
• Find the instantaneous power radiated in the dipole approximation as a
function of the energy E(t)

Begin with the standard equation for power radiated by a point charge acceler-
ating perpendicularly to it’s velocity.
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Remembering that β = v
c if working in units where v 6= c and applying the

Lorentz force law F = q ~vc × ~B
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This can be cleaned up a bit by recognizing the cyclotron frequency ωc = eB
mc

which is convenient because it can be calculated in any sane system of units to
deal with the B field. Letting E = 1

2mv
2 for a classical particle,
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• Find the instantaneous power radiated in the dipole approximation as a
function of the energy E(t)

Since P = dE
dt is the energy lost by the particle
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• Find the amount of time necessary for the electron’s energy to decrease
by a factor of 2

Starting with the expression for energy and expressing the result in terms of ~
and the fine structure constant to simplify numerical calculations
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This dimensionless result gives the time for the power to decrease by a factor of
two relative to the period of its cyclotron motion, and for B = 1T works out to
t
τ ≈ 4×1011 so the electron radiates power very slowly compared to its motion.
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