PHY 841 HW 5 Solutions

_/

- 1. Consider four charges +q, +q, -q, -q at the Cartesian positions (a,0,0), (0,a,0), (-a,0,0), (0,-a,0) respectively.
 - (a) Find the dipole moments p_i and the quadrupole tensor Q_{ij} for all i and j.
 - (b) Find all $q_{\ell m}$ for all $\ell \leq 2$.

$$q_{11} = -\sqrt{\frac{3}{817}} (p_{7} - ip_{5}) = -\sqrt{\frac{3}{817}} (1 - i)q_{1}$$

$$q_{11} = -\sqrt{\frac{3}{417}} P_{7} = 0$$

$$q_{11} = \sqrt{\frac{3}{817}} (1 + i) q_{11} = (-1)^{m} q_{11}$$

- 2. Consider a charge distribution with $q_{21} = q_{2-1}$ =some imaginary number iQa^2 , see definitions in Eq. (5.15). Draw a figure where you place a minimum number of discrete charges that reproduces the given q_{21} and q_{2-1} , while having all other $q_{ij} = 0$ for $\ell \leq 2$.
 - (a) Provide the positions and find the individual charges, all of which are $\pm q$, in terms of Q. Only place charges on a lattice where the step size is a, i.e. at positions ia, ja, ka, where i, j, k are integers.
 - (b) In terms of the magnitude of the individual charges, q, and the lattice spacings a, find the potential as a function of r, θ and ϕ .

$$V(ec{r}) \;\; = \;\; \sum_{\ell m} rac{4\pi}{(2\ell+1)} q_{\ell m} rac{Y_{\ell m}(heta,\phi)}{r^{\ell+1}}.$$

$$Y_{2,\pm 1} \; = \; -\sqrt{rac{15}{8\pi}} \sin heta\cos heta e^{\pm i\phi},$$

- 2 gar sin 20 sin p

- 3. Consider a simple model of an atom being a particle of charge e that moves in a three-dimensional harmonic oscillator with effective spring constant k. A constant electric field E_0 is added.
 - (a) What is the magnitude of the induced dipole moment p?
 - (b) What is the change in total energy of the charge due to the introduction of the field? Give answer in terms of p and E_0 .

- 4. Consider a point charge q at $\vec{r}' = a\hat{z}$.
 - (a) Find the moments, $q_{\ell m}$ defined in Eq. (5.13), for all ℓ and m, defining the moments around the origin
 - (b) Show that the potential calculated with $q_{\ell m}$ using Eq. (5.14) matches Eq. (5.8) for the case where the charge is along the z axis.
 - (c) Show that for the case where $\Phi(\vec{r})$ is evaluated with \vec{r} lying along the z-axis that the sum becomes q/(r-a).

a)
$$p = q S(\vec{r} - a\hat{\tau})$$
 $q = q S(\vec{r} - a\hat{\tau})$
 $q = q S(\vec{r} - a$

5. Any function that can be written as a sum over Cartesian polynomials of order $\leq \ell$, i.e.,

$$F(x,y,z) = \sum_{\ell_x + \ell_y + \ell_z \leq \ell} A_{\ell_x \ell_y \ell_z} x^{\ell_x} y^{\ell_y} z^{\ell_z},$$

can be expressed as a sum of spherical harmonics with order $\leq \ell$,

$$F = \sum_{\ell',m',\ell' \leq \ell} A_{\ell'm'}(r) Y_{\ell'm'}(heta,\phi).$$

Using this fact prove that the multipole moments of order $\leq \ell$, for the case when all moments $q_{\ell'm'}$ vanish for $\ell' < \ell$, are unaffected by a translation of the origin, and that the higher moments, $> \ell$, are affected by this change of the coordinate system. This means that the dominant multipole is unaffected by a translation of the coordinate system. Hint: Using the definition of the moments, Eq. (5.14), replace $\rho(\vec{r})$ with $\rho(\vec{r} + \vec{a})$, then express the new charge density as a Taylor expansion in powers of a.

											_			
				\longrightarrow	-									
				\longrightarrow	-									
											_			
-	-	 		 -	 -	 								
											_			
				\longrightarrow										
											_			
			-											
	-													
											_			
					-									
											-			