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Runge-Kutta
Single Particle Dynamics

Runge-Kutta Method
• Requires functions evaluated

at beginning, middle, and
end of interval

• Single-step method, utilizing
the newly obtained
information at each step to
calculate the value

• Commonly used at 4th order,
and rarely used beyond 7th
order as the number of
functions to be computed
rises and is not as efficient as
other methods

Figure: Fourth order Runge-Kutta
method of integration diagram
[Traum]
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Predictor-Corrector
Single Particle Dynamics

1 Predictor/Corrector
• Multi-step, essentially approximating as polynomial
• Used for high accuracy

Figure: Diagram of predictor corrector method [Derby, 2000]
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Predictor-Corrector Math
Single Particle Dynamics

f (y , t) = y ′(y , t), yn+1 = yn +
∑M

k=0 b(M)
k f (n−k) (predictor)

yn+1 = yn +
∑M

k=0 a(M)
k f (n−k+1) (corrector)

1 Use RK method to get initial prediction of yM

2 Plug that value into Predictor Formula
3 Take value from predictor for yM+1, evaluate to obtain f M+1

4 Using this value for f M+1, place into corrector formula
5 Using this new yM+1, evaluate again, repeating steps 3 and 4,

getting the final yM+1 value
6 Store f (M+1) and yM+1

7 Repeat 2-6 as needed (PECEC)
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Symplectic Integration
Single Particle Dynamics

Useful for magnetic optics as they are
composed of symplectic matrices

DHz = {z,H};A ≡ DT ,B ≡ DV

z(τ) = [eτ(A+B)]z0

[eτ(A+B)] =
k∏

i=1

eciτAediτB = S

S(2)(τ) = e(1/2)τAeτBe(1/2)τA

S(4)(τ) = S(2)(x1A) · S(2)(x0B) · S(2)(x1A)

Figure: 2nd Order Symplectic
Integrator [Chao, 2002]

Figure: 4th Order Symplectic
Integrator [Chao, 2002]
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Twiss Parameters
Magnetic Optics

Tells us about the shape of the
phase space ellipse at a given s
value.

γ =
1 + α2

β

β′ = 2α
α′ = kβ − γ

ψ =

∫ s

0

1
β(s′)

ds′ Figure: Phase space ellipse with
the Twiss Parameters
[Biscari, 2014]
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Magnetic Elements
Magnetic Optics

The matrices representing these elements can be found by solving
Hill’s Equation,

x ′′(s) + k(s)x(s) = 0 (1)(
x
x ′

)
s
= M

(
x
x ′

)
0

(2)

M(s) =

 √
β
β0

(cosψ + α0sinψ)
√
β0βsinψ√

1
β0β

((α0 − α)cosψ − (1 + α0α)sinψ)
√

β
β0

(cosψ + α0sinψ)


(3)

where α, β, and ψ are functions of s
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Simulation of Beam
Particle Simulation Techniques

• Easy to treat the beam in this manner if it is round (azimuthally
symmetric)

• Traditionally broken up into two parts; the Hself and Hext

• Without any tricks, it is extremely inefficient for
non-azimuthally symmetric beams

• First must loop over all the particles applying the force
• Then must loop through all of the particles receiving the force
• Results in time complexity of O(N2)

• With 104 particles, it requires GB of memory

• With 105 particles, it requires 100 GB of memory
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Grid Based
Symplecticity

• Nowadays there solutions to Poisson’s Equations without the
O(N2) complexity.

• It is NOT symplectic, if it is not specifically enforced, which is a
complicated process

Figure: Example of the grid that is overlayed with the particles
[WarpX, 2017]
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PIC part 2

1 Making the Grid: Break up the cross-section of the beam into
a 2D grid

2 Charge Placing: Place charges on the grid, with all of the
charge be depositing on the nearest grid point

3 Field Equations: Solve the field equations on the grid

4 Interpolation: Interpolate the solutions of the field equations
at the grid point nearest the particle using the values at the
grid intersections
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Auto-Differentiation

• Currently, PIC uses numeric integration for solving equations,
which can be slow

• Goal is to integrate AD into these PIC codes

• AD breaks an equation into elementary steps

• Forward Mode:
• Calculates derivatives w.r.t. each input independently (must be

stored)
• Efficient for few inputs and many outputs

• Reverse Mode:
• Calculates derivatives w.r.t. each input in single backward pass
• Efficient for many inputs and few outputs
• Much more useful for optimization
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Auto-Differentiation Pt. 2

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

Figure: Auto-Differentiation table showing both forward and reverse
modes. [Bayden, 2018]
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The End
Questions? Comments?
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