Problem Set #17

due Friday, Feb. 2.

PHYSICS 852, SPRING 2001

1. Consider b-particles of mass m confined by one-dimensional harmonic oscillator characterized by a frequency ω. The b particles interact with massless and spinless a-particles through their respective field operators,

$$H_{\text{int}} = g \int dx \Phi^\dagger(x) \Phi(x) \Psi(x),$$

where Φ and Ψ are the field operators for the a-particles and b-particles respectively.

$$\Phi(x) = \frac{1}{\sqrt{L}} \sum_k \frac{1}{\sqrt{2E_k}} \left(e^{ikx} a_k^\dagger + e^{-ikx} a_k \right)$$

$$\Psi^\dagger(x) = \frac{1}{\sqrt{L}} \sum_k e^{ikx} b_k^\dagger$$

(a) What are the dimensions of g?
(b) What is the decay rate of a b particle in the first excited state.

2. A spinless particle of mass m and charge e is in the first excited state of a three-dimensional harmonic oscillator characterized by a frequency ω. Assume the harmonic oscillator in the Cartesian state with $n_z = 1$. Using the interaction

$$H_{\text{int}} = \mathbf{j} \cdot \mathbf{A}/c,$$

(a) Calculate the decay rate of the charged particle into the ground state of the oscillator in the dipole approximation.
(b) Calculate $d\Gamma/d\Omega$ as a function of the emission angles of the photon, θ and ϕ.
(c) In terms of the unit vectors \hat{k}, $\hat{\theta}$ and $\hat{\phi}$, write the two polarization vectors which are allowed for emission of a photon at an angle θ, ϕ.
(d) For each polarization vector above, calculate $d\Gamma_s/d\Omega$, the probability of decaying via emission of a photon emitted in the θ, ϕ direction with polarization s.

3. Again consider a spinless particle of mass m and charge e in the first excited state of a three-dimensional harmonic oscillator characterized by a frequency ω. However, this time assume the charged particle is originally in a state with angular momentum projection $m = +1$ along the z axis. Using the interaction

$$H_{\text{int}} = \mathbf{j} \cdot \mathbf{A}/c,$$

and applying the dipole approximation,

(a) Find the decay rate Γ of the first excited state.
(b) Find the differential decay rate $d\Gamma/d\Omega$.