𝐺𝑂𝑂𝑉𝑉
𝐵𝐵 𝑇𝑇 [𝑘𝑘𝑂𝑂𝑉𝑉] ∆𝜆𝜆

𝜆𝜆 =
1
𝑝𝑝𝑛𝑛
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• 4th generation light sources produce intense 
electron bunches in the psec to fsec bunch length 
regime

• THz to X-ray wavelengths
• Can utilize self-fields or radiation  Single shot!

Nonlinear Optics for Short Pulse Measurements

Expected temporal resolution
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Synchrotron radiation diagnostic beamline
• Multiple/simultaneous 

ways to measure 
relativistic beams

(Figure courtesy J. Corbett, W. Cheng, A. Fisher, W. Mok)



Physics 862 Accelerator Systems, Fall 2019 Beam Measurements and Instrumentation I-II 70

Transition vs. Cerenkov Radiation

Metallic or metallized foils, plates
Mild to ultrarelativistic particles Fast particles in background 

gas or dielectric windows

𝑅𝑅 𝑗𝑗 =
2 ⁄𝑐𝑐 𝑗𝑗

�1
𝛾𝛾2 + 𝜗𝜗2 + �𝑗𝑗𝑔𝑔2

𝑗𝑗2

Coherent formation length Dielectric constant, εBeam

Beam
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• Beam losses provide useful information on 
• Beam orbit deviations
• Mismatches between beam distributions and lattice design; beam halo
• Energy and energy spread mismatches to lattice through chromaticity

• Uncontrolled beam losses are potentially harmful to the machine
• Damage to sensitive components (cryomodules!)
• Radioactiviation of high loss areas of the beamline – affects maintenance and access

• Diagnostics employed to detect losses
• Beam current/intensity, often in a differential mode to detect changes
• Secondary radiation production – gammas, neutrons, electrons
• Others – halo monitors, beamline thermometry, changes to cryo loading

Beam Loss Measurements
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Gas-type ionization chambers are in wide use as x-ray and gamma detectors
Ionization chambers

133 cm3 Ar gas
Typical bias 1 kV 
Sensitivity 70 nC/rad
Response time ~1-2 µs

R. Schmidt

1.5 L volume 
100 mbar overpressure N2
0.5-mm separated Al plates
Bias 1500 V
Sensitivity ~ 54 µC/Gy
Response time ~300 ns e-,

80 µs ions

LHC type
SNS type
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Ionization chamber schematic
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Scintillation based detectors (gammas, neutrons)

SNS Fast Detector

Sensitivity tuned with bias

• Typically employ photomultiplier tubes for high gain (105-
108) with applied HV

• Many types of scintillators fluoresce under gamma 
bombardment

• Li- or B- doped plastic scintillators respond to neutrons
• Additional moderation increases sensitivity at the expense 

of time response.
• Outside Cd layer provides discrimination against gammas

SNS Neutron chamber (SBLM)



Physics 862 Accelerator Systems, Fall 2019 Beam Measurements and Instrumentation I-II 75

FRIB Beam Loss Monitoring Network
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• The complete diagnostic system starts with 
beamline (or nearby) sensor

• Cabling to transport signals to data acquisition 
(DAQ) systems

• Processing electronics, and controls/operator  
interfaces

Architecture of a diagnostic measurement

 Penetrations and racks are laid out for 
instrumentation
• Cable runs about 100 ft
• Diagnostics will use ¼” superflex (Heliax)

» solid copper jacket provides  
>120 dB shielding effectiveness

 No electronics in the tunnel!
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• Controls and actuation 
for interceptive devices

• Global timing and 
triggering

• Interlocks for machine, 
device, and personnel 
protection

• High level controls for 
data acquisition, 
analysis, visualization

Many interfaces are needed to deploy diagnostics



Physics 862 Accelerator Systems, Fall 2019 Beam Measurements and Instrumentation I-II 78

Beam Current Monitor System Design 
• AC current transformer 

(baseline sensor) (Bergoz)
• ACCT high-resolution 

electronics (AFE) (Bergoz)
• Analog-to-digital converter 

(ADC)
• Transformer digital signal 

processing algorithms (FPGA, 
LabView, etc.)

• Connection to accelerator 
control system, operator 
interface, etc.

BCM
signal

A. ToF delay (Chopper to BCM), ~15 usec
B. Beam “gap”, 50 usec
C. Beam active, 50 usec

A CB
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Thank you!
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