1. 1 g of an electrically neutral astrophysical plasma contains 700 mg 1H, 110 mg 4He, 70.0 mg 14C, and 120 mg 22Ne. The mass density is 75.0 g/cm3 and remains constant throughout. Feel free to submit a printout of an excel spreadsheet. However, you need to explain clearly how all the calculations are done (equations). It is not sufficient to just give numbers.

 a. [2pts] Characterize the composition using the different abundance measures used in nuclear astrophysics (you only have to worry about nuclei). In a table that gives for each constituent isotope:
 i. mass fraction
 ii. abundance ("mole fraction")
 iii. number fraction
 iv. number density
 v. abundance using the notation and units used by Grevesse & Sauval Space Sci Rev 85 (1998) 161, Table1.

 b. [2pt] Calculate mean molecular weight, Ye and electron number density for the mix.

2. For the same astrophysical plasma described in problem 1, now assume that 22Ne and 4He undergo a nuclear reaction. In this reaction, each 22Ne nucleus fuses with a 4He nucleus, and in the process neutron is emitted (a 22Ne(4He,n) reaction). Assume that this reaction occurs until all possible 4He and 22Ne pairs have been converted into reaction products. Answer all the questions from Problem 1 for the new resulting composition (include all reaction products).

3. What is the advantage of using abundance (mole fraction) to characterize a composition? (compare abundances before and after the reaction occurred)

4. Now assume that for the composition obtained in problem 2, all 14C beta decays into 14N (a neutrino and an electron are emitted in the process). Calculate the Y_e of the new composition.

5. Compare the initial Y_e in Problem 1 with the Y_e obtained in Problem 2 and 3. In general, which reactions do change Y_e and which don't and why?