Topic 1: 1D Motion PHYSICS 231

Key Concepts: 1D motion

- Particle model
- Position, Coordinate system (1 axis with positive and negative direction), Displacement
- Velocity - rate of change of position can have positive or negative direction
- Acceleration - rate of change of velocity can have positive or negative direction
- Average velocity/acceleration vs instantaneous
- Equations for $\mathrm{X}(\mathrm{t})$ and $\mathrm{v}(\mathrm{t})$ for constant acceleration
- Gravity on the surface of the earth provides an acceleration of $|g|=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (if no other forces are acting - free "fall") towards the center of the earth. Concept of "free fall".

Key concepts ctd

- Displacement vs time $x(\mathrm{t})$ Graph:
- Slope is velocity (sign!)
- Velocity vs time v(t) Graph:
- Area under curve is displacement x (sign!) (change in position)
- Slope is acceleration (sign!)
- Acceleration vs time a(t) Graph
- Area under the curve is change of velocity v (sign!)
- Understand how to derive one graph from another

Clicker question

- Distance between snapshots in motion diagram
- A increases
- B stays the same
- C decreases

Position

- For 1D motion we need to define a one axis coordinate system (an x-axis) along the path of motion (particle model!).
- The axis features:
- Labeled using units of length (for example meters)
- Zero is chosen at your convenience
- Positive direction: we agree in this class that positive direction will always be to the right or up.
- Position of an object is the value of the axis label at its location. We use here the symbol x.
- Position may change with time. It is a function of time $\mathbf{x}(\mathrm{t})$

Position vs time diagram

- A moving object has a position at each point in time.
- Graph position as a function of time: function $x(t)$

Displacement

- Displacement is a change in position
- Suppose there is an initial position at an earlier time x_{i} and a final position at a later time x_{f}
- The displacement Δx for this particular part of the motion is:

$$
\Delta x=x_{f}-x_{i}
$$

- Note this can be positive or negative (it has a direction)
- If the change is towards a larger number (positive direction of the axis) x_{f} is larger than x_{i} and $\Delta \mathrm{x}$ will be positive.
- If the change is towards a smaller number (negative direction of the axis) x_{f} is smaller than x_{i} and Δx will be negative
- Δx is ONE symbol, just like x or y

Quiz

- Maria stands at position $\mathrm{x}=30 \mathrm{~m} .10$ s later she is located at position $x=-20 \mathrm{~m}$. What was her displacement?

A: 50 m
B: 20 m
C: 0 m
D: -20 m
E: -50m

Velocity

- Velocity is rate of change of position.
- The average velocity for a specific part of an object's motion beginning at time t_{i} (initial time) ending at a later time t_{f} (final time) is
Average Velocity $=\frac{\text { Displacement }}{\text { Time interval }}$ with symbols: $v=\frac{\Delta x}{\Delta t} \quad$ With $\Delta \mathrm{t}=\mathrm{t}_{\mathrm{f}} \mathrm{t}_{\mathrm{i}}$
- Unit: m/s (others: km/h, miles/h, ...)
- Velocity has a sign and therefore a direction: its the sign of Δx (because Δt is always positive)
- Motion towards positive x-axis: positive velocity
- Motion towards negative x-axis: negative velocity
- Magnitude of velocity $|\mathrm{v}|$ is also called "speed".

Average Speed $=\frac{\text { Distance travelled }}{\text { Time interval }}$

Quiz

- Maria stands at position $\mathrm{x}=30 \mathrm{~m} .10 \mathrm{~s}$ later she is located at position $x=10 \mathrm{~m}$. What was her average velocity?

A: $2 \mathrm{~m} / \mathrm{s}$
B: $3 \mathrm{~m} / \mathrm{s}$
C: $0 \mathrm{~m} / \mathrm{s}$
D: $-3 \mathrm{~m} / \mathrm{s}$
E: $-2 \mathrm{~m} / \mathrm{s}$

Quiz

- Maria stands at position $x=30 \mathrm{~m} . \ln 10 \mathrm{~s}$ she walks to $x=50 \mathrm{~m}$. In 20 s she then walks back to $x=30 \mathrm{~m}$. What was her average velocity?

A: $1.5 \mathrm{~m} / \mathrm{s}$
B: $1.33 \mathrm{~m} / \mathrm{s}$
C: $0 \mathrm{~m} / \mathrm{s}$
D: $-1.33 \mathrm{~m} / \mathrm{s}$
E: $-1.5 \mathrm{~m} / \mathrm{s}$

Clicker question

- Maria stands at position $\mathrm{x}=30 \mathrm{~m}$. In 10s she walks to $x=50 \mathrm{~m}$. In 20 s she then walks back to $\mathrm{x}=30 \mathrm{~m}$. What was her average speed?

A: $1.5 \mathrm{~m} / \mathrm{s}$
B: $1.3 \mathrm{~m} / \mathrm{s}$
C: $0 \mathrm{~m} / \mathrm{s}$
D: $-1.3 \mathrm{~m} / \mathrm{s}$
E: $-1.5 \mathrm{~m} / \mathrm{s}$

Instantaneous velocity

Officer, it took me 1 h to go 25 miles so my average speed was only 25 mph

Instantaneous speed
= speed at one point in time (averaged over very small time interval)

Velocity in position vs time graph

What is the instantaneous velocity at $t=2.0 \mathrm{~s}$?

The velocity at one point in time is the slope of the tangent to the x-t curve at that time.
Calculate slope of green curve:

$$
v=\frac{\Delta x}{\Delta t}
$$

What is the average velocity for motion from $t=0$ s to $t=5.0 s$?
Calculate slope of red curve
http://www.math.umn.edu/~garrett/qy/TraceTangent.html

Q 1. 2.
1)What is the distance covered in 1 second? 2)What is the area indicated by

$$
\begin{array}{|lll|}
\hline \text { a) } & 1 . & 1 . \\
\hline \text { b) } & 1 . & 2 .
\end{array}
$$

The area under the v-t curve is equal to the displacement of the object!
c) 2.1. Note unit of area: area=2m/s*1s=2m

Acceleration

- Acceleration is the rate of change of velocity
- NOTE: This word is used differently from everyday use. Acceleration can mean increase, decrease or change of direction of velocity.
- When the velocity does not change the acceleration is zero
- If velocity changes from v_{i} at time t_{i} to v_{f} at time t_{f} then the average acceleration a is:

$$
a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{\Delta v}{\Delta t}
$$

- Unit: m/s²

Sign of acceleration

- As v_{i} and v_{f} can each be positive or negative, acceleration can also be positive or negative
- The sign indicates the direction of the change of velocity:
- If velocity becomes smaller/more negative then the acceleration is negative $\left(v_{f}<v_{i}\right)$
- If velocity becomes larger/more positive then the acceleration is positive $\left(v_{f}>v_{i}\right)$
- Note that negative acceleration DOES NOT mean the object gets slower.
- Example: if a car's velocity changes from $-10 \mathrm{~m} / \mathrm{s}$ to $-30 \mathrm{~m} / \mathrm{s}$ the car is getting faster (moving in negative x direction) and the acceleration is negative as the velocity becomes smaller

Clicker question

- A car is moving to the right and breaks so its getting slower.

The acceleration is
A positive
B zero
C negative
D don't know

Clicker question

- A car is moving to the left and breaks so its getting slower.

The acceleration is
A positive
B zero
C negative
D don't know

Motion with constant acceleration

- For a given acceleration a, an initial position at $t=0 x_{0}$ and an initial velocity at $\mathrm{t}=0$ of v_{0} we can predict
- Velocity at time t

$$
v(t)=v_{0}+a t
$$

$$
x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

Position changes quadratically !!!

Motion with constant acceleration 2

- Handy equation: combine

$$
\begin{aligned}
& v_{f}=v(t)=v_{0}+a t \\
& x_{f}=x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

for final velocity v_{f} and position x_{f} after constant acceleration a for some time t

- Eliminate t to relate directly the velocity and the displacement (for example to obtain the velocity after travelling a certain distance)

$$
v_{f}^{2}=v_{i}^{2}+2 a \Delta x
$$

Acceleration vs time graph

Area under the curve from $\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$:
$\mathrm{A}=0.75 \mathrm{~m} / \mathrm{s}^{2} \times 2 \mathrm{~s}=1.5 \mathrm{~m} / \mathrm{s}$ $=1.5 \mathrm{~m} / \mathrm{s}$
is the change of velocity!
In symbols:
$A=a \times \Delta t=\Delta v$

Example of a=const: Free Fall

- Earth's gravity causes objects on the surface of the earth to accelerate with $|a|=g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (varies a bit from place to place) IF no other force acts (Free Fall)
- Already Galileo found that this is true for any object regardless of its weight (If free fall is a good approximation - no significant air resistance)
- Note: "Free Fall" is used differently than in everyday language. The object in free fall does not need to fall - a ball thrown up in the air, once it leaves the hand, is in free fall as no other forces than gravity act, even during its upward motion
- Direction is towards the center of the earth (so if that is the negative direction of the position axis then $a=-g=-9.81 \mathrm{~m} / \mathrm{s}^{2}$)

Example: ball throw

- A ball is thrown vertically into the air with an initial speed of $2 \mathrm{~m} / \mathrm{s}$. Neglect air resistance.
- How long does it take to reach the highest point?
- What is the height it reaches?
- Graph $x(t), v(t)$ and $a(t)$
- What is the velocity at the highest point?
- What is the acceleration at the highest point?

