e Find the instantaneous power radiated in the dipole approximation as a
function of the energy E(t)

Begin with the standard equation for power radiated by a point charge acceler-
ating perpendicularly to it’s velocity.

2

P= 56232 (1)

Remembering that 3 = 2 if working in units where v # ¢ and applying the
Lorentz force law F = qg x B
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This can be cleaned up a bit by recognizing the cyclotron frequency w. = fn—]i

which is convenient because it can be calculated in any sane system of units to
deal with the B field. Letting F = %va for a classical particle,
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e Find the instantaneous power radiated in the dipole approximation as a
function of the energy E(t)

Since P = 9£ is the energy lost by the particle

dt
dE _ 46w,
E  3(mc?)c
462wc2

E — E()e_ 3(77102)ct

e Find the amount of time necessary for the electron’s energy to decrease
by a factor of 2

Starting with the expression for energy and expressing the result in terms of &
and the fine structure constant to simplify numerical calculations
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This dimensionless result gives the time for the power to decrease by a factor of
two relative to the period of its cyclotron motion, and for B = 17T works out to
f ~ 4 x 10! so the electron radiates power very slowly compared to its motion.



