DO NOT WRITE YOUR NAME OR STUDENT NUMBER ON ANY SHEET!

E & M Study Guide

• $L_{lab} = \frac{L_0}{\tilde{\sim}}$

1.2 Lorentz Transformations

• $r^{\alpha} = L^{\alpha}_{\beta}r'^{\beta}$

 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ for } \hat{x} \text{ boost } \gamma^2(1-v^2) = 1$ $L^{\alpha}_{\beta} = |$

1.3 invariants and the Metric Tensor $g^{\alpha\beta}$ • $sinh\eta \equiv \gamma v$, $cosh\eta \equiv \gamma$, $\eta =$ "rapidity"

• Dot product: $A^{\alpha}g_{\alpha\beta}B^{\beta}=A^{\alpha}B_{\alpha}=$ invariant

$$g_{\alpha\beta} = g^{\alpha\beta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

• Continuity Eqn: $\partial \cdot J = 0$ Maxwell's Eqns: $\begin{array}{l} \partial_{\alpha} F^{\alpha\beta} = J^{\beta} \\ \partial_{\alpha} \tilde{F}^{\alpha\beta} = 0 \end{array}$ 1.4 Four-Velocities and Momenta

• $u \equiv (\gamma, \gamma \frac{d\vec{x}}{dt})$

 $\bullet \ u^{\alpha}u_{\alpha}=1$

• $p^{\alpha}p_{\alpha}=m^2$ $p \equiv m n$

2.1 Lagrangian for a Free Relativistic Particle Ch 2 Dynamics of a Relativistic Point

 $\bullet \ S = -m \int dt \sqrt{(\frac{dt'}{dt})^2 - (\frac{d\tilde{r}''}{dt})^2} \ , \ r'^\alpha = r^\alpha + \delta \Omega^\alpha \beta(t) r_\beta$ $= \int dt \left[-\frac{d}{dt} (\pi_{\alpha} r_{\beta}) + \pi_{\alpha} \dot{r}_{\beta} \right] \delta \Omega^{\alpha\beta}$ = 0• $\delta S = \int dt \frac{\partial \mathcal{L}}{\partial r^{\alpha}} \frac{d}{dt} (\delta \Omega^{\alpha \beta r \beta})$

• $\frac{d}{dt}(r^{\alpha}p^{\beta}-p^{\alpha}r^{\beta})=0$

2.2 Interaction of a Charged Particle with an External EM Field

 $= -m \int dt \sqrt{(\frac{d\vec{t}'}{dt})^2 - (\frac{d\vec{r}'}{dt})^2} - e \int dt (A_0 - \vec{v} \cdot \vec{A})$ • $S = \int d\tau (-m - eu \cdot A)$

 $\bullet \ \ \frac{d}{dt}(\gamma mv_i) = -e\partial_i A_0 - e\partial_t A_i + e\vec{v} \times (\vec{\Delta} \times \vec{A})$ • $\mathcal{L} = -m\sqrt{1-v^2} - e((A_0 - \vec{v} \cdot \vec{A})$

• $\vec{E} = -\vec{\Delta}A_0 - \partial_t \vec{A}$

 $\bullet \quad \vec{B} = \vec{\Delta} \times \vec{A}$

• $\frac{d}{dt}(\gamma m\vec{v}) = e\vec{E} + e\vec{v} \times \vec{B}$

2.3 Motion in a Constant Magentic Field

• $\vec{A} = xB\hat{y}$, $\vec{B} = B\hat{z}$

• $S = -\int dt [m\sqrt{1-v^2} - exBv_y]$

• $\frac{d}{dt}(\gamma m\vec{v}) = e(v_y\hat{x} - v_x\hat{y})B$

 $\quad \dot{v}_y = -\frac{eB}{\gamma m}v_x = -\omega v_x$ • $\dot{v}_x = \frac{eB}{\gamma m} v_y = \omega v_y$

• $v_x = \omega R sin(\omega t)$, $x = R cos(\omega t)$

• $v_y = -\omega R cos(\omega t)$, $y = R sin(\omega t)$

Gauge Transformations

 $\bullet \ A'^{\mu} = A^{\mu} + \partial^{\mu} \Lambda(t,x,y,z)$ • \vec{E}, \vec{B} do not change 2.5 The EM Field Tensor • $F^{\alpha\beta} \equiv \partial^{\alpha}A^{\beta} - \partial^{\beta}A^{\alpha}$ $F^{\alpha\beta} = \begin{bmatrix} 0 \\ E_x \\ E_y \\ E_z \end{bmatrix}$ $F^{\alpha} \begin{bmatrix} 0 \\ E_x \\ E_x \\ E_y \end{bmatrix}$

3.1 Lagrangian (Density) for Free Fields: Ch 3 Dynamics of EM Fields

Deriving Maxwell's Equations • $S_f = \int d^4 r \mathcal{L}(a^\mu, \, \partial_\nu A^\mu)$

• $\partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} A^{\nu}} = \frac{\partial \mathcal{L}}{\partial A^{\nu}}$

• $\mathcal{L} = -\frac{1}{16\pi} F^{\mu\nu} F_{\mu\nu} = \frac{1}{16\pi} F^{\mu\nu} F_{\nu\mu}$

• $S_m = \int d^4r J \cdot A$

• $\partial_{\mu}F^{\mu\nu} = 4\pi J^{\nu}$

• $J^{\alpha} \equiv \frac{1}{\Omega} \sum_{a \in \Omega} q_a \frac{u_a^{\alpha}}{\gamma_a}$, Ω is 4D volume

• $\vec{\Delta} \cdot \vec{E} = 4\pi J^0$

• $(\vec{\Delta} \times \vec{B}) - \partial_t \vec{E} = 4\pi \vec{J}$ • Dual EM tensor $\tilde{F}^{\alpha\beta} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta} = \begin{bmatrix} 0 \\ B_x \\ B_y \end{bmatrix}$

• $\partial_{\mu}\tilde{F}^{\mu\nu}=0$

• $\partial_t \vec{B} + \vec{\Delta} \times \vec{E} = 0$

3.2 Pseudo-Vectors and Pseudo-Scalers

The Stress-Energy Tensor of the EM Field

• $T^{\alpha\beta} \equiv pi^{\alpha}\partial^{\beta}\phi - g^{\alpha\gamma}\mathcal{L}, \ \phi = A^{\mu}, \ \pi^{\alpha} = \frac{\partial \mathcal{L}}{\partial(\partial_{\alpha}\phi)}$ • $T^{\alpha\gamma} = \frac{1}{4\pi} F^{\alpha\beta} F^{\gamma}_{\beta} + F^{\mu\nu} F_{\mu\nu}$ • $T^{00} = \frac{1}{8\pi}(E^2 + B^2)$

 $\quad T^{0i} = \frac{1}{4\pi} \epsilon_{ijk} (E_j B_k)$

• $T^{ij} = \frac{1}{8\pi} (\delta_{ij} (E^2 + B^2) - 2E_i E_j - 2B_i B_j)$

3.4 Hyper-Surfaces and Conservation of E,\vec{P},\vec{L} stress-energy tensor is symmetric • $U^{(f)} = \frac{1}{2} \int d^3 r A_0(\vec{r}) J_0(\vec{r})$

LONG ANSWER SECTION

1. Consider a region with non-zero electric and magnetic fields,

$$ec{B} \; = \; B_z \hat{z}, \quad ec{E} = E_x \hat{x},$$

where $|B_z| >> |E_x|$.

- (a) (2 pts) Is there is a reference frame where $\vec{B} = 0$.
- (b) (2 pts) Is there is a reference frame where $\vec{E} = 0$.
- (c) (16pts) If a particle of mass m and charge e begins at rest at the origin, find the velocity as a function of time. (Note: You may want to consider whether you need to consider whether the motion is relativistic)

SECRET STUDENT NUMBER: <u>STUDNUMBER</u>

Extra workspace for #1

your name(s)	
0 ()	/

- 2. Cathy Couchsitter, whose momentum is $P_c = (M_c, 0, 0, 0)$, observes two events at coordinates described by x_a and x_b . Cathy observes Randy Rabbit, whose mass is M_r zipping by with momentum P_r .
 - (a) (5 pts) According to Cathy, what is the separation in time of the two events?
 - (b) (5 pts) According to Randy, what is the separation in time of the two events?

Express both answers in terms of Lorentz invariants using M_c , M_r , P_c , P_r , x_a and x_b .

SECRET STUDENT NUMBER: <u>STUDNUMBER</u>

Extra workspace for #2

your name(s)	

- 3. Consider two very large parallel capacitor plates of area A, carrying charge densities σ and $-\sigma$, and oriented perpendicular to the z axis. The plates are initially at a very small separation at t=0, but are pulled apart, moving with constant non-relativistic velocities v/2 and -v/2.
 - (a) (5 pts) What is the electric field between the plates?
 - (b) (5 pts) Find all four non-zero elements of the stress-energy tensor $(T_{\alpha\beta})$. Check that the stress-energy tensor is traceless.
 - (c) (5 pts) What is the power (energy per time) at which the field energy between the plates increases due to the growing volume? Ignore fringe effects.

your name	\mathbf{s}	

Extra work space for #3

your name(s)	

4. TRUE OR FALSE (2 pts each)

- (a) For electromagnetic fields at a given point x, you can always find a reference frame where either $\vec{E}(x) = 0$ or $\vec{B}(x) = 0$.
- (b) For two events at space-time points x_a and x_b , if one observer records a occurring before b, then all observers must observe a before b.
- (c) Under parity transformation $\vec{E} \cdot \vec{B}$ is unchanged.
- (d) A nucleus is spin-polarized by being placed in a strong magnetic field $\vec{B} = B\hat{z}$. The nucleus then undergoes a decay where neutrons, which are products of the decay, are observed to be emitted more often in the $+\hat{z}$ direction than in the $-\hat{z}$ direction. This is evidence of parity violation.
- 5. (8 pts)A charged particle moves through fields given by a vector potential,

$$A_0 = -Ex, A_y = Bz.$$

Which of the following are conserved?

- (a) L_x (\vec{L} is the orbital angular momentum)
- (b) $\boldsymbol{L_y}$
- (c) L_z
- (d) $|\vec{L}|^2$
- (e) p_{x}
- (f) $\boldsymbol{p_y}$
- (g) p_z
- (h) kinetic energy