PHY 8HI_HWT

$$\mathcal{L} = \frac{1}{4}F^{\mu\nu}F_{\nu\mu} - \frac{\lambda}{2}(\partial \cdot A)^2.$$

Here, the action is $S=(1/4\pi)\int d^4x~\mathcal{L}$. The extra term here (proportional to λ) is known as the gauge-fixing term. The equations of motion for the field are:

$$\partial_{\alpha} \frac{\partial \mathcal{L}}{\partial \partial_{\alpha} A_{\gamma}} = \frac{\partial \mathcal{L}}{\partial A_{\gamma}},$$
 (7.35)

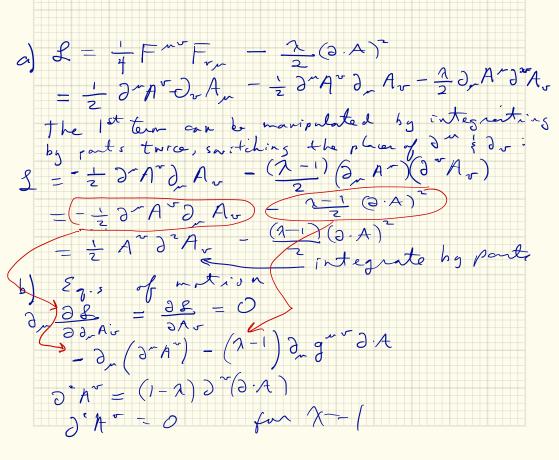
and the stress-energy tensor is:

$$T^{\alpha\beta} = \partial^{\alpha} A_{\gamma} \frac{\partial \mathcal{L}}{\partial \partial_{\beta} A_{\gamma}} - g^{\alpha\beta} \mathcal{L}. \tag{7.36}$$

(a) Show that the Lagrangian becomes (after integrating the action by parts)

$$\mathcal{L} = rac{1}{2}A^{\mu}\partial^2 A_{\mu} - rac{(\lambda-1)}{2}(\partial\cdot A)^2 = -rac{1}{2}\partial^{\mu}A^{
u}\partial_{\mu}A_{
u} - rac{(\lambda-1)}{2}(\partial\cdot A)^2.$$

- (b) Find the equations of motion for A for arbitrary λ . Note that in the Feynmann gauge, $\lambda=1$, the equations of motion do not mix different components of A, and that in the Landau gauge, $\lambda=\infty$, the Lorentz gauge is effectively enforced.
- (c) Solve for the stress-energy tensor for arbitrary λ , and show that when you enforce the equations of motion you will get a result independent of λ (You may need to integrate by parts).
- (d) Express T_{00} and then re-express in terms of $ec{E}$ and $ec{B}$.
- (e) Show that $T^{lpha}_{lpha}=0.$



$$C) \qquad T \sim B = \frac{1}{3} A^{\frac{1}{3}} A^{\frac{1}{3}} A^{\frac{1}{3}} + \frac{1}{2} \dot{A}_{0} + \frac{1}{2} \dot{A}_{1}^{\frac{1}{3}}$$

$$T \sim = -\dot{A}_{0}^{\frac{1}{3}} + \dot{A}_{1}^{\frac{1}{3}} + \frac{1}{2} \dot{A}_{0}^{\frac{1}{3}} - \frac{1}{2} \dot{A}_{1}^{\frac{1}{3}}$$

$$-\frac{1}{2} (PA_{0})^{\frac{1}{3}} + \frac{1}{3} (a_{0}^{\frac{1}{3}} A_{1}^{\frac{1}{3}})$$

$$= (\vec{P} \times \vec{A}_{1})^{\frac{1}{3}} + (\vec{P} \times \vec{A}_{1})^{\frac{1}{3}} + (\vec{P} \times \vec{A}_{1}^{\frac{1}{3}})$$

$$= \frac{1}{2} |\vec{A}_{1}|^{\frac{1}{3}} - \frac{1}{2} (PA_{0})^{\frac{1}{3}} - \frac{1}{2} (PA_{0})^{\frac{1}{3}} + \frac{1}{2} (\vec{P} \times \vec{A}_{1}^{\frac{1}{3}})$$

$$= \frac{1}{2} |\vec{A}_{1}|^{\frac{1}{3}} - \frac{1}{2} (PA_{0})^{\frac{1}{3}} + \frac{1}{2} (\vec{P} \times \vec{A}_{1}^{\frac{1}{3}})$$

$$= \frac{1}{2} |\vec{A}_{1}|^{\frac{1}{3}} - \frac{1}{2} (PA_{0})^{\frac{1}{3}} + \frac{1}{2} (PA_{0})^{\frac{1}{3}} + \frac{1}{2} (\vec{P} \times \vec{A}_{1}^{\frac{1}{3}})$$

$$= (PA_{0})^{\frac{1}{3}} + \vec{A}_{1}^{\frac{1}{3}} + 2A_{0} \vec{P} \cdot \vec{A}_{0}$$

$$= (PA_{0})^{\frac{1}{3}} + \vec{A}_{1}^{\frac{1}{3}} + 2A_{0} \vec{P} \cdot \vec{A}_{0}$$

$$= (PA_{0})^{\frac{1}{3}} + (\vec{A}_{1}^{\frac{1}{3}})^{\frac{1}{3}}$$

) A => A => 3 The

to make 3 A = 0, one must find

solution to ey.

3' A = S(x), where some function

yes, there is always each a colution!

Homework Problems

- **1.** Consider solutions for electro magnetic waves moving in the $\pm z$ directions which are linearly polarized in the x direction.
 - (a) Find the linear combination of such waves that vanishes at z = 0, i.e. reflecting off a

 - (b) Find the elements of the stress-energy tensor as a function of z and t.

a)
$$\vec{E} = \vec{E} \cdot \vec{v} + \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} + \vec{v} \cdot \vec{v}$$

= Eo3 sin2kt sin2wt T22 = 0T/E2+B7 = T00 = (E) [cos 2 art cos kz + sin art sin 2 kz]

Txx = gt [Es tas at ws k2 +sin at sin k2] - 2E, as at cos k2

= gt Es [-as at ws k2 +sin at sin k2]

= gt Es [-as at ws k2 +sin at sin k2] Tys = 8Th Eo2 Cars Part cos Pka - sin'ext sin 2 ka J Ttt = Too = & E = [cos wtos ke + sin wf sin 2k2]

c) Show that ? Tij = - Txx By is peet in

2. Consider a plane wave moving in the z direction according to Eq. (7.4) with $a_y = ia_x$. Taking the real part of the solution, solve for the direction of \vec{a} as a function of time.

 $\mathbf{r} \; \mathbf{k}$ axis, the solutions have the forms $E_i(\vec{r},t) = a_i e^{i\vec{k}\cdot\vec{r}-i\omega t}$ (7.4) $B_i(\vec{r},t) = b_i e^{i\vec{k}\cdot\vec{r}-i\omega t},$ $\omega = |\vec{k}|.$ $E_{\chi} = \alpha_{\chi} e^{ikr - iw4}$ $E_{\delta} = i\alpha_{\chi} e^{ikr - iw4}$ Re(E) = 2 ax cos(kr-w6) - ý ax sin(kr-w E) 9 = - tan 1 sin (kr -w+) - (kr - w () Karsle about zaxis ---- F -------

4. Consider a simple model of the universe where the expansion velocity for cosmological purposes is $\vec{v} = \vec{r}/t$. This corresponds to a "flat" universe with gravitational effects ignored. All matter starts at a point (the origin) and there is no acceleration for any fluid element. Observer A is moving with the source, and she records light being emitted at a time $\tau_0 = 10^5$ years after the birth of the universe, according to a clock in her pocket. A

second observer, B, records the light moving past at a time $\tau=1.4\times10^{14}$ years after the beginning of the universe according to a watch in his pocket. Both A and B are at rest relative to the neighboring expanding matter. If observer A records the frequency of the emitted light as being f_0 , find the frequency f of the recorded light according to observer B.

Some Help: the time measured by the co-moving observer, τ , is related to the time measured by a different observer with velocity v by the relations:

$$au = rac{t}{\gamma} = t\sqrt{1 - v^2} = t\sqrt{1 - r^2/t^2} = \sqrt{t^2 - r^2}.$$

Let observer A see light recorded by B at and distance r in her frame = c(t-to), where v is velocity of B according to A. = t(1-v/c) (Seare off contempter) = 7.14.10

Show that there is no solution to the conditions for the rectangular wave-guide amplitudes in Eq. (7.19) when both E_{0z} and B_{0z} are set to zero. This demonstrates that there are no solutions other than the TE and TM solutions.

mons

$$-i\omega B_{0x} = ik_{z}E_{0y} + q_{y}E_{0z},$$

$$-i\omega B_{0y} = -ik_{z}E_{0x} - q_{x}E_{0z},$$

$$-i\omega B_{0z} = q_{x}E_{0y} - q_{y}E_{0x},$$

$$i\omega E_{0x} = ik_{z}B_{0y} + q_{y}B_{0z},$$

$$i\omega E_{0y} = -ik_{z}B_{0x} - q_{x}B_{0z},$$

$$i\omega E_{0z} = q_{x}B_{0y} - q_{y}B_{0x}.$$
(7.19)

$$-iwB_{0x} = ik_{z}E_{0y}$$

$$-iwB_{0y} = -ik_{z}E_{0x}$$

$$0 = 9 \times E_{0y} - 9 \times E_{0x}$$

$$iwE_{0x} = ik_{z}B_{0y}$$

$$iwE_{0y} = -ik_{z}B_{0x}$$

$$0 = 9 \times B_{0y} - 9 \times E_{0x}$$

$$0 = 1 \times E_{0y} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} - 1 \times E_{0x}$$

$$0 = 1 \times E_{0x} -$$

6. Show that Eq.s (7.23-7.26) satisfy the Maxwell relation $abla imes ec{E} = -\partial_t ec{B}$.

gives $\mathbf{E}_z(x,y)$ by the relation,

$$E_z = \psi(x, y)e^{-i\omega t + ik_z z}. \tag{7.23}$$

One can solve the equations for ψ from the differential equation,

$$-(\partial_x^2 + \partial_y^2)\psi = -(\omega^2 - k_z^2)\psi, \tag{7.24}$$

with the boundary conditions

$$\psi(x,y)|_{S} = 0. ag{7.25}$$

This boundary condition forces E_z to be zero at the surface. Once one has solved the boundary condition, the transverse components of the electric and magnetic fields can be found via,

$$\vec{E}_t(x,y) = \frac{ik_z}{(\omega^2 - k_z^2)} e^{-i\omega t + ik_z z} \nabla_t \psi(x,y), \qquad (7.26)$$

$$\vec{B}_t(x,y) = \left(\frac{\omega}{k_z}\right) \hat{z} \times \vec{E}_t.$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \hat{z} + \frac{ik_{z}}{w^{2} - k_{-z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \hat{z} + \frac{ik_{z}}{w^{2} - k_{-z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \begin{cases} \frac{iw}{w^{2} - k_{z}} \end{cases}$$

$$E = e^{-i\omega t + ik_{z}z} \end{cases}$$

$$E = e^{-i\omega$$

7. Consider a circular wave-guide of radius R. Consider the lowest frequency TM solution to the generating function ψ satisfying the differential equation

$$\nabla_t^2 \psi(\rho,\phi) \ = \ -\alpha^2 \psi(\rho,\phi), \quad \alpha^2 = \omega^2 - k_z^2, \label{eq:psi_theta}$$

where k_z is the wavenumber for longitudinal motion.

- (a) Find a solution for ψ in polar coordinates. Express answer in terms of a_1 , the first zero of the Bessel function J_1 .
- (b) Find expressions for the electric and magnetic fields.
- (c) What is the group velocity of a wave with momentum k_z .

a)
$$y = J_0(xr)$$
, $a_0 = 2.4048$
 $x = 2.4048$

- 3. Consider two infinite parallel plates with the plane of the plates being along the x direction and the separation being L_x , i.e. a rectangular wave guide with $L_y = \infty$. Consider a wave moving in the z direction with wave number k_z . Using the method of generating functions,
 - (a) Solve for the lowest frequency **TK** wave. Find expressions for the fields and the the group velocity.
 - (b) Solve for the lowest frequency TM wave. Again find expressions for the fields and the the group velocity.

