Problem Set #1

due Friday, Sep. 1

PHYSICS 851, FALL 2000

1. Consider the matrix:
 \[\mathcal{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \]
 (a) What are the eigenvalues of \(\mathcal{M} \)?
 (b) What are the eigenvectors of \(\mathcal{M} \)?

2. Consider the 2\(\times \)2 matrix
 \[\mathcal{K} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \]
 (a) What are the eigenvalues of \(\mathcal{K} \)?
 (b) What are the eigenvectors of \(\mathcal{K} \)?

3. A beam of light with wavelength 660 nm is sent along the z axis through a polaroid filter that passes only x polarized light. The beam is initially polarized at 30° to the x axis, and the total energy of the pulse is exactly 10 Joules. Estimate the fluctuations of the energy of the transmitted beam, \(\langle (E - \bar{E})^2 \rangle^{1/2} \). Express the fluctuations as a fraction of the average transmitted energy. (Hint: Consider the binomial distribution, with \(N \) tries with probability \(p \) of success of each try.)

4. Considering light moving along the z axis and using the following definitions for \(|R\rangle \) and \(|L\rangle \) in terms of x and y polarized light,
 \[|R\rangle \equiv \frac{1}{\sqrt{2}}(|x\rangle + i|y\rangle), \quad |L\rangle \equiv \frac{1}{\sqrt{2}}(|x\rangle - i|y\rangle), \]
 (a) In terms of \(|R\rangle \) and \(|L\rangle \) write the states \(|45\rangle \) and \(|135\rangle \) which are linearly polarized at 45° and 135° relative to the x axis.
 (b) Calculate the 2 \(\times \) 2 transformation matrix from the 45, 135 basis to the \(RL \) basis.
 (c) Show that this transformation is unitary.
5. The probability that a photon in state $|\Psi\rangle$ passes through an x-polaroid is the average value of a physical observable which might be called the \textit{x-polarizedness}.

(a) Write down the operator P_x corresponding to the observable as a matrix in the xy representation. $\langle \Psi | P_x | \Psi \rangle$ is the probability that $|\Psi\rangle$ makes it through the filter.

(b) What are its eigenvalues and eigenstates?

(c) Write the matrix in the RL basis, and show that the eigenvalues are the same as in the xy basis.

6. The trace of a matrix A is defined as:

$$
\text{Tr} A \equiv \sum_i A_{ii}
$$

(a) Show that the trace of A is invariant under a transformation of basis,

$$
A \rightarrow U^\dagger A U
$$

(b) Show that $\text{Tr} AB = \text{Tr} BA$.

7. A plane polarized photon at $\theta = 45^\circ$ enters a special crystal with indices of refraction:

$n_x = 1.50$ for photons polarized along the x axis

$n_y = 1.52$ for photons polarized along the y axis.

Assuming the wavelength of the light is 660 nm before it enters the crystal, choose the thickness of the crystal such that the outgoing light is right circularly polarized. Assume the dispersion is linear, $k = n \omega/c$.

2