

How do we explain obs.?

- If universe ~14 Gyr old
 - Where'd we get so much H & He???
 - pp-chain is too slow
 - massive stars burn beyond He
 - Stars must have been born with that H & He
 - Big bang nucleosynthesis

Info for any nucleosynthesis calculation

- What building blocks are available?
 n, p, nuclides, e, γ, ν, etc...
- What are the reaction time scales?

– Related to rxn rates: $\tau = 1/\Gamma$

- What are the dynamical time scales?
 - Hydro-static EQ; no time scale
 - Free-fall time τ = finite

Cosmology

First published in Weltall and Menschheit (1907) edited by Hans Kraemer

Tenets of Modern Cosmology

- Cosmological Principle
 - Universe is homogeneous
 - looks the same anywhere we go
 - Universe is isotropic
 - looks the same any direction we look
 - Laws of physics are the same everywhere(when)

Tenets of Modern Cosmology

General Relativity

theory of gravity

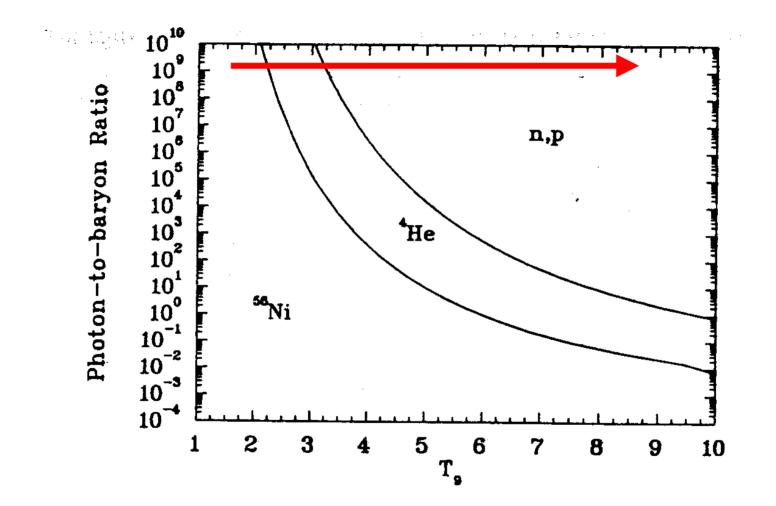
- Standard Model of Particle Physics
 - Constituents of normal matter
 - Interactions between them

Tenets of Modern Cosmology

Dark Side of Cosmology

– Dark Matter

– Dark Energy


Courtesy of George Lucas

Working back to the big bang

- GR predicts universe is expanding
 - Einstein tried to fix this with Λ
 - Claims its his biggest mistake
- Hubble obs. recession of galaxies (1929)
 - First evidence for universal expansion
 - Subsequent obs. confirm this

Working back to the big bang

- If the universe is expanding....
 - What was it like in the past?
 - •Smaller
 - •Hotter
 - •Denser
 - What happens to its constituents?
 - Baryons- n, p, nuclides

Initial Conditions

- At kT>1 MeV
 - Thermal equilibrium
 - Chemical equilibrium
 - Main constitients
 - Photons
 - Neutrinos
 - Electrons/positrons
 - Small number of baryons (n & p)

} NSE

Relevant timescales

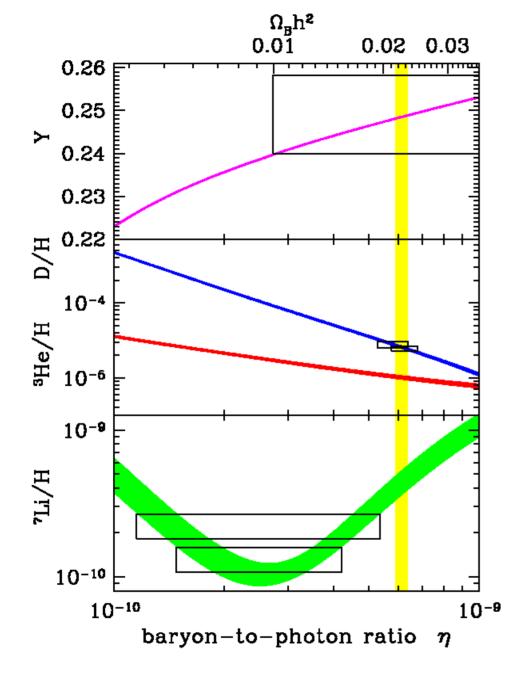
- Dynamical timescale – Hubble expansion rate H ~ T^2/M_P
- Reaction timescales
 - Weak interaction $\Gamma_{\rm W}$ ~ $T^5/M_{\rm W}{}^4$
 - Rxn rates $\Gamma_{rxn} \sim \rho_B \lambda_{rxn}$

Big bang nucleosynthesis

- When T~1 MeV
 - $\Gamma_W \sim H$ weak rates become slow
 - v's stop interacting
 - Electrons/positrons become NR
 - $e^+ + e^- \rightarrow 2\gamma$
 - energy goes into all but ν 's
 - $-\,T_{\gamma}^{}>T_{\nu}^{}$

Big bang nucleosynthesis

- n,p would like to fuse into d
- But $N_{\gamma}(E > B_d) >> N_B$
 - So as soon as d is made, it is destroyed
 - $\Gamma_{\rm diss} >> \Gamma_{\rm fus}$
 - So we must wait.....
- Called the D bottleneck
- while we wait, n's decay


Big bang nucleosynthesis

- T~70 keV, d not efficiently destroyed
- So.....

$p(n,\gamma)d(p,\gamma)^{3}He(d,p)^{4}He$

- We convert H into ⁴He (all n's go into ⁴He)
- Sometimes we even ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$

• T~40 keV, Coulomb barrier halts nucl.

Light Element Abundances

■⁴He: known syst.

Olive & Skillman 2004

D: few obs. systems

Burles, Kirkman, O'Meara

■³He: extrap. error

Bania et al, Vangioni-Flam et al

■⁷Li: add. syst.?

Spite & Spite, Ryan et al, Bonifacio et al

•WMAP CMB $\Omega_{R}h^{2}$

Bennet et al, Spergel et al