Practice Problem from § 4 - Electrostatics
CLASSICAL ELECTRODYNAMICS I - PHY841 - Prof. Pratt
Carl E. Fields & Avik Sarkar

SOLUTION
Three charges are located at —ay, +ay, and 4+az with charge —q, —q, and +q, respectively.

(a) - Find the electric potential a distance far away from the origin. Consider up to the

first two non-zero components of the multipole expansion.

Recall the equation for the monopole term of the electric potential,

L Q

Are, v’

Vinon (1)

(1)

where @) is the total charge of the configuration. Therefore, we can immediately see that
the monopole term should be non-zero and considered in the expansion.
For our system, @ = (—q) + (—¢q) + (+¢) = —q, since we are considering discrete points of

charge. Therefore the contribution to the electrostatic potential at large r is,
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Next, recall the dipole term for the multipole expansion,
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First, we must find the dipole moment for our collection of charges, which for discrete point

charges, takes the form of,
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where 1/ is the direction from O to the i—th point charge. For our system, we find
p =3 a1, =(—q)(—ay) + (=q)(+ay) + (¢)(+az) = qaz . (5)

Therefore, the final dipole term of the electric potential is given as,
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where in the last step, we used the fact that z - r = cos 6.

The total potential is thus written as the sum of the two components,
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(b) - Using the electric potential from (a), compute the electric field in spherical coordinates.

Recall that E = —VV, therefore the components of the electric field are,
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Therefore the final electric field for this configuration is found to be,
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