PHY862 Accelerator Systems Introduction to Accelerators

Peter N. Ostroumov
Professor of Physics
Michigan State University

Solutions are due by 9/08/2023

Problem 1. Find an expression for the fractional error when the nonrelativistic approximation for kinetic energy as a function of β is used. (a) At what values of β and γ does the error in kinetic energy equal 1\%? (b) To what kinetic energy does this correspond, for electrons and for protons?

Problem 2. The Relativistic Heavy lon Collider (RHIC) collides fully stripped gold ions ($\mathrm{A}=197, \mathrm{Z}=79$) at a total energy of E _coll $=100 \mathrm{GeV} /$ nucleon per beam. The circumference of each ring is 3834 m . Assume the rest mass of a gold ion is $197 \times 0.93113 \mathrm{GeV}$.
(a) Calculate the revolution frequency of a particle at the injection energy of E_inj=10.5 GeV/nucleon, and at the storage energy of E_coll=100 GeV/nucleon. What is the change in revolution frequency for particles accelerated from E_inj to E_coll?
(b) If we assume that there are 192 identical dipoles per ring, each of length
$\mathrm{L}=10 \mathrm{~m}$, what is the required dipole field in each at the collision energy of
E_coll?

Problems 3, 4

Problem 3. If the only nonzero components of the electromagnetic field in cylindrical coordinates are E_{r}, E_{2}, and B_{θ}, write the nonzero components of the Lorentz force for a particle of mass m and charge q moving along the z direction with velocity v .

Problem 4. Please answer the following questions for a proton traveling at a velocity of 0.9 c .

- What is its momentum $[\mathrm{GeV} / \mathrm{c}]$?
- What is its kinetic energy [GeV]?
- What is its rigidity [T-m]?
- If this proton travels through a 1 cm long magnet with a 1 T field, by what angle will it be deflected [rad]?

