PHY983 - Nuclear Astrophysics - Spring 2009
Homework set 3
Due: Friday, Feb 6, 2007, at beginning of class
Keywords: Nuclear masses, energy generation by nuclear reactions

NOTE: neglect electron binding energies throughout

1. In a simplified model, the rapid neutron capture process (r-process) produces heavy nuclei by a sequence of neutron captures and β^- decays starting at 56 Fe. To explore the energy generated by this process we consider the simplified and extreme assumption that the r-process converts 56 Fe into 238 U (the heaviest nucleus made by the r-process) via the net reaction:

 56 Fe + 182 n --> 238 U + 66 e⁻ + 66 vbar_e

- a. [4 pts] Calculate the nuclear binding energy per nucleon in MeV for ⁵⁶Fe and ²³⁸U using the atomic mass excess table provided by the Nuclear Wallet Cards (see http://www.nndc.bnl.gov/wallet/nwccurrent.html).
- b. [2 pts] Calculate the total binding energy per nucleon in MeV on the left side of the reaction equation and compare to ²³⁸U (the right side). Does the process increase or decrease the binding energy of the reactants (left side) as a whole.
- c. [6 pts] Calculate the total energy generated by this simplified r-process (in ergs) assuming it produces 10^{-5} solar masses of r-process material (238 U) and compare to the typical total explosion energy of a core collapse supernova of 10^{53} ergs.

(additional information not needed to solve the problem: in reality the r-process produces not just ²³⁸U but many other nuclei between ⁵⁶Fe and ²³⁸U, and it might also start beyond ⁵⁶Fe so the produced energy will be less)

- 2. [10pts] Masses determine whether a nucleus is stable and which kind of decays are energetically possible.
 - a. [6 pts] For ⁵⁶Ni, calculate the Q-values in MeV for
 - β^+ decay,
 - β^- decay,
 - electron capture,
 - proton decay,
 - neutron decay,
 - α decay

using the masses given in the nuclear wallet cards.

- b. [2 pts] Based on your results, is ⁵⁶Ni stable, and if not, what is (are) the dominant decay mode(s) ? (justify)
- c. [6 pts] What is the atomic mass excess Δ for ⁵⁶Ni (in MeV) that you would obtain from the Weizsaecker Liquid Drop formula discussed in class?
- d. [2 pts] How does it compare with the measured value? Give the difference in absolute MeV/c^2 and as fraction of the total ⁵⁶Ni mass. Is this accuracy sufficient to calculate Q-values such as the ones in problem 2.a reliably?