PHY983 - Nuclear Astrophysics - Spring 2009
Homework Set 7

Due: March 20, 2009 at beginning of class

Key words: S-factor, inverse reactions, advanced burning stages

1. [6pt] Imagine you measured the cross section of the ${ }^{44} \mathrm{Ti}(\mathrm{p}, \gamma)$ reaction. Your results are listed below giving the cross section in barn as a function of center of mass energy in MeV (ignore the additional columns):

$\mathrm{E}(\mathrm{MeV})$	sigma(barn)			
0.26179	$4.298 \mathrm{E}-13$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
0.27872	$1.464 \mathrm{E}-12$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
0.29716	$4.916 \mathrm{E}-12$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
0.31724	$1.622 \mathrm{E}-11$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
0.33911	$5.244 \mathrm{E}-11$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
0.36292	$1.659 \mathrm{E}-10$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
0.38886	$5.119 \mathrm{E}-10$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
0.41710	$1.535 \mathrm{E}-09$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
0.44786	$4.445 \mathrm{E}-09$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$

Make a table and a graph showing the astrophysical S-factor as a function of energy. Don't forget to indicate the unit for the S-factor.
2. [6pt] Using your experimental data from problem 1, calculate the astrophysical reaction rate for a temperature of 0.1 GK .

Instructions: Calculate the rate from the S-factor in the Gamow window, and assume the S-factor is constant over the Gamow window. If the S-factor needed is outside of the energy range of your experimental data make a reasonable extrapolation.

3. Neon Burning

3.1. [6pt] Calculate the photodisintegration lifetime of ${ }^{20} \mathrm{Ne}$ under neon burning conditions of 1.5 GK using the ${ }^{16} \mathrm{O}+\alpha$ reaction rate from the JINA reaclib database.
3.2. [6pt] Assuming an initial composition at the beginning of neon burning of $35 \%{ }^{20} \mathrm{Ne}$, $60 \%{ }^{16} \mathrm{O}$, and $5 \%{ }^{24} \mathrm{Mg}$ (fraction by mass), calculate the composition (fraction by mass) at the end of neon burning when all neon is consumed. You can neglect α capture on Mg and beyond. Compare your result with Fig. 5.47 Pg 485 in Iliadis.

